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Coalgebras, bialgebras and Hopf algebras.
Uq(b+)

Quantum groups today are like groups were in the nineteenth century,
by which I mean

— a young theory, abundant examples, a rich and beautiful mathemati-
cal structure. By ‘young’ I mean that many problems remain wide open,
for example the classification of finite-dimensional quantum groups.

— a clear need for something like this in the mathematical physics of
the day. In our case it means quantum theory, which clearly suggests
the need for some kind of ‘quantum geometry’, of which quantum groups
would be the group objects.

These are algebra lectures, so we will not be able to say too much
about physics. Suffice it to say that the familiar ‘geometrical’ picture
for classical mechanics: symplectic structures, Riemannian geometry,
1s all thrown away when we look at quantum systems. In quantum
systems the classical variables or ‘coordinates’ are replaced by operators
on a Hilbert space and typically generate a noncommutative algebra,
instead of a commutative coordinate ring as in the classical case. There
is a need for geometrical structures on such quantum systems parallel
to those in the classical case. This is needed if geometrical ideas such as
gravity are ever to be unified with quantum theory.

From a mathematical point of view, the motivation for quantum groups
is:

— the original (dim) origins in cohomology of groups (H. Hopf, 1947);
an older name for quantum groups is ‘Hopf algebras’

— g-deformed enveloping algebra quantum groups provide an expla-
nation for the theory of g-special functions, which dates back to the
1900s. They are used also in number theory. (For example, there are
g-exponentials etc., related to quantum groups as ordinary exponentials
are related to the additive group R.)
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Fig. 1.1. Associativity and unit element expressed as commutative diagrams.

— representations of quantum groups form braided categories, leading
to link invariants

— quantum groups are the ‘group’ objects in some kind of noncom-
mutative algebraic geometry

— quantum groups are the ‘transformation’ objects in noncommutative
algebraic geometry

— quantum groups restore an input—output symmetry to algebraic
constructions; for example, they admit Fourier theory.

We fix a field k over which we work. We begin by recalling that an
algebra A is

1. A vector space over k.

2. Amapm: A® A — A which is associative in the sense (ab)c =
a(be) for all a,b,c € A. Here ab = m(a®b) is shorthand.

3. A unit element 14, which we write equivalently asamapn:k — A
by n(1) = 14. We require alg4 = a = 14a for all a € A.

In terms of the maps, these axioms are given by the commutative
diagrams in Figure 1.1. Note that most algebraic constructions can, like
the axioms themselves, be expressed as commuting diagrams. When all
premises, statements and proofs of a theorem are written out like this
then reversing all arrows will also yield the premises; statements and
proofs of a different theorem, called the ‘dual theorem’.

Definition 1.1 A coalgebra C is
1. A vector space over k.
2. Amap A:C — CQC (the ‘coproduct’) which is coassociative in
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Fig. 1.2. Coassociativity and counit element expressed as commutative diag-

rams.

the sense

E C<1)<1>®C<1><2)®C<2>:§ €y ® Coyy B Cay 2

forallc € C. Here Ac =3, cyy ® ¢y 15 shorthand.
3. A map e : C — k (the ‘counit’) obeying > e(cyy))ce = ¢ =
20(1)6(0(2)) fOT’ a/ll (S C;

In terms of the maps, these axioms are given by the commutative
diagrams in Figure 1.2, which is just Figure 1.1 with all arrows reversed.

This notion of reversing arrows has the same status as the idea, fa-
miliar in algebra, of having both left and right module versions of a
construction. The theory with only left modules is equivalent to the
theory with right modules, by a left-right reflection (i.e. reversal of ten-
sor product). But one can also consider theorems with both left and
right modules interacting in some way, e.g. bimodules. Similarly, the
arrow-reversal operation transforms theorems about algebras to theor-
ems about coalgebras. However, we can also consider theorems involv-
ing both concepts. In this way, quantum group theory is a very natural
‘completion’ of algebra to a setting which is invariant under the arrow-
reversal operation.

