bibliography for mathematical physics foundations
A1. Axiomatics and categories in the foundations of physics
-
- 1
-
Alfsen, E.M. and F. W. Schultz: Geometry of State Spaces of
Operator Algebras, Birkhäuser, Boston-Basel-Berlin (2003).
- 2
-
Atiyah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves.
Bull. Soc. Math. France, 84: 307-317.
- 2
-
Auslander, M. 1965. Coherent Functors. Proc. Conf. Cat. Algebra, La Jolla,
189-231.
- 3
-
Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168-1182.
- 4
-
Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity I.
Nineteen-Century Axiomatics to Twentieth-Century Metalogic., History and Philosophy of Logic, 23, 1, 1-30.
- 4
-
Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics, History and Philosophy of Logic, 23, (2): 77-94.
- 5
-
Awodey, S., 1996, Structure in Mathematics and Logic: A Categorical Perspective,
Philosophia Mathematica, 3: 209-237.
- 6
-
Awodey, S., 2004, An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism, Philosophia Mathematica, 12: 54-64.
- 7
-
Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.
- 8
-
Baez, J. & Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes,
in: Advances in Mathematics, 135, 145-206.
- 9
-
Baez, J. & Dolan, J., 1998b, ``Categorification", Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1-36.
- 10
-
Baez, J. & Dolan, J., 2001, From Finite Sets to Feynman Diagrams,
in Mathematics Unlimited - 2001 and Beyond, Berlin: Springer, 29-50.
- 11
-
Baez, J., 1997, An Introduction to n-Categories,
in Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1-33.
- 12
-
Baianu, I.C.: 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. Ibid., 33 (3), 339-354.
- 12
-
Baianu, I.C.: 1971b, Categories, Functors and Quantum Algebraic
Computations, in P. Suppes (ed.), Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, September 1-4, 1971, Bucharest.
- 13
-
Baianu, I.C., H. S. Gutowsky, and E. Oldfield: 1984, Proc. Natl. Acad. Sci. USA, 81(12):
3713-3717.
- 14
-
Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in Relation to Dynamic Bionetworks, (M,R)-Systems and Their Higher Dimensional Algebra,
PDF's of Abstract and Preprint of Report.
- 15
-
Baianu, I.C.: 2004a, Quantum Nano-Automata (QNA): Microphysical Measurements with Microphysical QNA Instruments, CERN Preprint EXT-2004-125.
- 16
-
Baianu, I. C., Brown, R. and J. F. Glazebrook: 2006a, Quantum Algebraic Topology and Field Theories.
Preprint subm..
- 17
-
Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006b, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz-Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.
- 18
-
Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.
- 19
-
M. Barr and C. Wells. Toposes, Triples and Theories. Montreal: McGill University, 2000.
- 20
-
Barr, M. & Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
- 21
-
Barr, M. & Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.
- 22
-
Batanin, M., 1998, Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories,
Advances in Mathematics, 136: 39-103.
- 23
-
Bell, J. L., 1981, Category Theory and the Foundations of Mathematics,
British Journal for the Philosophy of Science, 32, 349-358.
- 24
-
Bell, J. L., 1982, Categories, Toposes and Sets, Synthese, 51, 3, 293-337.
- 25
-
Bell, J. L., 1986, From Absolute to Local Mathematics, Synthese, 69, 3, 409-426.
- 26
-
Bell, J. L., 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.
- 27
-
Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
- 28
-
Biss, D.K., 2003, Which Functor is the Projective Line?, American Mathematical Monthly, 110, 7, 574-592.
- 29
-
Blass, A. & Scedrov, A., 1983, Classifying Topoi and Finite Forcing , Journal of Pure and Applied Algebra, 28, 111-140.
- 30
-
Blass, A. & Scedrov, A., 1989, Freyd's Model for the Independence of the Axiom of Choice, Providence: AMS.
- 31
-
Blass, A. & Scedrov, A., 1992, Complete Topoi Representing Models of Set Theory,
Annals of Pure and Applied Logic, 57, no. 1, 1-26.
- 32
-
Blass, A., 1984, The Interaction Between Category Theory and Set Theory., Mathematical Applications of Category Theory, 30, Providence: AMS, 5-29.
- 33
-
Blute, R. & Scott, P., 2004, Category Theory for Linear Logicians., in Linear Logic in Computer Science
- 34
-
Borceux, F.: 1994, Handbook of Categorical Algebra, vols: 1-3,
in Encyclopedia of Mathematics and its Applications 50 to 52, Cambridge University Press.
- 35
-
Bourbaki, N. 1961 and 1964: Algèbre commutative.,
in Éléments de Mathématique., Chs. 1-6., Hermann: Paris.
- 36
-
R. Brown: Topology and Groupoids, BookSurge LLC (2006).
- 37
-
Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy
double groupoid of a map of spaces, Applied Categorical
Structures 12: 63-80.
- 38
-
Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-Abelian
Algebraic Topology,Vol.I PDF.
- 39
-
Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321-379.
- 40
-
Brown, R., Paton, R. and T. Porter.: 2004, Categorical language and
hierarchical models for cell systems, in Computation in
Cells and Tissues - Perspectives and Tools of Thought, Paton, R.;
Bolouri, H.; Holcombe, M.; Parish, J.H.; Tateson, R. (Eds.)
Natural Computing Series, Springer Verlag, 289-303.
- 41
-
Brown R. and T. Porter: 2003, Category theory and higher
dimensional algebra: potential descriptive tools in neuroscience, In:
Proceedings of the International Conference on Theoretical
Neurobiology, Delhi, February 2003, edited by Nandini Singh,
National Brain Research Centre, Conference Proceedings 1, 80-92.
- 42
-
Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy
double groupoid of a Hausdorff space., Theory and
Applications of Categories 10, 71-93.
- 43
-
Brown, R., and Hardy, J.P.L.:1976, Topological groupoids I:
universal constructions, Math. Nachr., 71: 273-286.
