bibliography for mathematical physics foundations

Bibliography for mathematical physics foundations

A1. Axiomatics and categories in the foundations of physics

Bibliography

1
Alfsen, E.M. and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkhäuser, Boston-Basel-Berlin (2003).

2
Atiyah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France, 84: 307-317.

2
Auslander, M. 1965. Coherent Functors. Proc. Conf. Cat. Algebra, La Jolla, 189-231.

3
Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168-1182.

4
Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity I. Nineteen-Century Axiomatics to Twentieth-Century Metalogic., History and Philosophy of Logic, 23, 1, 1-30.

4
Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics, History and Philosophy of Logic, 23, (2): 77-94.

5
Awodey, S., 1996, Structure in Mathematics and Logic: A Categorical Perspective, Philosophia Mathematica, 3: 209-237.

6
Awodey, S., 2004, An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism, Philosophia Mathematica, 12: 54-64.

7
Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.

8
Baez, J. & Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes, in: Advances in Mathematics, 135, 145-206.

9
Baez, J. & Dolan, J., 1998b, ``Categorification", Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1-36.

10
Baez, J. & Dolan, J., 2001, From Finite Sets to Feynman Diagrams, in Mathematics Unlimited - 2001 and Beyond, Berlin: Springer, 29-50.

11
Baez, J., 1997, An Introduction to n-Categories, in Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1-33.

12
Baianu, I.C.: 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. Ibid., 33 (3), 339-354.

12
Baianu, I.C.: 1971b, Categories, Functors and Quantum Algebraic Computations, in P. Suppes (ed.), Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, September 1-4, 1971, Bucharest.

13
Baianu, I.C., H. S. Gutowsky, and E. Oldfield: 1984, Proc. Natl. Acad. Sci. USA, 81(12): 3713-3717.

14
Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in Relation to Dynamic Bionetworks, (M,R)-Systems and Their Higher Dimensional Algebra, PDF's of Abstract and Preprint of Report.

15
Baianu, I.C.: 2004a, Quantum Nano-Automata (QNA): Microphysical Measurements with Microphysical QNA Instruments, CERN Preprint EXT-2004-125.

16
Baianu, I. C., Brown, R. and J. F. Glazebrook: 2006a, Quantum Algebraic Topology and Field Theories. Preprint subm..

17
Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006b, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz-Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.

18
Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.

19
M. Barr and C. Wells. Toposes, Triples and Theories. Montreal: McGill University, 2000.

20
Barr, M. & Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.

21
Barr, M. & Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.

22
Batanin, M., 1998, Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories, Advances in Mathematics, 136: 39-103.

23
Bell, J. L., 1981, Category Theory and the Foundations of Mathematics, British Journal for the Philosophy of Science, 32, 349-358.

24
Bell, J. L., 1982, Categories, Toposes and Sets, Synthese, 51, 3, 293-337.

25
Bell, J. L., 1986, From Absolute to Local Mathematics, Synthese, 69, 3, 409-426.

26
Bell, J. L., 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.

27
Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.

28
Biss, D.K., 2003, Which Functor is the Projective Line?, American Mathematical Monthly, 110, 7, 574-592.

29
Blass, A. & Scedrov, A., 1983, Classifying Topoi and Finite Forcing , Journal of Pure and Applied Algebra, 28, 111-140.

30
Blass, A. & Scedrov, A., 1989, Freyd's Model for the Independence of the Axiom of Choice, Providence: AMS.

31
Blass, A. & Scedrov, A., 1992, Complete Topoi Representing Models of Set Theory, Annals of Pure and Applied Logic, 57, no. 1, 1-26.

32
Blass, A., 1984, The Interaction Between Category Theory and Set Theory., Mathematical Applications of Category Theory, 30, Providence: AMS, 5-29.

33
Blute, R. & Scott, P., 2004, Category Theory for Linear Logicians., in Linear Logic in Computer Science

34
Borceux, F.: 1994, Handbook of Categorical Algebra, vols: 1-3, in Encyclopedia of Mathematics and its Applications 50 to 52, Cambridge University Press.

35
Bourbaki, N. 1961 and 1964: Algèbre commutative., in Éléments de Mathématique., Chs. 1-6., Hermann: Paris.

36
R. Brown: Topology and Groupoids, BookSurge LLC (2006).

37
Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy double groupoid of a map of spaces, Applied Categorical Structures 12: 63-80.

38
Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-Abelian Algebraic Topology,Vol.I PDF.

39
Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321-379.

40
Brown, R., Paton, R. and T. Porter.: 2004, Categorical language and hierarchical models for cell systems, in Computation in Cells and Tissues - Perspectives and Tools of Thought, Paton, R.; Bolouri, H.; Holcombe, M.; Parish, J.H.; Tateson, R. (Eds.) Natural Computing Series, Springer Verlag, 289-303.

41
Brown R. and T. Porter: 2003, Category theory and higher dimensional algebra: potential descriptive tools in neuroscience, In: Proceedings of the International Conference on Theoretical Neurobiology, Delhi, February 2003, edited by Nandini Singh, National Brain Research Centre, Conference Proceedings 1, 80-92.

42
Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., Theory and Applications of Categories 10, 71-93.

43
Brown, R., and Hardy, J.P.L.:1976, Topological groupoids I: universal constructions, Math. Nachr., 71: 273-286.

44
Brown, R. and T. Porter: 2006, Category Theory: an abstract setting for analogy and comparison, In: What is Category Theory?, Advanced Studies in Mathematics and Logic, Polimetrica Publisher, Italy, (2006) 257-274.