Definition 1.2 A bialgebra H is

1. An algebra H,m, 1.

2. A coalgebra H, Al e.

3. A, € are algebra maps, where H @ H has the tensor product algebra
structure (h® g)(W ® ¢') = hh/ ® g¢' for all h, ', g,g' € H.
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Fig. 1.3. Additional axioms that make the algebra and coalgebra H into a
Hopf algebra.

Actually, a bialgebra is more like a quantum ‘semigroup’. We need
something playing the role of group inversion:

Definition 1.3 A Hopf algebra H is

1. A bialgebra H, A, e, m, 1.

2. Amap S : H — H (the ‘antipode’) such that Y (Shq))he =
e(h) => hu,Shg, for allh € H.

The axioms that make a simultaneous algebra and coalgebra into a
Hopf algebra are shown in Figure 1.3, where 7: H® H — H ® H is the
‘flip’ map 7(h®g) = g®h for all h,g € H.

Proposition 1.4 (Antihomomorphism property of antipodes). The anti-
pode of a Hopf algebra is unique and obeys S(hg) = S(g)S{h), S(1) =1
(i.e. S is an antialgebra map) and (S® S)c Ah=710AoSh, eSh =¢h
(i.e. S is an anticoalgebra map), for all h,g € H.

Proof During proofs, we will usually omit the > signs, which should be
understood. If S,S; are two antipodes on a bialgebra H then they are
equal because S1h = (Siha )e(ha) = (Stha)he o She o) = (Stha )
hay@yShey, = €(ha))She = Sh. Here we wrote h = kg, e(he,) by the
counit axioms, and then inserted Ay, Shz) e knowing that it would
collapse to €(h«,). We then used associativity and (the more novel in-
gredient) coassociativity to be able to collapse (S1h1,q))h) @) to €(hg)).
Note that the proof is not any harder than the usual one for uniqueness

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521010411
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-01041-2 - A Quantum Groups Primer
Shahn Majid

Excerpt

More information

1 Coalgebras, bialgebras and Hopf algebras. Uq(bs.) 5

of group inverses, the only complication being that we are working now
with parts of linear combinations and have to take care to keep the or-
der of the coproducts. We can similarly collapse such expressions as
(S1hy Yz, of heyShe, wherever they occur as long as the two collaps-
ing factors are in linear order. This is just the analogue of cancelling
h~'h or kh~! in a group. Armed with such techniques, we return now
to the proof of the proposition. Consider the identity

(ShaywImmDhm@dn e ® 9o @ he,
= (S((hw90) ) (rm9@)@ ® 9 @ he
= €e(h1y91)) 1 ® gy Qhp =180g®h.

We used that A is an algebra homomorphism, then the antipode axiom
applied to hyygay. Then we used the counity axiom. Now apply S to
the middle factor of both sides and multiply the first two factors. One
has the identity

Sg@h = (Shaym9donym)hw@In@S9e ®he,
= (S(hay I )@@ mSTe @ @ hay = (S(haymg))ha @ ® he,

where we used coassociativity applied to g. We then use the antipode
axiom applied to g, and the counity axiom. We now apply S to the
second factor and multiply up, to give

(89)(Sh) = (S(hay1y9)) Py @ She) = (S(hiyg)) hayySheay @ = S(hg).

We used coassociativity applied to h, followed by the antipode axioms
applied to h(,; and the counity axiom. O

Example 1.5 The Hopf algebra H = Uy(by) is generated by 1 and the

elements X, g, g~ " with relations

99 ' =1=g71g, gX =Xy,
where q is o fized invertible element of the field k. Here
AX=X®1+g®X, Ag=g®g, Agl=g'®g7",
eX =0, eg=1=eg™', SX=-g"'X, Sg=g7' Sgl=g

Note that S? # id in this ezample (because S?X = q~1X).