- 44
-
Brown, R. and T. Porter: 2006, Category Theory: an abstract
setting for analogy and comparison, In: What is Category Theory?,
Advanced Studies in Mathematics and Logic, Polimetrica
Publisher, Italy, (2006) 257-274.
- 45
-
Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed
modules, Cah. Top. Géom. Diff. 17, 343-362.
- 46
-
Brown R, and Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is
category theory? Advanced studies in mathematics and logic. Polimetrica Publisher, Italy, pp.
257-274.
- 47
-
Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentations of modules of
identities among relations. LMS J. Comput. Math., 2: 25-61.
- 48
-
Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80: 1-34.
- 48
-
Buchsbaum, D. A.: 1969, A note on homology in categories., Ann. of Math. 69: 66-74.
- 49
-
Bucur, I. (1965). Homological Algebra. (orig. title: ``Algebra Omologica'')
Ed. Didactica si Pedagogica: Bucharest.
- 50
-
Bucur, I., and Deleanu A. (1968). Introduction to the Theory of Categories and Functors. J.Wiley and Sons: London
- 51
-
Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179, 291-317.
- 52
-
Bunge, M., 1974, "Topos Theory and Souslin's Hypothesis", Journal of Pure and Applied Algebra, 4, 159-187.
- 53
-
Bunge, M., 1984, "Toposes in Logic and Logic in Toposes", Topoi, 3, no. 1, 13-22.
- 54
-
Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math, 179: 291-317.
- 55
-
Butterfield J., Isham C.J. (2001) Spacetime and the philosophical challenges of quantum gravity. In:
Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University
Press, pp 33-89.
- 56
-
Butterfield J., Isham C.J. 1998, 1999, 2000-2002, A topos perspective on the Kochen-Specker theorem
I-IV, Int J Theor Phys 37(11):2669-2733; 38(3):827-859; 39(6):1413-1436; 41(4): 613-639.
- 57
-
Cartan, H. and Eilenberg, S. 1956. Homological Algebra, Princeton Univ. Press: Pinceton.
- 58
-
M. Chaician and A. Demichev. 1996. Introduction to Quantum Groups, World Scientific .
- 59
-
Chevalley, C. 1946. The theory of Lie groups. Princeton University Press, Princeton NJ
- 60
-
Cohen, P.M. 1965. Universal Algebra, Harper and Row: New York, london and Tokyo.
- 61
-
M. Crainic and R. Fernandes.2003. Integrability of Lie brackets, Ann.of Math. 157: 575-620.
- 62
-
Connes A 1994. Noncommutative geometry. Academic Press: New York.
- 63
-
Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative.,
Gauthier-Villard: Paris.
- 64
-
Crole, R.L., 1994, Categories for Types, Cambridge: Cambridge University Press.
- 65
-
Couture, J. & Lambek, J., 1991, Philosophical Reflections on the Foundations of Mathematics, Erkenntnis, 34, 2, 187-209.
- 66
-
Dieudonné, J. & Grothendieck, A., 1960, [1971], Éléments de Géométrie Algébrique, Berlin: Springer-Verlag.
- 67
-
Dirac, P. A. M., 1930, The Principles of Quantum Mechanics, Oxford: Clarendon
Press.
- 68
-
Dirac, P. A. M., 1933, The Lagrangian in Quantum Mechanics, Physikalische
Zeitschrift der Sowietunion, 3: 64-72.
- 69
-
Dirac, P. A. M.,, 1943, Quantum Electrodynamics, Communications of the Dublin
Institute for Advanced Studies, A1: 1-36.
- 70
-
Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing
Company. [First published in French in 1957: Les Algebres d'Operateurs dans
l'Espace Hilbertien, Paris: Gauthier-Villars.]
- 71
-
M. Durdevich : Geometry of quantum principal bundles I, Commun.
Math. Phys. 175 (3) (1996), 457-521.
- 72
-
M. Durdevich : Geometry of quantum principal bundles II, Rev.
Math. Phys. 9 (5) (1997), 531-607.
- 73
-
Ehresmann, C.: 1965, Catégories et Structures, Dunod, Paris.
- 73
-
Ehresmann, C.: 1966, Trends Toward Unity in Mathematics.,
Cahiers de Topologie et Geometrie Differentielle
8: 1-7.
- 74
-
Ehresmann, C.: 1952, Structures locales et structures infinitésimales,
C.R.A.S. Paris 274: 587-589.
- 75
-
Ehresmann, C.: 1959, Catégories topologiques et catégories
différentiables, Coll. Géom. Diff. Glob. Bruxelles, pp.137-150.
- 76
-
Ehresmann, C.:1963, Catégories doubles des quintettes: applications covariantes
, C.R.A.S. Paris, 256: 1891-1894.
- 77
-
Ehresmann, A. C. & Vanbremeersch, J-P., 1987, "Hierarchical Evolutive Systems: a Mathematical Model for Complex Systems", Bulletin of Mathematical Biology, 49, no. 1, 13-50.
- 78
-
Ehresmann, C.: 1984, Oeuvres complètes et commentées:
Amiens, 1980-84, edited and commented by Andrée Ehresmann.
- 79
-
Ehresmann, A. C. and J.-P. Vanbremersch: 1987, Hierarchical
Evolutive Systems: A mathematical model for complex systems,
Bull. of Math. Biol. 49 (1): 13-50.
- 80
-
Ehresmann, A. C. and J.-P. Vanbremersch: 2006, The Memory Evolutive Systems as
a model of Rosen's Organisms, Axiomathes 16 (1-2): 13-50.
- 81
-
Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., American Mathematical Society 43: 757-831.
- 82
-
Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58: 231-294.
- 83
-
Eilenberg, S. & Cartan, H., 1956, Homological Algebra, Princeton: Princeton University Press.