45
Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed modules, Cah. Top. Géom. Diff. 17, 343-362.

46
Brown R, and Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is category theory? Advanced studies in mathematics and logic. Polimetrica Publisher, Italy, pp. 257-274.

47
Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentations of modules of identities among relations. LMS J. Comput. Math., 2: 25-61.

48
Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80: 1-34.

48
Buchsbaum, D. A.: 1969, A note on homology in categories., Ann. of Math. 69: 66-74.

49
Bucur, I. (1965). Homological Algebra. (orig. title: ``Algebra Omologica'') Ed. Didactica si Pedagogica: Bucharest.

50
Bucur, I., and Deleanu A. (1968). Introduction to the Theory of Categories and Functors. J.Wiley and Sons: London

51
Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179, 291-317.

52
Bunge, M., 1974, "Topos Theory and Souslin's Hypothesis", Journal of Pure and Applied Algebra, 4, 159-187.

53
Bunge, M., 1984, "Toposes in Logic and Logic in Toposes", Topoi, 3, no. 1, 13-22.

54
Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math, 179: 291-317.

55
Butterfield J., Isham C.J. (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 33-89.

56
Butterfield J., Isham C.J. 1998, 1999, 2000-2002, A topos perspective on the Kochen-Specker theorem I-IV, Int J Theor Phys 37(11):2669-2733; 38(3):827-859; 39(6):1413-1436; 41(4): 613-639.

57
Cartan, H. and Eilenberg, S. 1956. Homological Algebra, Princeton Univ. Press: Pinceton.

58
M. Chaician and A. Demichev. 1996. Introduction to Quantum Groups, World Scientific .

59
Chevalley, C. 1946. The theory of Lie groups. Princeton University Press, Princeton NJ

60
Cohen, P.M. 1965. Universal Algebra, Harper and Row: New York, london and Tokyo.

61
M. Crainic and R. Fernandes.2003. Integrability of Lie brackets, Ann.of Math. 157: 575-620.

62
Connes A 1994. Noncommutative geometry. Academic Press: New York.

63
Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative., Gauthier-Villard: Paris.

64
Crole, R.L., 1994, Categories for Types, Cambridge: Cambridge University Press.

65
Couture, J. & Lambek, J., 1991, Philosophical Reflections on the Foundations of Mathematics, Erkenntnis, 34, 2, 187-209.

66
Dieudonné, J. & Grothendieck, A., 1960, [1971], Éléments de Géométrie Algébrique, Berlin: Springer-Verlag.

67
Dirac, P. A. M., 1930, The Principles of Quantum Mechanics, Oxford: Clarendon Press.

68
Dirac, P. A. M., 1933, The Lagrangian in Quantum Mechanics, Physikalische Zeitschrift der Sowietunion, 3: 64-72.

69
Dirac, P. A. M.,, 1943, Quantum Electrodynamics, Communications of the Dublin Institute for Advanced Studies, A1: 1-36.

70
Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing Company. [First published in French in 1957: Les Algebres d'Operateurs dans l'Espace Hilbertien, Paris: Gauthier-Villars.]

71
M. Durdevich : Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (3) (1996), 457-521.

72
M. Durdevich : Geometry of quantum principal bundles II, Rev. Math. Phys. 9 (5) (1997), 531-607.

73
Ehresmann, C.: 1965, Catégories et Structures, Dunod, Paris.

73
Ehresmann, C.: 1966, Trends Toward Unity in Mathematics., Cahiers de Topologie et Geometrie Differentielle 8: 1-7.

74
Ehresmann, C.: 1952, Structures locales et structures infinitésimales, C.R.A.S. Paris 274: 587-589.

75
Ehresmann, C.: 1959, Catégories topologiques et catégories différentiables, Coll. Géom. Diff. Glob. Bruxelles, pp.137-150.

76
Ehresmann, C.:1963, Catégories doubles des quintettes: applications covariantes , C.R.A.S. Paris, 256: 1891-1894.

77
Ehresmann, A. C. & Vanbremeersch, J-P., 1987, "Hierarchical Evolutive Systems: a Mathematical Model for Complex Systems", Bulletin of Mathematical Biology, 49, no. 1, 13-50.

78
Ehresmann, C.: 1984, Oeuvres complètes et commentées: Amiens, 1980-84, edited and commented by Andrée Ehresmann.

79
Ehresmann, A. C. and J.-P. Vanbremersch: 1987, Hierarchical Evolutive Systems: A mathematical model for complex systems, Bull. of Math. Biol. 49 (1): 13-50.

80
Ehresmann, A. C. and J.-P. Vanbremersch: 2006, The Memory Evolutive Systems as a model of Rosen's Organisms, Axiomathes 16 (1-2): 13-50.

81
Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., American Mathematical Society 43: 757-831.

82
Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58: 231-294.

83
Eilenberg, S. & Cartan, H., 1956, Homological Algebra, Princeton: Princeton University Press.

84
Eilenberg, S. & MacLane, S., 1942, "Group Extensions and Homology", Annals of Mathematics, 43, 757-831.

85
Eilenberg, S. & Steenrod, N., 1952, Foundations of Algebraic Topology, Princeton: Princeton University Press.

86
Eilenberg, S.: 1960. Abstract description of some basic functors., J. Indian Math.Soc., 24 :221-234.

87
S.Eilenberg. Relations between Homology and Homotopy Groups. Proc.Natl.Acad.Sci.USA (1966),v:10-14.

88
Ellerman, D., 1988, "Category Theory and Concrete Universals", Synthese, 28, 409-429.

89
Z. F. Ezawa, G. Tsitsishvilli and K. Hasebe : Noncommutative geometry, extended $ W_{\infty}$ algebra and Grassmannian solitons in multicomponent Hall systems, arXiv:hep-th/0209198.