Proof We have A, e on the generators and extend them multiplica-
tively to products of the generators (so that they are necessarily algebra
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maps as required). However, we have to check that this is consistent
with the relations in the algebra. For example, AgX = (Ag)(AX) =
(29)(X®1+g®X)=gX ®g+9g?®gX, while equal to this must be
AgXg=q(AX)(Ag)=q(X®1+9®X)(g®9) =q¢Xg®g+q9°® Xg.
These expressions are equal, using again the relations in the algebra as
stated. Similarly for the other relations. For the antipode, we keep in
mind the preceding proposition and extend S as an antialgebra map,
and check that this is consistent in the same way. Since S obeys the
antipode axioms on the generators (an easy computation), it follows
that it obeys them also on the products since A, € are already extended
multiplicatively. O

It is a nice exercise — we will prove it later in the course, but some
readers may want to have fun doing it now — to show that

where )
7], = ey [l = Pl =1l 1

are the ¢g-binomial coefficients defined in terms of ‘g-integers’

r

1-¢
1—q°

Mlo=1+g+-+q7" =

The last expression here should be used only when g # 1, of course. We
should also assume [r], are invertible to write the g-binomial coefficients
in this way.

Example 1.6 Let G be a finite group. The group Hopf algebra kG is
the vector space with basis G, and the algebra structure, unit, coproduct,
counit and antipode

product in G, l=e, Ag=g®g, eg=1, Sg=g""

on the basis elements g € G (extended by linearity to all of kG).

Proof The multiplication is clearly associative because the group mul-
tiplication is. The coproduct is coassociative because it is so on each
of the basis elements g € G. It is an algebra homomorphism because
A(gh) = gh®gh = (9Qg)(h®h) = (Ag)(Ah). The other facts are
equally easy. G does not actually need to be finite for this construction,
but we will be interested in the finite case. O
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So all of finite group theory should, in principle, be a special case
of Hopf algebra theory. The same is true for Lie theory, if we use the
enveloping algebra. We recall that a Lie algebra is:

1. A vector space g.

2. Amap [, ] : g®g — g obeying the Jacobi identity and antisym-
metry axioms (when the characteristic of k is not 2).

Example 1.7 Let g be a finite-dimensional Lie algebra over k. The
universal enveloping Hopf algebra U(g) is the noncommutative algebra
generated by 1 and elements of a basis of g modulo the relations [£,71] =
&n —n€ for all £,m in the basis. The coproduct, counit and antipode are

AE=¢R1+1®E €€=0, S&=-¢

extended in the case of A, e as algebra maps, and in the case of S as an
antialgebra map.

Proof We extend A, € as algebra homomorphisms and S as an antialge-
bra homomorphism, and have to check that this extension is consistent
with the relations. For example, A(én) = (€@ 1+10£§)(n®1+10n) =
En® 141 @ &n+£ @+ Q€. Subtracting from this the corresponding ex-
pression for An¢ and using the relations, we obtain [£,7] ® 1+1®[¢, 7] =
Al¢, 7] as required. Similarly for the counit and antipode. O

One can say, informally, that U(g) is generated by 1 and elements of
g with the relations stated; it does not depend on a choice of basis. A
more formal way to say this is to construct first the tensor Hopf algebra
TV)=keVaVVaeVRVEV - - on any vector space V. The
product here is (v® - @wW)(z® - QyY) = VO - QWRIT® --QY).
This forms a Hopf algebra with

Av=v®1+1Qv, ew=0, Sv=-v

for all v € V. The enveloping algebra U(g) is the quotient of T'(g)
modulo the ideal generated by the relations £ ®n —n®¢& = [£,n]. (Of
course, the best definition is as a universal object, but we will not need
that.)

So Lie theory is also contained, in principle, as a special case of
quantum group theory. In fact, one of the main motivations for Hopf
algebras in the 1960s was precisely as a tool that unifies the treatment
of results for groups and Lie algebras into one technology, e.g. their co-
homology theory. Clearly, our example Uy(by.) is a mixture of these two
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kinds of ‘classical’ Hopf algebras. It has an element g which is grouplike
in the sense that it obeys Ag = g®g. And it has an element X which
is a bit like the Lie case. But it is neither a group algebra nor an en-
veloping algebra exactly. What characterises these classical objects, in
contrast to Uy(by), is:

Definition 1.8 A Hopf algebra is commutative if it is commutative as
an algebra. It is ‘cocommutative’ if it is cocommutative as a coalgebra,
i.e. if To A = A. This is the arrows-reversed version of commutativity.