- 84
-
Eilenberg, S. & MacLane, S., 1942, "Group Extensions and Homology", Annals of Mathematics, 43, 757-831.
- 85
-
Eilenberg, S. & Steenrod, N., 1952, Foundations of Algebraic Topology, Princeton: Princeton University Press.
- 86
-
Eilenberg, S.: 1960. Abstract description of some basic functors., J. Indian Math.Soc., 24 :221-234.
- 87
-
S.Eilenberg. Relations between Homology and Homotopy Groups.
Proc.Natl.Acad.Sci.USA (1966),v:10-14.
- 88
-
Ellerman, D., 1988, "Category Theory and Concrete Universals", Synthese, 28, 409-429.
- 89
-
Z. F. Ezawa, G. Tsitsishvilli and K. Hasebe : Noncommutative
geometry, extended
algebra and Grassmannian solitons
in multicomponent Hall systems, arXiv:hep-th/0209198.
- 90
-
Feferman, S., 1977. Categorical Foundations and Foundations of Category Theory, in Logic, Foundations of Mathematics and Computability, R. Butts (ed.), Reidel, 149-169.
- 91
-
Fell, J. M. G., 1960.The Dual Spaces of C*-Algebras,
Transactions of the American Mathematical Society, 94: 365-403.
- 92
-
Feynman, R. P., 1948, Space-Time Approach to Non-Relativistic Quantum
Mechanics., Reviews of Modern Physics, 20: 367-387. [It is reprinted in (Schwinger 1958).]
- 93
-
Freyd, P., 1960. Functor Theory (Dissertation). Princeton University, Princeton, New Jersey.
- 94
-
Freyd, P., 1963, Relative homological algebra made absolute. , Proc. Natl. Acad. USA, 49:19-20.
- 95
-
Freyd, P., 1964, Abelian Categories. An Introduction to the Theory of Functors, New York and London: Harper and Row.
- 96
-
Freyd, P., 1965, The Theories of Functors and Models., Theories of Models, Amsterdam: North Holland, 107-120.
- 97
-
Freyd, P., 1966, Algebra-valued Functors in general categories and tensor product in particular., Colloq. Mat.
14: 89-105.
- 98
-
Freyd, P., 1972, Aspects of Topoi,Bulletin of the Australian Mathematical Society, 7: 1-76.
- 99
-
Freyd, P., 1980, "The Axiom of Choice", Journal of Pure and Applied Algebra, 19, 103-125.
- 100
-
Freyd, P., 1987, "Choice and Well-Ordering", Annals of Pure and Applied Logic, 35, 2, 149-166.
- 101
-
Freyd, P., 1990, Categories, Allegories, Amsterdam: North Holland.
- 102
-
Freyd, P., 2002, "Cartesian Logic", Theoretical Computer Science, 278, no. 1-2, 3-21.
- 103
-
Freyd, P., Friedman, H. & Scedrov, A., 1987, "Lindembaum Algebras of Intuitionistic Theories and Free Categories", Annals of Pure and Applied Logic, 35, 2, 167-172.
- 104
-
Gablot, R. 1971. Sur deux classes de catégories de Grothendieck. Thesis.. Univ. de Lille.
- 105
-
Gabriel, P.: 1962, Des catégories abéliennes, Bull. Soc.
Math. France 90: 323-448.
- 106
-
Gabriel, P. and M.Zisman:. 1967: Category of fractions and homotopy theory, Ergebnesse der math. Springer: Berlin.
- 107
-
Gabriel, P. and N. Popescu: 1964, Caractérisation des catégories abéliennes
avec générateurs et limites inductives. , CRAS Paris 258: 4188-4191.
- 108
-
Galli, A. & Reyes, G. & Sagastume, M., 2000, "Completeness Theorems via the Double Dual Functor", Studia Logical, 64, no. 1, 61-81.
- 109
-
Gelfan'd, I. and Naimark, M., 1943. On the Imbedding of Normed Rings into the
Ring of Operators in Hilbert Space.,Recueil Mathématique [Matematicheskii
Sbornik] Nouvelle Série, 12 [54]: 197-213. [Reprinted in C*-algebras:
1943-1993, in the series Contemporary Mathematics, 167, Providence, R.I. :
American Mathematical Society, 1994.]
- 110
-
Georgescu, G. and C. Vraciu 1970. "On the Characterization of Łukasiewicz
Algebras." J Algebra, 16 (4), 486-495.
- 111
-
Ghilardi, S. & Zawadowski, M., 2002, Sheaves, Games & Model Completions: A Categorical Approach to Nonclassical Porpositional Logics, Dordrecht: Kluwer.
- 112
-
Ghilardi, S., 1989, "Presheaf Semantics and Independence Results for some Non-classical first-order logics", Archive for Mathematical Logic, 29, no. 2, 125-136.
- 113
-
Goblot, R., 1968, Catégories modulaires , C. R. Acad. Sci. Paris, Série A., 267: 381-383.
- 114
-
Goblot, R., 1971, Sur deux classes de catégories de Grothendieck, Thèse., Univ. Lille, 1971.
- 115
-
Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic, Studies in logic and the foundations of mathematics, Amsterdam: Elsevier North-Holland Publ. Comp.
- 116
-
Goldie, A. W., 1964, Localization in non-commutative noetherian rings, J.Algebra, 1: 286-297.
- 117
-
Godement,R. 1958. Théorie des faisceaux. Hermann: Paris.
- 118
-
Gray, C. W.: 1965. Sheaves with values in a category.,Topology, 3: 1-18.
- 119
-
Grothendieck, A.: 1971, Revêtements Étales et Groupe Fondamental (SGA1),
chapter VI: Catégories fibrées et descente, Lecture Notes in Math.
224, Springer-Verlag: Berlin.
- 120
-
Grothendieck, A.: 1957, Sur quelque point d-algébre homologique. , Tohoku Math. J., 9: 119-121.
