Quantum Paradoxes and Bell's inequalities
The following is a contributed topic on known quantum paradoxes
There are two major known quantum `paradoxes':
- The Scrödinger's cat paradox, often expressed as the “Scrödinger's cat is neither dead nor alive”, but in fact meaning something quite different;
- The EPR `Paradox'; several solutions of the
E.P.R
`paradox' have been produced:
a. Interpretations of experiments with polarized laser beams
favor nonlocality in quantum systems
and in the known, physical Universe
thus suggesting that the assumptions of the E.P.R paper are the problem and that there is no paradox;
b. An Unified Local Field Theory (ULFT)
also claims to solve
the EPR
`paradox' by assuming locality-which obviously conflicts the polarized
laser beam experiments' interpretations.
-
- 1
-
Einstein, A., Podolsky, B., and Rosen, N. (1935) Can quantum-mechanical
description of physical reality be considered complete ?,
Phys. Rev. 47, 777-780.
- 2
-
Bell, J. S. (1964) On the Einstein Podolsky Rosen paradox, Physics 1,
195-200.
- 3
-
A. Laudlau. 2002. Apeiron, Vol. 9, No. 1, January 2002 37. Roy Keys Inc.
- 4
-
Bohm, D. and Aharonov, Y. (1957) Discussion of experimental proof for
the paradox of Einstein, Rosen, and Podolsky, Phys. Rev. 108, 1070-1076.
- 5
-
Aspect, A., Dalibard, J., and Roger G. (1982) Experimental test of Bell’s
inequalities using time-varying analyzers, Phys. Rev. Lett. 49, 1804-1807.
- 6
-
Chernitskii, A.A. (1999) Dyons and interactions in nonlinear (Born-Infeld)
electrodynamics, J. High Energy Phys. 1999, no. 12, Paper 10, 1-34.
- 7
- .
Einstein, A. and Tagore, R. (1931) The nature of reality, Modern Review
(Calcutta) XLIX, 42-43.
- 8
- Chernitskii, A.A. (1998) Nonlinear electrodynamics with singularities (modernized Born-Infeld electrodynamics), Helv. Phys. Acta 71, 274-287.
- 9
-
Chernitskii, A.A. (1998) Light beams distortion in nonlinear electrodynamics,
J. High Energy Phys. 1998, no. 11, Paper 15, 1-5.
- 10
-
Chernitskii, A.A. (2000) Bidyon or an electromagnetic model for charged
particle with spin,
.
- 11
-
Chernitskii, A.A. (2002) Born-Infeld electrodynamics: Clifford number and
spinor representations, Int. J. Math. and Math. Sci. 31, 77-84.
- 12
-
Devoret, M.H. and Schoelkopf, R.J. (2000) Amplifying quantum signals
with the single-electron transistor, Nature 406, 1039-1046.
- 13
-
Clauser J. and Horne M. Detector Inefficiencies in the EPR experiment.
Phys. Rev. D 35 (12) 3831-3835 (1987).
- 14
-
Vaidman L. Tests of Bell Inequalities
(2001).
- 15
-
Aspect A., Grangier P. and Roger B. Phys. Rev. Lett. 49, 1804-1807
(1982)
- 16
-
Scarani V., Tittel W., Zbinden H., Gisin N.
Phys. Lett.
A 276 2000 1-7 (2000)
- 17
-
Ou, Z.Y., Pereira S.F., Kimble H.J. and Peng K.C. Phys Rev. Lett. 68,
3663 (1992)
- 18
-
Percival, I.C. Physical Letters., A 244 (6) pp. 495-501 (1998).
- 19
- Smoot G. Detection of Anisotropy in the Cosmic Blackbody Radiation. Physical Review Letters 39 14 p898 (1977).
- 20
-
Peebles, P.J.E. and Wilkinson D.T. Phys. Rev. 174 2168 (1968).
- 21
-
Longair, M.S. The Physics of Background Radiation. The Deep Universe.
Springer Verlag (1995)
- 22
-
Weinberg, S. The First Three Minutes. Basic Books. pp.71-72. (1977).
- 23
-
Dirac P.A.M. The Theory of the electron (parts 1 and 2). Proceedings of
the Royal Society in London. A117, p610 and A118, p.351 (1928)
- 24
-
Breit G. An interpretation of Dirac's Theory of the electron. Proceedings
of the National Academy of Sciences USA, 14 p.553 (1928)
- 25
-
Schrödinger, E. Sitzungsberichte Berlin Akadamie, p.418 (1930).
- 26
- Dirac P.A.M. Principles of Quantum Mechanics. Oxford. p263. (1958)
- 27
-
Messiah, A. Quantum Mechanics. Vols. 1 and 2., vol.2: Ch XX, pp.922-925.
- 28
-
Bohm D. The Special Theory of Relativity. pp23-25. (1996)
- 29
-
Hafele J. and Keating R. Science, 177 p.166 (1972).
- 30
-
Kundig W. Phys Rev. 129, 2371 (1963)
- 31
-
Ives H. and Stillwell. Journal of the Optical Society of America.m 28 pp.
215-226 (1938) and 31 p369 (1941)
- 32
-
Konopinski E.J. Electromagnetic fields and Relativistic particles
McGraw Hill p315-319 (1981)
- 33
-
Poynting J.H. Phil. Trans. 175 p343-361 (1884)
- 34
-
Bohm D. and Hiley B. The Undivided Universe: an ontological
interpretation of quantum mechanics. Routledge Publs. pp.288-292 (1993).
- 35
-
Teller, P. An Interpretive Introduction to Quantum Field Theory. Ch 7
(1995).
- 36
-
Cui, H.Y. Direction Adaptation Nature of Coulomb' s Force and
Gravitational Force in 4-Dimensional Space-time physics/0102073
(2001).
- 37
-
Cui, H.Y. Method for Deriving the Dirac Equation from the Relativistic
Newton' s Second Law.,
(2001).
- 38
-
Redhead, M. Incompleteness, Nonlocality and Realism. Oxford University
Press (1987).
- 39
-
Rembielinski, J. Superluminal Phenomena and the Quantum Preferred
Frame.,
(2000).
- 40
-
Konopinskim, E. J. Electromagnetic Fields and Relativistic Particles.
McGraw Hill publ., pp. 441-454 (1981).
- 41
-
d’Espagnat, B. A note on measurement. quant-ph/0101141 (2001).
- 42
-
Wang, L.J., Kuzmich A., Dogariu A. Nature 406, pp. 277-279 (2000).
- 43
-
Olkhovsky, V. S., Recami E. and Salesi G. Superluminal effects for
quantum tunneling through TWO successive barriers
v4 (2001).
- 44
-
Chernitskii. A.A. Concept of Unified Local Field Theory and Nonlocality
of Matter
(2001).
- 45
-
Van Flandern. T. The Speed of Gravity-What the Experiments Say.
Physics Letters A, 250 1-11 (1998).
- 46
-
Lloyd, S. (2000) Ultimate physical limits to computation, Nature, 406,
1047-1054.
Contributors to this entry (in most recent order):
As of this snapshot date, this entry was owned by bci1.