90
Feferman, S., 1977. Categorical Foundations and Foundations of Category Theory, in Logic, Foundations of Mathematics and Computability, R. Butts (ed.), Reidel, 149-169.

91
Fell, J. M. G., 1960.The Dual Spaces of C*-Algebras, Transactions of the American Mathematical Society, 94: 365-403.

92
Feynman, R. P., 1948, Space-Time Approach to Non-Relativistic Quantum Mechanics., Reviews of Modern Physics, 20: 367-387. [It is reprinted in (Schwinger 1958).]

93
Freyd, P., 1960. Functor Theory (Dissertation). Princeton University, Princeton, New Jersey.

94
Freyd, P., 1963, Relative homological algebra made absolute. , Proc. Natl. Acad. USA, 49:19-20.

95
Freyd, P., 1964, Abelian Categories. An Introduction to the Theory of Functors, New York and London: Harper and Row.

96
Freyd, P., 1965, The Theories of Functors and Models., Theories of Models, Amsterdam: North Holland, 107-120.

97
Freyd, P., 1966, Algebra-valued Functors in general categories and tensor product in particular., Colloq. Mat. 14: 89-105.

98
Freyd, P., 1972, Aspects of Topoi,Bulletin of the Australian Mathematical Society, 7: 1-76.

99
Freyd, P., 1980, "The Axiom of Choice", Journal of Pure and Applied Algebra, 19, 103-125.

100
Freyd, P., 1987, "Choice and Well-Ordering", Annals of Pure and Applied Logic, 35, 2, 149-166.

101
Freyd, P., 1990, Categories, Allegories, Amsterdam: North Holland.

102
Freyd, P., 2002, "Cartesian Logic", Theoretical Computer Science, 278, no. 1-2, 3-21.

103
Freyd, P., Friedman, H. & Scedrov, A., 1987, "Lindembaum Algebras of Intuitionistic Theories and Free Categories", Annals of Pure and Applied Logic, 35, 2, 167-172.

104
Gablot, R. 1971. Sur deux classes de catégories de Grothendieck. Thesis.. Univ. de Lille.

105
Gabriel, P.: 1962, Des catégories abéliennes, Bull. Soc. Math. France 90: 323-448.

106
Gabriel, P. and M.Zisman:. 1967: Category of fractions and homotopy theory, Ergebnesse der math. Springer: Berlin.

107
Gabriel, P. and N. Popescu: 1964, Caractérisation des catégories abéliennes avec générateurs et limites inductives. , CRAS Paris 258: 4188-4191.

108
Galli, A. & Reyes, G. & Sagastume, M., 2000, "Completeness Theorems via the Double Dual Functor", Studia Logical, 64, no. 1, 61-81.

109
Gelfan'd, I. and Naimark, M., 1943. On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space.,Recueil Mathématique [Matematicheskii Sbornik] Nouvelle Série, 12 [54]: 197-213. [Reprinted in C*-algebras: 1943-1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]

110
Georgescu, G. and C. Vraciu 1970. "On the Characterization of Łukasiewicz Algebras." J Algebra, 16 (4), 486-495.

111
Ghilardi, S. & Zawadowski, M., 2002, Sheaves, Games & Model Completions: A Categorical Approach to Nonclassical Porpositional Logics, Dordrecht: Kluwer.

112
Ghilardi, S., 1989, "Presheaf Semantics and Independence Results for some Non-classical first-order logics", Archive for Mathematical Logic, 29, no. 2, 125-136.

113
Goblot, R., 1968, Catégories modulaires , C. R. Acad. Sci. Paris, Série A., 267: 381-383.

114
Goblot, R., 1971, Sur deux classes de catégories de Grothendieck, Thèse., Univ. Lille, 1971.

115
Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic, Studies in logic and the foundations of mathematics, Amsterdam: Elsevier North-Holland Publ. Comp.

116
Goldie, A. W., 1964, Localization in non-commutative noetherian rings, J.Algebra, 1: 286-297.

117
Godement,R. 1958. Théorie des faisceaux. Hermann: Paris.

118
Gray, C. W.: 1965. Sheaves with values in a category.,Topology, 3: 1-18.

119
Grothendieck, A.: 1971, Revêtements Étales et Groupe Fondamental (SGA1), chapter VI: Catégories fibrées et descente, Lecture Notes in Math. 224, Springer-Verlag: Berlin.

120
Grothendieck, A.: 1957, Sur quelque point d-algébre homologique. , Tohoku Math. J., 9: 119-121.

121
Grothendieck, A. and J. Dieudoné.: 1960, Eléments de geometrie algébrique., Publ. Inst. des Hautes Etudes de Science, 4.

122
Grothendieck, A. et al., Séminaire de Géométrie Algébrique, Vol. 1-7, Berlin: Springer-Verlag.

123
Grothendieck, A., 1957, "Sur Quelques Points d'algèbre homologique", Tohoku Mathematics Journal, 9, 119-221.

124
Groups Authors: João Faria Martins, Timothy Porter., On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical $ math.QA/0608484 [abs, ps, pdf, other]$ .

