Euler 132 sequence

For more info on Euler Sequences, notation and convention see the generic entry on Euler Angle Sequences.

$ R_{132}(\phi, \theta, \psi) = R_2(\psi) R_3(\theta) R_1(\phi) $

The rotation matrices are

$\displaystyle R_2(\psi) = \left[ \begin{array}{ccc} c_{\psi} & 0 & -s_{\psi} \\ 0 & 1 & 0 \\ s_{\psi} & 0 & c_{\psi} \end{array} \right]$ (1)

$\displaystyle R_3(\theta) = \left[ \begin{array}{ccc} c_{\theta} & s_{\theta} & 0 \\ -s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 1 \end{array} \right]$ (2)

$\displaystyle R_1(\phi) = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{\phi} & s_{\phi} \\ 0 & -s_{\phi} & c_{\phi} \end{array} \right]$ (3)

Carrying out the matrix multiplication from right to left

$ R_3(\theta)R_1(\phi) =
\left[ \begin{array}{ccc}
c_{\theta} & s_{\theta} & 0 \...
..._{\phi} & c_{\theta} s_{\phi} \\
0 & -s_{\phi} & c_{\phi} \end{array} \right] $

Finaly leaving us with the Euler 132 sequence

$ R_2(\psi)R_3(\theta)R_1(\phi) = \left[ \begin{array}{ccc}
c_{\psi} c_{\theta} ...
..._{\phi} & s_{\psi} s_{\theta} s_{\phi} + c_{\psi} c_{\phi} \end{array} \right] $



Contributors to this entry (in most recent order):

As of this snapshot date, this entry was owned by bloftin.