- 121
-
Grothendieck, A. and J. Dieudoné.: 1960, Eléments de geometrie algébrique., Publ. Inst. des Hautes Etudes de Science, 4.
- 122
-
Grothendieck, A. et al., Séminaire de Géométrie Algébrique, Vol. 1-7, Berlin: Springer-Verlag.
- 123
-
Grothendieck, A., 1957, "Sur Quelques Points d'algèbre homologique", Tohoku Mathematics Journal, 9, 119-221.
- 124
-
Groups Authors: João Faria Martins, Timothy Porter.,
On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical
.
- 125
-
Gruson, L, 1966, Complétion abélienne. Bull. Math.Soc. France, 90: 17-40.
- 126
-
K.A. Hardie, K.H. Kamps and R.W. Kieboom. 2000. A homotopy 2-groupoid of a Hausdorff
space, Applied Cat. Structures 8: 209-234.
- 127
-
Hatcher, W. S. 1982. The Logical Foundations of Mathematics, Oxford: Pergamon Press.
- 128
-
Heller, A. :1958, Homological algebra in Abelian categories., Ann. of Math.
68: 484-525.
- 129
-
Heller, A. and K. A. Rowe.:1962, On the category of sheaves., Amer J. Math.
84: 205-216.
- 130
-
Hellman, G., 2003, "Does Category Theory Provide a Framework for Mathematical Structuralism?", Philosophia Mathematica, 11, 2, 129-157.
- 131
-
Hermida, C. & Makkai, M. & Power, J., 2000, On Weak Higher-dimensional Categories. I, Journal of Pure and Applied Algebra, 154, no. 1-3, 221-246.
- 132
-
Hermida, C. & Makkai, M. & Power, J., 2001, On Weak Higher-dimensional Categories. II, Journal of Pure and Applied Algebra, 157, no. 2-3, 247-277.
- 133
-
Hermida, C. & Makkai, M. & Power, J., 2002, On Weak Higher-dimensional Categories. III, Journal of Pure and Applied Algebra, 166, no. 1-2, 83-104.
- 134
-
Higgins, P. J.: 2005, Categories and groupoids, Van
Nostrand Mathematical Studies: 32, (1971); Reprints in
Theory and Applications of Categories, No. 7: 1-195.
- 135
-
Higgins, Philip J. Thin elements and commutative shells in cubical
-categories. Theory Appl. Categ. 14 (2005), No. 4, 60-74
(electronic). (Reviewer: Timothy Porter) 18D05.
- 136
-
Hyland, J.M.E. & Robinson, E.P. & Rosolini, G., 1990, "The Discrete Objects in the Effective Topos", Proceedings of the London Mathematical Society (3), 60, no. 1, 1-36.
- 137
-
Hyland, J.M.E., 1982, "The Effective Topos", Studies in Logic and the Foundations of Mathematics, 110, Amsterdam: North Holland, 165-216.
- 138
-
Hyland, J. M..E., 1988, "A Small Complete Category", Annals of Pure and Applied Logic, 40, no. 2, 135-165.
- 139
-
Hyland, J. M .E., 1991, "First Steps in Synthetic Domain Theory", Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 131-156.
- 140
-
Hyland, J. M.E., 2002, "Proof Theory in the Abstract", Annals of Pure and Applied Logic, 114, no. 1-3, 43-78.
- 141
-
E.Hurewicz. CW Complexes.Trans AMS.1955.
- 142
-
Ionescu, Th., R. Parvan and I. Baianu, 1970, C. R. Acad. Sci. Paris, Série A., 269:
112-116, communiquée par Louis Néel.
- 143
-
C. J. Isham : A new approach to quantising space-time: I.
quantising on a general category, Adv. Theor. Math. Phys.
7 (2003), 331-367.
- 144
-
Jacobs, B., 1999, Categorical Logic and Type Theory, Amsterdam: North Holland.
- 145
-
Johnstone, P. T., 1977, Topos Theory, New York: Academic Press.
- 146
-
Johnstone, P. T., 1979a, "Conditions Related to De Morgan's Law", Applications of Sheaves, Lecture Notes in Mathematics, 753, Berlin: Springer, 479-491.
- 147
-
Johnstone, P.T., 1979b, "Another Condition Equivalent to De Morgan's Law", Communications in Algebra, 7, no. 12, 1309-1312.
- 148
-
Johnstone, P. T., 1981, "Tychonoff's Theorem without the Axiom of Choice", Fundamenta Mathematicae, 113, no. 1, 21-35.
- 149
-
Johnstone, P. T., 1982, Stone Spaces, Cambridge:Cambridge University Press.
- 150
-
Johnstone, P. T., 1985, "How General is a Generalized Space?", Aspects of Topology, Cambridge: Cambridge University Press, 77-111.
- 151
-
Johnstone, P. T., 2002a, Sketches of an Elephant: a Topos Theory Compendium. Vol. 1, Oxford Logic Guides, 43, Oxford: Oxford University Press.
- 152
-
Joyal, A. & Moerdijk, I., 1995, Algebraic Set Theory, Cambridge: Cambridge University Press.
- 153
-
Van Kampen, E. H.: 1933, On the Connection Between the Fundamental
Groups of some Related Spaces, Amer. J. Math. 55: 261-267
- 154
-
Kan, D. M., 1958, "Adjoint Functors", Transactions of the American Mathematical Society, 87, 294-329.
- 155
-
Kleisli, H.: 1962, Homotopy theory in Abelian categories.,Can. J. Math., 14: 139-169.
- 156
-
Knight, J.T., 1970, On epimorphisms of non-commutative rings., Proc. Cambridge Phil. Soc.,
25: 266-271.
- 157
-
Kock, A., 1981, Synthetic Differential Geometry, London Mathematical Society Lecture Note Series, 51, Cambridge: Cambridge University Press.