125
Gruson, L, 1966, Complétion abélienne. Bull. Math.Soc. France, 90: 17-40.

126
K.A. Hardie, K.H. Kamps and R.W. Kieboom. 2000. A homotopy 2-groupoid of a Hausdorff space, Applied Cat. Structures 8: 209-234.

127
Hatcher, W. S. 1982. The Logical Foundations of Mathematics, Oxford: Pergamon Press.

128
Heller, A. :1958, Homological algebra in Abelian categories., Ann. of Math. 68: 484-525.

129
Heller, A. and K. A. Rowe.:1962, On the category of sheaves., Amer J. Math. 84: 205-216.

130
Hellman, G., 2003, "Does Category Theory Provide a Framework for Mathematical Structuralism?", Philosophia Mathematica, 11, 2, 129-157.

131
Hermida, C. & Makkai, M. & Power, J., 2000, On Weak Higher-dimensional Categories. I, Journal of Pure and Applied Algebra, 154, no. 1-3, 221-246.

132
Hermida, C. & Makkai, M. & Power, J., 2001, On Weak Higher-dimensional Categories. II, Journal of Pure and Applied Algebra, 157, no. 2-3, 247-277.

133
Hermida, C. & Makkai, M. & Power, J., 2002, On Weak Higher-dimensional Categories. III, Journal of Pure and Applied Algebra, 166, no. 1-2, 83-104.

134
Higgins, P. J.: 2005, Categories and groupoids, Van Nostrand Mathematical Studies: 32, (1971); Reprints in Theory and Applications of Categories, No. 7: 1-195.

135
Higgins, Philip J. Thin elements and commutative shells in cubical $ \omega$ -categories. Theory Appl. Categ. 14 (2005), No. 4, 60-74 (electronic). (Reviewer: Timothy Porter) 18D05.

136
Hyland, J.M.E. & Robinson, E.P. & Rosolini, G., 1990, "The Discrete Objects in the Effective Topos", Proceedings of the London Mathematical Society (3), 60, no. 1, 1-36.

137
Hyland, J.M.E., 1982, "The Effective Topos", Studies in Logic and the Foundations of Mathematics, 110, Amsterdam: North Holland, 165-216.

138
Hyland, J. M..E., 1988, "A Small Complete Category", Annals of Pure and Applied Logic, 40, no. 2, 135-165.

139
Hyland, J. M .E., 1991, "First Steps in Synthetic Domain Theory", Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 131-156.

140
Hyland, J. M.E., 2002, "Proof Theory in the Abstract", Annals of Pure and Applied Logic, 114, no. 1-3, 43-78.

141
E.Hurewicz. CW Complexes.Trans AMS.1955.

142
Ionescu, Th., R. Parvan and I. Baianu, 1970, C. R. Acad. Sci. Paris, Série A., 269: 112-116, communiquée par Louis Néel.

143
C. J. Isham : A new approach to quantising space-time: I. quantising on a general category, Adv. Theor. Math. Phys. 7 (2003), 331-367.

144
Jacobs, B., 1999, Categorical Logic and Type Theory, Amsterdam: North Holland.

145
Johnstone, P. T., 1977, Topos Theory, New York: Academic Press.

146
Johnstone, P. T., 1979a, "Conditions Related to De Morgan's Law", Applications of Sheaves, Lecture Notes in Mathematics, 753, Berlin: Springer, 479-491.

147
Johnstone, P.T., 1979b, "Another Condition Equivalent to De Morgan's Law", Communications in Algebra, 7, no. 12, 1309-1312.

148
Johnstone, P. T., 1981, "Tychonoff's Theorem without the Axiom of Choice", Fundamenta Mathematicae, 113, no. 1, 21-35.

149
Johnstone, P. T., 1982, Stone Spaces, Cambridge:Cambridge University Press.

150
Johnstone, P. T., 1985, "How General is a Generalized Space?", Aspects of Topology, Cambridge: Cambridge University Press, 77-111.

151
Johnstone, P. T., 2002a, Sketches of an Elephant: a Topos Theory Compendium. Vol. 1, Oxford Logic Guides, 43, Oxford: Oxford University Press.

152
Joyal, A. & Moerdijk, I., 1995, Algebraic Set Theory, Cambridge: Cambridge University Press.

153
Van Kampen, E. H.: 1933, On the Connection Between the Fundamental Groups of some Related Spaces, Amer. J. Math. 55: 261-267

154
Kan, D. M., 1958, "Adjoint Functors", Transactions of the American Mathematical Society, 87, 294-329.

155
Kleisli, H.: 1962, Homotopy theory in Abelian categories.,Can. J. Math., 14: 139-169.

156
Knight, J.T., 1970, On epimorphisms of non-commutative rings., Proc. Cambridge Phil. Soc., 25: 266-271.

157
Kock, A., 1981, Synthetic Differential Geometry, London Mathematical Society Lecture Note Series, 51, Cambridge: Cambridge University Press.

158
S. Kobayashi and K. Nomizu : Foundations of Differential Geometry Vol I., Wiley Interscience, New York-London 1963.

159
H. Krips : Measurement in Quantum Theory, The Stanford Encyclopedia of Philosophy (Winter 1999 Edition), Edward N. Zalta (ed.), $ URL=<http://plato.stanford.edu/archives/win1999/entries/qt--measurement/>$

160
Lam, T. Y., 1966, The category of noetherian modules, Proc. Natl. Acad. Sci. USA, 55: 1038-104.

161
Lambek, J. & Scott, P. J., 1981, "Intuitionistic Type Theory and Foundations", Journal of Philosophical Logic, 10, 1, 101-115.

