A compact quantum group,
is defined as a particular case of a locally compact quantum group
when the object
space of the latter
is a compact topological space (instead of being a locally compact one).
Bibliography
ABE, E., Hopf Algebras, Cambridge University Press, 1977.
BAAJ, S., SKANDALIS, G., Unitaires multiplicatifs et dualité pour les produits
croisés de C*-algébres, Ann. scient. Ec. Norm. Sup., 4e série, t. 26 (1993), 425-488.
CONWAY, J. B., A Course in Functional Analysis, Springer-Verlag, New York, 1985.
DIJKHUIZEN, M.S., KOORNWINDER, T.H., CQG
algebras : a direct algebraic
approach to quantum groups, Lett. Math. Phys. 32 (1994), 315-330.
DIXMIER, J., C*-algebras, North-Holland Publishing Company, Amsterdam, 1982.
ENOCK, M., SCHWARTZ, J.-M., Kac Algebras and duality
of Locally Compact
groups, Springer-Verlag, Berlin (1992).
EFFROS, E.G., RUAN, Z.-J., Discrete Quantum Groups I. The Haar measure, Int.
J. of Math. (1994), 681-723.
HOFMANN, K.H., Elements of compact semi-groups, Charles E. Merill Books Inc.
Columbus, Ohio (1996).
HOLLEVOET, J., Lokaal compacte quantum-semigroepen : Representaties en
Pontryagin-dualiteit, Ph.D. Thesis, K.U.Leuven, 1994.
HOLLEVOET, J., Pontryagin Duality for a Class of Locally Compact Quantum
Groups, Math. Nachrichten 176 (1995), 93-110.
KIRCHBERG, E., Discrete Quantum Groups, talk at Oberwolfach, 1994.
KUSTERMANS, J., C*-algebraic Quantum Groups arising from Algebraic Quantum
Groups, Ph.D. Thesis, K.U.Leuven, 1997.
KUSTERMANS, J., VAN DAELE, A., C*-algebraic Quantum Groups arising from
Algebraic Quantum Groups, Int. J. of Math. 8 (1997), 1067-1139.
LANCE, E.C., An explicit description of the fundamental unitary for SU(2)q, Commun.
Math. Phys. 164 (1994), 1-15.
DE MAGELHAES, I.V., Hopf-C*-algebras and locally compact groups, Pacific J.
Math (2) 36 (1935), 448-463.
MASUDA, M., NAKAGAMI, Y., A von Neumann algebra
Framework for the Duality
of Quantum Groups. Publications of the RIMS Kyoto University 30 (1994),
799-850.
MASUDA, M., A C*-algebraic framework for the quantum groups, talk at Warsaw
workshop on Quantum Groups and Quantum Spaces, 1995.
MASUDA, M., NAKAGAMI, Y., WORONOWICZ, , S.L. (in preparation).
SHEU, A.J.L., Compact Quantum Groups and groupoid
C*-Algebras, J. Funct.
Analysis 144 (1997), 371-393.
SWEEDLER, M.E., Hopf Algebras, W.A. Benjamin, inc., New York, 1969.
TOMIYAMA, J., Applications of Fubini type
theorems
to the tensor
product of
C*-algebras, Tokohu Math. J. 19 (1967), 213-226.
VAN DAELE, A., Dual Pairs of Hopf *-algebras, Bull. London Math. Soc. 25 (1993),
209-230.
VAN DAELE, A., Multiplier Hopf Algebras, Trans. Am. Math. Soc. 342 (1994),
917-932.
VAN DAELE, A., The Haar Measure on a Compact Quantum Group, Proc. Amer.
Math. Soc. 123 (1995), 3125-3128.
VAN DAELE, A., Discrete Quantum Groups, Journal of Algebra 180 (1996), 431-444.
VAN DAELE, A., An Algebraic Framework for Group Duality, preprint K.U.Leuven
(1996), to appear in Advances of Mathematics.
VAN DAELE, A., Multiplier Hopf Algebras and Duality, Proceedings of the workshop
on Quantum Groups and Quantum Spaces in Warsaw (1995), Polish Academy of
sciences Warszawa 40 (1997), 51-58.
VAN DAELE, A., The Haar measure on finite quantum groups, Proc. A.M.S. 125
(1997), 3489-3500.
VAN DAELE, A., WANG, S., Universal Quantum Groups, Int. J. of Math. (1996),
255-263.
WANG, S., Krein Duality for Compact Quantum Groups, J. Math. Phys. 38 (1997),
524-534.
31. WORONOWICZ, S.L., Twisted
group. An example of non-commutative
differential
calculus. Publ. RIMS Kyoto Univ. 23 No. 1 (1987), 117-181.
WORONOWICZ, S.L., Compact Matrix Pseudogroups, Commun. Math. Phys. 111
(1987), 613-665.
33. WORONOWICZ, S.L., Tannaka-Krein duality for compact matrix pseudogroups.
Twisted
groups, Invent. Math. 93 (1988) 35-76.
WORONOWICZ, S.L., A remark on Compact Matrix Quantum Groups, Lett. Math.
Phys. 21 (1991), 35-39.
WORONOWICZ, S.L., Compact Quantum Groups, Preprint University ofWarszawa
(1992). To appear.
36. MAES, A. and VanDAELE, A. 1998.
Notes on Compact Quantum Groups.,
, 43 pp.
As of this snapshot date, this entry was owned by bci1.