- 158
-
S. Kobayashi and K. Nomizu : Foundations of Differential Geometry
Vol I., Wiley Interscience, New York-London 1963.
- 159
-
H. Krips : Measurement in Quantum Theory, The Stanford
Encyclopedia of Philosophy (Winter 1999 Edition), Edward N.
Zalta (ed.),
- 160
-
Lam, T. Y., 1966, The category of noetherian modules, Proc. Natl. Acad. Sci. USA, 55: 1038-104.
- 161
-
Lambek, J. & Scott, P. J., 1981, "Intuitionistic Type Theory and Foundations", Journal of Philosophical Logic, 10, 1, 101-115.
- 162
-
Lambek, J. & Scott, P.J., 1986, Introduction to Higher Order Categorical Logic, Cambridge: Cambridge University Press.
- 163
-
Lambek, J., 1968, "Deductive Systems and Categories I. Syntactic Calculus and Residuated Categories", Mathematical Systems Theory, 2, 287-318.
- 164
-
Lambek, J., 1969, "Deductive Systems and Categories II. Standard Constructions and Closed Categories", Category Theory, Homology Theory and their Applications I, Berlin: Springer, 76-122.
- 165
-
Lambek, J., 1972, "Deductive Systems and Categories III. Cartesian Closed Categories, Intuitionistic Propositional Calculus, and Combinatory Logic", Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Berlin: Springer, 57-82.
- 166
-
Lambek, J., 1982, "The Influence of Heraclitus on Modern Mathematics", Scientific Philosophy Today, J. Agassi and R.S. Cohen, eds., Dordrecht, Reidel, 111-122.
- 167
-
Lambek, J., 1986, "Cartesian Closed Categories and Typed lambda calculi", Combinators and Functional Programming Languages, Lecture Notes in Computer Science, 242, Berlin: Springer, 136-175.
- 168
-
Lambek, J., 1989A, "On Some Connections Between Logic and Category Theory", Studia Logica, 48, 3, 269-278.
- 169
-
Lambek, J., 1989B, "On the Sheaf of Possible Worlds", Categorical Topology and its relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific Publishing, 36-53.
- 170
-
Lambek, J., 1994a, "Some Aspects of Categorical Logic", Logic, Methodology and Philosophy of Science IX, Studies in Logic and the Foundations of Mathematics 134, Amsterdam: North Holland, 69-89.
- 171
-
Lambek, J., 1994b, "What is a Deductive System?", What is a Logical System?, Studies in Logic and Computation, 4, Oxford: Oxford University Press, 141-159.
- 172
-
Lambek, J., 2004, "What is the world of Mathematics? Provinces of Logic Determined", Annals of Pure and Applied Logic, 126(1-3), 149-158.
- 173
-
Lambek, J. and P. J. Scott. Introduction to higher order categorical logic. Cambridge University Press, 1986.
- 174
-
E. C. Lance : Hilbert C*-Modules. London Math. Soc. Lect.
Notes 210, Cambridge Univ. Press. 1995.
- 175
-
Landry, E. & Marquis, J.-P., 2005, "Categories in Context: Historical, Foundational and philosophical", Philosophia Mathematica, 13, 1-43.
- 176
-
Landry, E., 1999, "Category Theory: the Language of Mathematics", Philosophy of Science, 66, 3: supplement, S14-S27.
- 176
-
Landry, E., 2001, "Logicism, Structuralism and Objectivity", Topoi, 20, 1, 79-95.
- 177
-
Landsman, N. P.: 1998, Mathematical Topics between Classical and Quantum Mechanics, Springer Verlag: New York.
- 178
-
N. P. Landsman : Mathematical topics between classical and
quantum mechanics. Springer Verlag, New York, 1998.
- 179
-
N. P. Landsman : Compact quantum groupoids, arXiv:mathâ @ Tph/9912006
- 180
-
La Palme Reyes, M., et. al., 1994, "The non-Boolean Logic of Natural Language Negation", Philosophia Mathematica, 2, no. 1, 45-68.
- 181
-
La Palme Reyes, M., et. al., 1999, "Count Nouns, Mass Nouns, and their Transformations: a Unified Category-theoretic Semantics", Language, Logic and Concepts, Cambridge: MIT Press, 427-452.
- 182
-
Lawvere, F. W., 1964, "An Elementary Theory of the Category of Sets", Proceedings of the National Academy of Sciences U.S.A., 52, 1506-1511.
- 183
-
Lawvere, F. W., 1965, "Algebraic Theories, Algebraic Categories, and Algebraic Functors", Theory of Models, Amsterdam: North Holland, 413-418.
- 184
-
Lawvere, F. W., 1966, "The Category of Categories as a Foundation for Mathematics", Proceedings of the Conference on Categorical Algebra, La Jolla, New York: Springer-Verlag, 1-21.
- 185
-
Lawvere, F. W., 1969a, "Diagonal Arguments and Cartesian Closed Categories", Category Theory, Homology Theory, and their Applications II, Berlin: Springer, 134-145.
- 186
-
Lawvere, F. W., 1969b, "Adjointness in Foundations", Dialectica, 23, 281-295.
- 187
-
Lawvere, F. W., 1970, "Equality in Hyper doctrines and Comprehension Schema as an Adjoint Functor", Applications of Categorical Algebra, Providence: AMS, 1-14.
- 188
-
Lawvere, F. W., 1971, "Quantifiers and Sheaves", Actes du Congrès International des Mathématiciens, Tome 1, Paris: Gauthier-Villars, 329-334.
- 189
-
Lawvere, F. W., 1972, "Introduction", Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Springer-Verlag, 1-12.
- 190
-
Lawvere, F. W., 1975, "Continuously Variable Sets: Algebraic Geometry = Geometric Logic", Proceedings of the Logic Colloquium Bristol 1973, Amsterdam: North Holland, 135-153.