162
Lambek, J. & Scott, P.J., 1986, Introduction to Higher Order Categorical Logic, Cambridge: Cambridge University Press.

163
Lambek, J., 1968, "Deductive Systems and Categories I. Syntactic Calculus and Residuated Categories", Mathematical Systems Theory, 2, 287-318.

164
Lambek, J., 1969, "Deductive Systems and Categories II. Standard Constructions and Closed Categories", Category Theory, Homology Theory and their Applications I, Berlin: Springer, 76-122.

165
Lambek, J., 1972, "Deductive Systems and Categories III. Cartesian Closed Categories, Intuitionistic Propositional Calculus, and Combinatory Logic", Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Berlin: Springer, 57-82.

166
Lambek, J., 1982, "The Influence of Heraclitus on Modern Mathematics", Scientific Philosophy Today, J. Agassi and R.S. Cohen, eds., Dordrecht, Reidel, 111-122.

167
Lambek, J., 1986, "Cartesian Closed Categories and Typed lambda calculi", Combinators and Functional Programming Languages, Lecture Notes in Computer Science, 242, Berlin: Springer, 136-175.

168
Lambek, J., 1989A, "On Some Connections Between Logic and Category Theory", Studia Logica, 48, 3, 269-278.

169
Lambek, J., 1989B, "On the Sheaf of Possible Worlds", Categorical Topology and its relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific Publishing, 36-53.

170
Lambek, J., 1994a, "Some Aspects of Categorical Logic", Logic, Methodology and Philosophy of Science IX, Studies in Logic and the Foundations of Mathematics 134, Amsterdam: North Holland, 69-89.

171
Lambek, J., 1994b, "What is a Deductive System?", What is a Logical System?, Studies in Logic and Computation, 4, Oxford: Oxford University Press, 141-159.

172
Lambek, J., 2004, "What is the world of Mathematics? Provinces of Logic Determined", Annals of Pure and Applied Logic, 126(1-3), 149-158.

173
Lambek, J. and P. J. Scott. Introduction to higher order categorical logic. Cambridge University Press, 1986.

174
E. C. Lance : Hilbert C*-Modules. London Math. Soc. Lect. Notes 210, Cambridge Univ. Press. 1995.

175
Landry, E. & Marquis, J.-P., 2005, "Categories in Context: Historical, Foundational and philosophical", Philosophia Mathematica, 13, 1-43.

176
Landry, E., 1999, "Category Theory: the Language of Mathematics", Philosophy of Science, 66, 3: supplement, S14-S27.

176
Landry, E., 2001, "Logicism, Structuralism and Objectivity", Topoi, 20, 1, 79-95.

177
Landsman, N. P.: 1998, Mathematical Topics between Classical and Quantum Mechanics, Springer Verlag: New York.

178
N. P. Landsman : Mathematical topics between classical and quantum mechanics. Springer Verlag, New York, 1998.

179
N. P. Landsman : Compact quantum groupoids, arXiv:mathâ @ Tph/9912006

180
La Palme Reyes, M., et. al., 1994, "The non-Boolean Logic of Natural Language Negation", Philosophia Mathematica, 2, no. 1, 45-68.

181
La Palme Reyes, M., et. al., 1999, "Count Nouns, Mass Nouns, and their Transformations: a Unified Category-theoretic Semantics", Language, Logic and Concepts, Cambridge: MIT Press, 427-452.

182
Lawvere, F. W., 1964, "An Elementary Theory of the Category of Sets", Proceedings of the National Academy of Sciences U.S.A., 52, 1506-1511.

183
Lawvere, F. W., 1965, "Algebraic Theories, Algebraic Categories, and Algebraic Functors", Theory of Models, Amsterdam: North Holland, 413-418.

184
Lawvere, F. W., 1966, "The Category of Categories as a Foundation for Mathematics", Proceedings of the Conference on Categorical Algebra, La Jolla, New York: Springer-Verlag, 1-21.

185
Lawvere, F. W., 1969a, "Diagonal Arguments and Cartesian Closed Categories", Category Theory, Homology Theory, and their Applications II, Berlin: Springer, 134-145.

186
Lawvere, F. W., 1969b, "Adjointness in Foundations", Dialectica, 23, 281-295.

187
Lawvere, F. W., 1970, "Equality in Hyper doctrines and Comprehension Schema as an Adjoint Functor", Applications of Categorical Algebra, Providence: AMS, 1-14.

188
Lawvere, F. W., 1971, "Quantifiers and Sheaves", Actes du Congrès International des Mathématiciens, Tome 1, Paris: Gauthier-Villars, 329-334.

189
Lawvere, F. W., 1972, "Introduction", Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Springer-Verlag, 1-12.

190
Lawvere, F. W., 1975, "Continuously Variable Sets: Algebraic Geometry = Geometric Logic", Proceedings of the Logic Colloquium Bristol 1973, Amsterdam: North Holland, 135-153.

191
Lawvere, F. W., 1976, "Variable Quantities and Variable Structures in Topoi", Algebra, Topology, and Category Theory, New York: Academic Press, 101-131.

192
Lawvere, F. W. & Schanuel, S., 1997, Conceptual Mathematics: A First Introduction to Categories, Cambridge: Cambridge University Press.

184
Lawvere, F. W.: 1966, The Category of Categories as a Foundation for Mathematics., in Proc. Conf. Categorical Algebra- La Jolla., Eilenberg, S. et al., eds. Springer-Verlag: Berlin, Heidelberg and New York., pp. 1-20.

193
Lawvere, F. W.: 1963, Functorial Semantics of Algebraic Theories, Proc. Natl. Acad. Sci. USA, Mathematics, 50: 869-872.

194
Lawvere, F. W.: 1969, Closed Cartesian Categories., Lecture held as a guest of the Romanian Academy of Sciences, Bucharest.

195
Lawvere, F. W., 1992, "Categories of Space and of Quantity", The Space of Mathematics, Foundations of Communication and Cognition, Berlin: De Gruyter, 14-30.

196
Lawvere, F. W., 1994a, "Cohesive Toposes and Cantor's lauter Ensein ", Philosophia Mathematica, 2, 1, 5-15.

197
Lawvere, F. W., 1994b, "Tools for the Advancement of Objective Logic: Closed Categories and Toposes", The Logical Foundations of Cognition, Vancouver Studies in Cognitive Science, 4, Oxford: Oxford University Press, 43-56.

198
Lawvere, H. W (ed.), 1995. Springer Lecture Notes in Mathematics 274,:13-42.

199
Lawvere, F. W., 2000, "Comments on the Development of Topos Theory", Development of Mathematics 1950-2000, Basel: Birkhäuser, 715-734.

200
Lawvere, F. W., 2002, "Categorical Algebra for Continuum Micro Physics", Journal of Pure and Applied Algebra, 175, no. 1-3, 267-287.

201
Lawvere, F. W. & Rosebrugh, R., 2003, Sets for Mathematics, Cambridge: Cambridge University Press.

202
Lawvere, F. W., 2003, "Foundations and Applications: Axiomatization and Education. New Programs and Open Problems in the Foundation of Mathematics", Bullentin of Symbolic Logic, 9, 2, 213-224.

193
Lawvere, F.W., 1963, "Functorial Semantics of Algebraic Theories", Proceedings of the National Academy of Sciences U.S.A., 50, 869-872.

203
Leinster, T., 2002, "A Survey of Definitions of n-categories", Theory and Applications of Categories, (electronic), 10, 1-70.

204
Li, M. and P. Vitanyi: 1997, An introduction to Kolmogorov Complexity and its Applications, Springer Verlag: New York.

205
Löfgren, L.: 1968, An Axiomatic Explanation of Complete Self-Reproduction, Bulletin of Mathematical Biophysics, 30: 317-348

206
Lubkin, S., 1960. Imbedding of abelian categories., Trans. Amer. Math. Soc., 97: 410-417.

207
Luisi, P. L. and F. J. Varela: 1988, Self-replicating micelles a chemical version of a minimal autopoietic system. Origins of Life and Evolution of Biospheres 19(6): 633â @ T643.

208
K. C. H. Mackenzie : Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lect. Notes 124, Cambridge University Press, 1987

209
Mac Lane, S.: 1948. Groups, categories, and duality., Proc. Natl. Acad. Sci.U.S.A, 34: 263-267.

210
Mac Lane, S., 1969, "Foundations for Categories and Sets", Category Theory, Homology Theory and their Applications II, Berlin: Springer, 146-164.

211
Mac Lane, S., 1969, "One Universe as a Foundation for Category Theory", Reports of the Midwest Category Seminar III, Berlin: Springer, 192-200.

212
MacLane, S., 1971, "Categorical algebra and Set-Theoretic Foundations", Axiomatic Set Theory, Providence: AMS, 231-240.

213
Mac Lane, S., 1975, Sets, Topoi, and Internal Logic in Categories, in Studies in Logic and the Foundations of Mathematics, 80, Amsterdam: North Holland, 119-134.

214
Mac Lane, S., 1981, Mathematical Models: a Sketch for the Philosophy of Mathematics, American Mathematical Monthly, 88, 7, 462-472.

215
Mac Lane, S., 1986, Mathematics, Form and Function, New York: Springer.

216
MacLane, S., 1988, Concepts and Categories in Perspective, in A Century of Mathematics in America, Part I, Providence: AMS, 323-365.

217
Mac Lane, S., 1989, The Development of Mathematical Ideas by Collision: the Case of Categories and Topos Theory, in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific, 1-9.

218
S. Mac Lane and I. Moerdijk : Sheaves in Geometry and Logic- A first Introduction to Topos Theory, Springer Verlag, New York, 1992.

219
MacLane, S., 1950, Dualities for Groups, Bulletin of the American Mathematical Society, 56, 485-516.

220
MacLane, S., 1996, Structure in Mathematics. Mathematical Structuralism., Philosophia Mathematica, 4, 2, 174-183.

221
MacLane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.

222
MacLane, S., 1997, Categorical Foundations of the Protean Character of Mathematics., Philosophy of Mathematics Today, Dordrecht: Kluwer, 117-122.

223
MacLane, S., and I. Moerdijk. Sheaves and Geometry in Logic: A First Introduction to Topos Theory, Springer-Verlag, 1992.