- 191
-
Lawvere, F. W., 1976, "Variable Quantities and Variable Structures in Topoi", Algebra, Topology, and Category Theory, New York: Academic Press, 101-131.
- 192
-
Lawvere, F. W. & Schanuel, S., 1997, Conceptual Mathematics: A First Introduction to Categories, Cambridge: Cambridge University Press.
- 184
-
Lawvere, F. W.: 1966, The Category of Categories as a Foundation for Mathematics., in
Proc. Conf. Categorical Algebra- La Jolla., Eilenberg, S. et al., eds. Springer-Verlag:
Berlin, Heidelberg and New York., pp. 1-20.
- 193
-
Lawvere, F. W.: 1963, Functorial Semantics of Algebraic Theories,
Proc. Natl. Acad. Sci. USA, Mathematics, 50: 869-872.
- 194
-
Lawvere, F. W.: 1969, Closed Cartesian Categories., Lecture held as a guest of the
Romanian Academy of Sciences, Bucharest.
- 195
-
Lawvere, F. W., 1992, "Categories of Space and of Quantity", The Space of Mathematics, Foundations of Communication and Cognition, Berlin: De Gruyter, 14-30.
- 196
-
Lawvere, F. W., 1994a, "Cohesive Toposes and Cantor's lauter Ensein ", Philosophia Mathematica, 2, 1, 5-15.
- 197
-
Lawvere, F. W., 1994b, "Tools for the Advancement of Objective Logic: Closed Categories and Toposes", The Logical Foundations of Cognition, Vancouver Studies in Cognitive Science, 4, Oxford: Oxford University Press, 43-56.
- 198
-
Lawvere, H. W (ed.), 1995. Springer Lecture Notes in Mathematics 274,:13-42.
- 199
-
Lawvere, F. W., 2000, "Comments on the Development of Topos Theory", Development of Mathematics 1950-2000, Basel: Birkhäuser, 715-734.
- 200
-
Lawvere, F. W., 2002, "Categorical Algebra for Continuum Micro Physics", Journal of Pure and Applied Algebra, 175, no. 1-3, 267-287.
- 201
-
Lawvere, F. W. & Rosebrugh, R., 2003, Sets for Mathematics, Cambridge: Cambridge University Press.
- 202
-
Lawvere, F. W., 2003, "Foundations and Applications: Axiomatization and Education. New Programs and Open Problems in the Foundation of Mathematics", Bullentin of Symbolic Logic, 9, 2, 213-224.
- 193
-
Lawvere, F.W., 1963, "Functorial Semantics of Algebraic Theories", Proceedings of the National Academy of Sciences U.S.A., 50, 869-872.
- 203
-
Leinster, T., 2002, "A Survey of Definitions of n-categories", Theory and Applications of Categories, (electronic), 10, 1-70.
- 204
-
Li, M. and P. Vitanyi: 1997, An introduction to Kolmogorov Complexity and its Applications, Springer Verlag: New York.
- 205
-
Löfgren, L.: 1968, An Axiomatic Explanation of Complete Self-Reproduction, Bulletin of Mathematical Biophysics, 30: 317-348
- 206
-
Lubkin, S., 1960. Imbedding of abelian categories., Trans. Amer. Math. Soc., 97: 410-417.
- 207
-
Luisi, P. L. and F. J. Varela: 1988, Self-replicating micelles a chemical version of a minimal autopoietic system. Origins of Life
and Evolution of Biospheres 19(6): 633â @ T643.
- 208
-
K. C. H. Mackenzie : Lie Groupoids and Lie Algebroids in
Differential Geometry, LMS Lect. Notes 124, Cambridge
University Press, 1987
- 209
-
Mac Lane, S.: 1948. Groups, categories, and duality., Proc. Natl. Acad. Sci.U.S.A,
34: 263-267.
- 210
-
Mac Lane, S., 1969, "Foundations for Categories and Sets", Category Theory, Homology Theory and their Applications II, Berlin: Springer, 146-164.
- 211
-
Mac Lane, S., 1969, "One Universe as a Foundation for Category Theory", Reports of the Midwest Category Seminar III, Berlin: Springer, 192-200.
- 212
- MacLane, S., 1971, "Categorical algebra and Set-Theoretic Foundations", Axiomatic Set Theory, Providence: AMS, 231-240.
- 213
-
Mac Lane, S., 1975, Sets, Topoi, and Internal Logic in Categories, in Studies in Logic and the Foundations of Mathematics, 80, Amsterdam: North Holland, 119-134.
- 214
-
Mac Lane, S., 1981, Mathematical Models: a Sketch for the Philosophy of Mathematics, American Mathematical Monthly, 88, 7, 462-472.
- 215
-
Mac Lane, S., 1986, Mathematics, Form and Function, New York: Springer.
- 216
-
MacLane, S., 1988, Concepts and Categories in Perspective, in A Century of Mathematics in America, Part I, Providence: AMS, 323-365.
- 217
-
Mac Lane, S., 1989, The Development of Mathematical Ideas by Collision: the Case of Categories and Topos Theory, in
Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific, 1-9.
- 218
-
S. Mac Lane and I. Moerdijk : Sheaves in Geometry and Logic- A first Introduction to Topos Theory, Springer Verlag, New York, 1992.
- 219
-
MacLane, S., 1950, Dualities for Groups, Bulletin of the American Mathematical Society, 56, 485-516.
- 220
-
MacLane, S., 1996, Structure in Mathematics. Mathematical Structuralism., Philosophia Mathematica, 4, 2, 174-183.
- 221
-
MacLane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.
- 222
-
MacLane, S., 1997, Categorical Foundations of the Protean Character of Mathematics., Philosophy of Mathematics Today, Dordrecht: Kluwer, 117-122.
- 223
-
MacLane, S., and I. Moerdijk. Sheaves and Geometry in Logic: A First Introduction to Topos Theory, Springer-Verlag, 1992.