224
Majid, S.: 1995, Foundations of Quantum Group Theory, Cambridge Univ. Press: Cambridge, UK.

225
Majid, S.: 2002, A Quantum Groups Primer, Cambridge Univ.Press: Cambridge, UK.

226
Makkai, M. and Paré, R., 1989, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary Mathematics 104, Providence: AMS.

227
Makkai, M. and Reyes, G., 1977, First-Order Categorical Logic, Springer Lecture Notes in Mathematics 611, New York: Springer.

228
Makkai, M., 1998, Towards a Categorical Foundation of Mathematics, in Lecture Notes in Logic, 11, Berlin: Springer, 153-190.

229
Makkai, M., 1999, On Structuralism in Mathematics, in Language, Logic and Concepts, Cambridge: MIT Press, 43-66.

226
Makkei, M. & Reyes, G., 1995, Completeness Results for Intuitionistic and Modal Logic in a Categorical Setting, Annals of Pure and Applied Logic, 72, 1, 25-101.

230
Mallios, A. and I. Raptis: 2003, Finitary, Causal and Quantal Vacuum Einstein Gravity, Int. J. Theor. Phys. 42: 1479.

231
Manders, K.L.: 1982, On the space-time ontology of physical theories, Philosophy of Science 49 no. 4: 575-590.

232
Marquis, J.-P., 1993, Russell's Logicism and Categorical Logicisms, in Russell and Analytic Philosophy, A. D. Irvine & G. A. Wedekind, (eds.), Toronto, University of Toronto Press, 293-324.

233
Marquis, J.-P., 1995, Category Theory and the Foundations of Mathematics: Philosophical Excavations., Synthese, 103, 421-447.

234
Marquis, J.-P., 2000, Three Kinds of Universals in Mathematics?, in Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science, Vol. II, B. Brown and J. Woods, eds., Oxford: Hermes, 191-212, 2000 ,

235
Marquis, J.-P., 2006, Categories, Sets and the Nature of Mathematical Entities, in: The Age of Alternative Logics. Assessing philosophy of logic and mathematics today, J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H.Visser, eds., Springer,181-192.

236
Martins, J. F and T. Porter: 2004, On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, math.QA/0608484

237
May, J.P. 1999, A Concise Course in Algebraic Topology, The University of Chicago Press: Chicago.

238
Mc Larty, C., 1991, Axiomatizing a Category of Categories, Journal of Symbolic Logic, 56, no. 4, 1243-1260.

239
Mc Larty, C., 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press.

240
Mc Larty, C., 1994, Category Theory in Real Time, Philosophia Mathematica, 2, no. 1, 36-44.

Misra, B., I. Prigogine and M. Courbage.: 1979, Lyaponouv variables: Entropy and measurement in quantum mechanics, Proc. Natl. Acad. Sci. USA 78 (10): 4768-4772.

241
Mitchell, B.: 1965, Theory of Categories, Academic Press:London.

242
Mitchell, B.: 1964, The full imbedding theorem. Amer. J. Math. 86: 619-637.

243
Moerdijk, I. & Palmgren, E., 2002, Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST., Annals of Pure and Applied Logic, 114, no. 1-3, 155-201.

244
Moerdijk, I., 1998, Sets, Topoi and Intuitionism., Philosophia Mathematica, 6, no. 2, 169â @ T177.

245
I. Moerdijk : Classifying toposes and foliations, Ann. Inst. Fourier, Grenoble 41, 1 (1991) 189-209.

246
I. Moerdijk : Introduction to the language of stacks and gerbes, arXiv:math.AT/0212266 (2002).

247
Morita, K. 1962. Category isomorphism and endomorphism rings of modules, Trans. Amer. Math. Soc., 103: 451-469.

248
Morita, K. , 1970. Localization in categories of modules. I., Math. Z., 114: 121-144.

249
M. A. Mostow : The differentiable space structure of Milnor classifying spaces, simplicial complexes, and geometric realizations, J. Diff. Geom. 14 (1979) 255-293.

250
Oberst, U.: 1969, Duality theory for Grothendieck categories., Bull. Amer. Math. Soc. 75: 1401-1408.

251
Oort, F.: 1970. On the definition of an abelian category. Proc. Roy. Neth. Acad. Sci. 70: 13-02.

252
Ore, O., 1931, Linear equations on non-commutative fields, Ann. Math. 32: 463-477.

253
Penrose, R.: 1994, Shadows of the Mind, Oxford University Press: Oxford.

254
Plymen, R.J. and P. L. Robinson: 1994, Spinors in Hilbert Space, Cambridge Tracts in Math. 114, Cambridge Univ. Press, Cambridge.

255
Pareigis, B., 1970, Categories and Functors, New York: Academic Press.

256
Pedicchio, M. C. & Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.

257
Pitts, A. M., 2000, Categorical Logic, in Handbook of Logic in Computer Science, Vol.5, Oxford: Oxford Unversity Press, 39-128.

258
Plotkin, B., 2000, "Algebra, Categories and Databases", Handbook of Algebra, Vol. 2, Amsterdam: Elsevier, 79-148.

259
Popescu, N.: 1973, Abelian Categories with Applications to Rings and Modules. New York and London: Academic Press., 2nd edn. 1975. (English translation by I.C. Baianu).

260
Pradines, J.: 1966, Théorie de Lie pour les groupoides différentiable, relation entre propriétes locales et globales, C. R. Acad Sci. Paris Sér. A 268: 907-910.