- 224
-
Majid, S.: 1995, Foundations of Quantum Group Theory, Cambridge Univ. Press: Cambridge, UK.
- 225
-
Majid, S.: 2002, A Quantum Groups Primer, Cambridge Univ.Press: Cambridge, UK.
- 226
-
Makkai, M. and Paré, R., 1989, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary Mathematics 104, Providence: AMS.
- 227
-
Makkai, M. and Reyes, G., 1977, First-Order Categorical Logic, Springer Lecture Notes in Mathematics 611, New York: Springer.
- 228
-
Makkai, M., 1998, Towards a Categorical Foundation of Mathematics, in Lecture Notes in Logic, 11, Berlin: Springer, 153-190.
- 229
-
Makkai, M., 1999, On Structuralism in Mathematics, in Language, Logic and Concepts,
Cambridge: MIT Press, 43-66.
- 226
-
Makkei, M. & Reyes, G., 1995, Completeness Results for Intuitionistic and Modal Logic in a Categorical Setting,
Annals of Pure and Applied Logic, 72, 1, 25-101.
- 230
-
Mallios, A. and I. Raptis: 2003, Finitary, Causal and Quantal Vacuum Einstein Gravity, Int. J. Theor. Phys. 42:
1479.
- 231
-
Manders, K.L.: 1982, On the space-time ontology of physical theories, Philosophy of Science 49 no. 4: 575-590.
- 232
-
Marquis, J.-P., 1993, Russell's Logicism and Categorical Logicisms, in Russell and Analytic Philosophy, A. D. Irvine & G. A. Wedekind, (eds.), Toronto, University of Toronto Press, 293-324.
- 233
-
Marquis, J.-P., 1995, Category Theory and the Foundations of Mathematics: Philosophical Excavations., Synthese, 103, 421-447.
- 234
-
Marquis, J.-P., 2000, Three Kinds of Universals in Mathematics?, in Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science, Vol. II, B. Brown and J. Woods, eds., Oxford: Hermes, 191-212, 2000 ,
- 235
-
Marquis, J.-P., 2006, Categories, Sets and the Nature of Mathematical Entities, in: The Age of Alternative Logics. Assessing philosophy of logic and mathematics today, J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H.Visser, eds., Springer,181-192.
- 236
-
Martins, J. F and T. Porter: 2004, On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, math.QA/0608484
- 237
-
May, J.P. 1999, A Concise Course in Algebraic Topology, The University of Chicago Press: Chicago.
- 238
-
Mc Larty, C., 1991, Axiomatizing a Category of Categories, Journal of Symbolic Logic, 56, no. 4, 1243-1260.
- 239
-
Mc Larty, C., 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press.
- 240
-
Mc Larty, C., 1994, Category Theory in Real Time, Philosophia Mathematica, 2, no. 1, 36-44.
Misra, B., I. Prigogine and M. Courbage.: 1979, Lyaponouv variables: Entropy and measurement in quantum mechanics,
Proc. Natl. Acad. Sci. USA 78 (10): 4768-4772.
- 241
-
Mitchell, B.: 1965, Theory of Categories, Academic Press:London.
- 242
-
Mitchell, B.: 1964, The full imbedding theorem. Amer. J. Math. 86: 619-637.
- 243
-
Moerdijk, I. & Palmgren, E., 2002, Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST., Annals of Pure and Applied Logic, 114, no. 1-3, 155-201.
- 244
-
Moerdijk, I., 1998, Sets, Topoi and Intuitionism., Philosophia Mathematica, 6, no. 2, 169â @ T177.
- 245
-
I. Moerdijk : Classifying toposes and foliations, Ann. Inst. Fourier, Grenoble 41, 1 (1991) 189-209.
- 246
-
I. Moerdijk : Introduction to the language of stacks and gerbes, arXiv:math.AT/0212266 (2002).
- 247
-
Morita, K. 1962. Category isomorphism and endomorphism rings of modules,
Trans. Amer. Math. Soc., 103: 451-469.
- 248
-
Morita, K. , 1970. Localization in categories of modules. I., Math. Z.,
114: 121-144.
- 249
-
M. A. Mostow : The differentiable space structure of Milnor classifying spaces, simplicial complexes,
and geometric realizations, J. Diff. Geom. 14 (1979) 255-293.
- 250
-
Oberst, U.: 1969, Duality theory for Grothendieck categories., Bull. Amer. Math. Soc. 75: 1401-1408.
- 251
-
Oort, F.: 1970. On the definition of an abelian category. Proc. Roy. Neth. Acad. Sci. 70: 13-02.
- 252
-
Ore, O., 1931, Linear equations on non-commutative fields, Ann. Math.
32: 463-477.
- 253
-
Penrose, R.: 1994, Shadows of the Mind, Oxford University
Press: Oxford.
- 254
-
Plymen, R.J. and P. L. Robinson: 1994, Spinors in Hilbert Space, Cambridge Tracts in Math.
114, Cambridge Univ. Press, Cambridge.
- 255
-
Pareigis, B., 1970, Categories and Functors, New York: Academic Press.
- 256
-
Pedicchio, M. C. & Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.
- 257
-
Pitts, A. M., 2000, Categorical Logic, in Handbook of Logic in Computer Science, Vol.5, Oxford: Oxford Unversity Press, 39-128.
- 258
-
Plotkin, B., 2000, "Algebra, Categories and Databases", Handbook of Algebra, Vol. 2, Amsterdam: Elsevier, 79-148.
- 259
-
Popescu, N.: 1973, Abelian Categories with Applications to Rings and Modules. New York and London: Academic Press., 2nd edn. 1975. (English translation by I.C. Baianu).
- 260
-
Pradines, J.: 1966, Théorie de Lie pour les groupoides différentiable, relation entre propriétes locales et globales, C. R. Acad Sci. Paris Sér. A 268: 907-910.
- 261
-
Pribram, K. H.: 1991, Brain and Perception: Holonomy and Structure in Figural processing, Lawrence Erlbaum Assoc.: Hillsdale.
- 262
-
Pribram, K. H.: 2000, Proposal for a quantum physical basis for selective learning, in (Farre, ed.)
Proceedings ECHO IV 1-4.
- 263
-
Prigogine, I.: 1980, From Being to Becoming : Time and Complexity in the Physical Sciences,
W. H. Freeman and Co.: San Francisco.
- 264
-
Raptis, I. and R. R. Zapatrin: 2000, Quantisation of discretized spacetimes and the correspondence principle, Int. Jour. Theor. Phys. 39: 1.
- 265
-
Raptis, I.: 2003, Algebraic quantisation of causal sets, Int. Jour. Theor. Phys. 39: 1233.
- 266
-
I. Raptis : Quantum space-time as a quantum causal set, arXiv:gr-qc/0201004.
- 267
-
Reyes, G. and Zolfaghari, H., 1991, Topos-theoretic Approaches to Modality,
Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 359-378.
- 268
-
Reyes, G. andZolfaghari, H., 1996, Bi-Heyting Algebras, Toposes and Modalities, Journal of Philosophical Logic, 25, no. 1, 25-43.
- 269
-
Reyes, G., 1974, From Sheaves to Logic, in Studies in Algebraic Logic, A. Daigneault, ed., Providence: AMS.
- 270
-
Reyes, G., 1991, A Topos-theoretic Approach to Reference and Modality., Notre Dame Journal of Formal Logic, 32, no. 3, 359-391.
- 271
-
M. A. Rieffel : Group C*-algebras as compact quantum metric spaces, Documenta Math. 7 (2002), 605-651.
- 272
-
Roberts, J. E.: 2004, More lectures on algebraic quantum field theory, in A. Connes, et al. Noncommutative Geometry, Springer: Berlin and New York.
- 273
-
Rodabaugh, S. E. & Klement, E. P., eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, 20, Dordrecht: Kluwer.
- 274
-
G. C. Rota : On the foundation of combinatorial theory,
I. The theory of Möbius functions, Zetschrif für
Wahrscheinlichkeitstheorie 2 (1968), 340.
- 275
-
Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. Living Reviews in Relativity (refereed electronic journal)
http:www.livingreviews.org/Articles/Volume1/1998 1 rovelli
- 276
-
Schrödinger E.: 1945, What is Life?, Cambridge University Press:
Cambridge, UK.
- 277
-
Scott, P. J., 2000, Some Aspects of Categories in Computer Science, Handbook of Algebra, Vol. 2, Amsterdam: North Holland, 3-77.
- 278
-
Seely, R. A. G., 1984, Locally Cartesian Closed Categories and Type Theory, Mathematical Proceedings of the Cambridge Mathematical Society, 95, no. 1, 33-48.
- 279
-
Shapiro, S., 2005, Categories, Structures and the Frege-Hilbert Controversy: the Status of Metamathematics,
Philosophia Mathematica, 13, 1, 61-77.
- 280
-
Sorkin, R.D.: 1991, Finitary substitute for continuous topology,
Int. J. Theor. Phys. 30 No. 7.: 923-947.
- 281
-
Smolin, L.: 2001, Three Roads to Quantum Gravity, Basic Books: New York.
- 282
-
Spanier, E. H.: 1966, Algebraic Topology, McGraw Hill: New York.
- 283
-
Stapp, H.: 1993, Mind, Matter and Quantum Mechanics,
Springer Verlag: Berlin-Heidelberg-New York.
- 284
-
Stewart, I. and Golubitsky, M. : 1993. Fearful Symmetry: Is God a Geometer?, Blackwell: Oxford, UK.
- 285
-
Szabo, R. J.: 2003, Quantum field theory on non-commutative spaces,
Phys. Rep. 378: 207-209.
- 286
-
Taylor, P., 1996, Intuitionistic sets and Ordinals, Journal of Symbolic Logic, 61 : 705-744.
- 287
-
Taylor, P., 1999, Practical Foundations of Mathematics, Cambridge: Cambridge University Press.
- 288
-
Unruh, W.G.: 2001, Black holes, dumb holes, and entropy, in C. Callender and N. Hugget (eds. ) Physics Meets Philosophy at the Planck scale, Cambridge University Press, pp. 152-173.
- 289
-
Van der Hoeven, G. and Moerdijk, I., 1984a, Sheaf Models for Choice Sequences, Annals of Pure and Applied Logic, 27, no. 1, 63-107.
- 290
-
Várilly, J. C.: 1997, An introduction to noncommutative geometry
arXiv:physics/9709045
London.
- 291
-
von Neumann, J.: 1932, Mathematische Grundlagen der Quantenmechanik, Springer: Berlin.
- 292
-
Weinstein, A.: 1996, Groupoids : unifying internal and external symmetry, Notices of the Amer. Math. Soc. 43: 744-752.
- 293
-
Wess J. and J. Bagger: 1983, Supersymmetry and Supergravity, Princeton University Press: Princeton, NJ.
- 294
-
Weinberg, S.: 1995, The Quantum Theory of Fields vols. 1 to 3, Cambridge Univ. Press.
- 295
-
Wheeler, J. and W. Zurek: 1983, Quantum Theory and Measurement, Princeton University Press: Princeton, NJ.
- 296
-
Whitehead, J. H. C.: 1941, On adding relations to homotopy groups, Annals of Math. 42 (2): 409-428.
- 297
-
Woit, P.: 2006, Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Laws, Jonathan Cape.
- 298
-
Wood, R.J., 2004, Ordered Sets via Adjunctions, In: Categorical Foundations, M. C. Pedicchio & W. Tholen, eds., Cambridge: Cambridge University Press.
Contributors to this entry (in most recent order):
As of this snapshot date, this entry was owned by bci1.