261
Pribram, K. H.: 1991, Brain and Perception: Holonomy and Structure in Figural processing, Lawrence Erlbaum Assoc.: Hillsdale.

262
Pribram, K. H.: 2000, Proposal for a quantum physical basis for selective learning, in (Farre, ed.) Proceedings ECHO IV 1-4.

263
Prigogine, I.: 1980, From Being to Becoming : Time and Complexity in the Physical Sciences, W. H. Freeman and Co.: San Francisco.

264
Raptis, I. and R. R. Zapatrin: 2000, Quantisation of discretized spacetimes and the correspondence principle, Int. Jour. Theor. Phys. 39: 1.

265
Raptis, I.: 2003, Algebraic quantisation of causal sets, Int. Jour. Theor. Phys. 39: 1233.

266
I. Raptis : Quantum space-time as a quantum causal set, arXiv:gr-qc/0201004.

267
Reyes, G. and Zolfaghari, H., 1991, Topos-theoretic Approaches to Modality, Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 359-378.

268
Reyes, G. andZolfaghari, H., 1996, Bi-Heyting Algebras, Toposes and Modalities, Journal of Philosophical Logic, 25, no. 1, 25-43.

269
Reyes, G., 1974, From Sheaves to Logic, in Studies in Algebraic Logic, A. Daigneault, ed., Providence: AMS.

270
Reyes, G., 1991, A Topos-theoretic Approach to Reference and Modality., Notre Dame Journal of Formal Logic, 32, no. 3, 359-391.

271
M. A. Rieffel : Group C*-algebras as compact quantum metric spaces, Documenta Math. 7 (2002), 605-651.

272
Roberts, J. E.: 2004, More lectures on algebraic quantum field theory, in A. Connes, et al. Noncommutative Geometry, Springer: Berlin and New York.

273
Rodabaugh, S. E. & Klement, E. P., eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, 20, Dordrecht: Kluwer.

274
G. C. Rota : On the foundation of combinatorial theory, I. The theory of Möbius functions, Zetschrif für Wahrscheinlichkeitstheorie 2 (1968), 340.

275
Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. Living Reviews in Relativity (refereed electronic journal)
http:www.livingreviews.org/Articles/Volume1/1998 1 rovelli

276
Schrödinger E.: 1945, What is Life?, Cambridge University Press: Cambridge, UK.

277
Scott, P. J., 2000, Some Aspects of Categories in Computer Science, Handbook of Algebra, Vol. 2, Amsterdam: North Holland, 3-77.

278
Seely, R. A. G., 1984, Locally Cartesian Closed Categories and Type Theory, Mathematical Proceedings of the Cambridge Mathematical Society, 95, no. 1, 33-48.

279
Shapiro, S., 2005, Categories, Structures and the Frege-Hilbert Controversy: the Status of Metamathematics, Philosophia Mathematica, 13, 1, 61-77.

280
Sorkin, R.D.: 1991, Finitary substitute for continuous topology, Int. J. Theor. Phys. 30 No. 7.: 923-947.

281
Smolin, L.: 2001, Three Roads to Quantum Gravity, Basic Books: New York.

282
Spanier, E. H.: 1966, Algebraic Topology, McGraw Hill: New York.

283
Stapp, H.: 1993, Mind, Matter and Quantum Mechanics, Springer Verlag: Berlin-Heidelberg-New York.

284
Stewart, I. and Golubitsky, M. : 1993. Fearful Symmetry: Is God a Geometer?, Blackwell: Oxford, UK.

285
Szabo, R. J.: 2003, Quantum field theory on non-commutative spaces, Phys. Rep. 378: 207-209.

286
Taylor, P., 1996, Intuitionistic sets and Ordinals, Journal of Symbolic Logic, 61 : 705-744.

287
Taylor, P., 1999, Practical Foundations of Mathematics, Cambridge: Cambridge University Press.

288
Unruh, W.G.: 2001, Black holes, dumb holes, and entropy, in C. Callender and N. Hugget (eds. ) Physics Meets Philosophy at the Planck scale, Cambridge University Press, pp. 152-173.

289
Van der Hoeven, G. and Moerdijk, I., 1984a, Sheaf Models for Choice Sequences, Annals of Pure and Applied Logic, 27, no. 1, 63-107.

290
Várilly, J. C.: 1997, An introduction to noncommutative geometry
arXiv:physics/9709045 London.

291
von Neumann, J.: 1932, Mathematische Grundlagen der Quantenmechanik, Springer: Berlin.

292
Weinstein, A.: 1996, Groupoids : unifying internal and external symmetry, Notices of the Amer. Math. Soc. 43: 744-752.

293
Wess J. and J. Bagger: 1983, Supersymmetry and Supergravity, Princeton University Press: Princeton, NJ.

294
Weinberg, S.: 1995, The Quantum Theory of Fields vols. 1 to 3, Cambridge Univ. Press.

295
Wheeler, J. and W. Zurek: 1983, Quantum Theory and Measurement, Princeton University Press: Princeton, NJ.

296
Whitehead, J. H. C.: 1941, On adding relations to homotopy groups, Annals of Math. 42 (2): 409-428.

297
Woit, P.: 2006, Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Laws, Jonathan Cape.

298
Wood, R.J., 2004, Ordered Sets via Adjunctions, In: Categorical Foundations, M. C. Pedicchio & W. Tholen, eds., Cambridge: Cambridge University Press.



Contributors to this entry (in most recent order):

As of this snapshot date, this entry was owned by bci1.