Corollary 1.9 If H is a commutative or cocommutative Hopf algebra,
then S? = id.

Proof We use Proposition 1.4, so that S?h = (5%hy,)(She)he =
(S(hayShz)) he, = hin the cocommutative case. Here we use a neutral
notation hay ® by ® by = hayay @ haye ® ey = hay @ heyw) ® g
(just as one writes abc = (ab)c = a(bc)). The other case is similar. [

Clearly, kG and U(g) are cocommutative. The coordinate rings of
linear algebraic groups are likewise commutative Hopf algebras, while
U,(bs) is neither. As a tentative definition, we can say that a truly
‘quantum’ group (in contrast to a classical group or Lie object viewed
as one) is a noncommutative and noncocommutative Hopf algebra. Later
on, we will add further properties as well.
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2
Dual pairing. SL,(2). Actions

In the last lecture we showed how to view finite groups and Lie algebras
as Hopf algebras, and gave a variant that was truly ‘quantum’. We
now complete our basic collection of examples with some other classical
objects.

Example 2.1 Let G be a finite group with identity e. The group function
Hopf algebra k(G) is the algebra of functions on G with values in k and
the pointwise product (fg)(z) = f(x)g(z) for allz € G and f,g € k(G).
The coproduct, counit and antipode are

(Af)(z,y) = flzy), ef = fle), (S)(z)=f(z™"),

where we identify k(G) ® k(G) = k(G x G) (functions of two group vari-
ables).

Proof Coassociativity is evidently ((A @ id)Af)(z,y,z) = (Af}(zy, 2) =
f(@)2) = fz(y) = (Af)(@,y2) = ((d©A)AS)(@,y,2). Note that
it comes directly from associativity in the group. Likewise, the counity
and antipode axioms come directly from the group axioms for the unit
element and inverse. O

Also, when g is a finite-dimensional complex semisimple Lie algebra
(as classified by Dynkin diagrams), it has an associated complex Lie
group G C M, (C) (the n x n matrices with values in C). This subset is
of the form G = {x € M,, | p(x) = 0}, where p is a collection of poly-
nomial equations. Correspondingly, we have an algebraic variety with
coordinate algebra C[G] defined as Clz’;] where 4,5 = 1,...,n (poly-
nomials in n? variables), modulo the ideal generated by the relations
p(z) = 0. The group structure inherited from matrix multiplication

9
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corresponds to a coproduct and counit

Az = 2@z, ') =6
k

where §%; is the Kronecker delta-function. There is also an antipode
given algebraically via a matrix of cofactors of the matrix z*; of gen-
erators. In this way, we have a complex linear algebraic group with
coordinate algebra C[G] as a Hopf algebra. In fact, G can be taken so
that the coefficients of p{z) are integers (from work of Chevalley) giving a
coordinate ring Z[G]. Then, by tensoring with k, the same construction
works over any field and provides a Hopf algebra k[G] (and considering
all k, one has an affine group scheme).

Example 2.2 The Hopf algebra k[SLs] is kla, b, ¢, d] modulo the relation

The coproduct, counit and antipode are
Aa=aRa+bRc, A=DRd+a®b, Ac=cRa+dRc,
Ad=d®@d+c®b, ela)=€d)=1, €b)=¢(c)=0,
Sa=d, Sd=a, Sb=c¢, Sc=b

The coalgebra and antipode here can be written more concisely as

a b a b a b a b 1 0
A = ® ,€ = ]
c d c d c d ¢ d 0 1
a b d -b
S - )
c d - a

where matrix multiplication should be understood in this definition of
A. This is no more than a shorthand notation. Finally, for a truly
‘quantum’ variant of this:

Example 2.3 Let ¢ € k*. The Hopf algebra SL,(2) is k{a,b,c,d)
(the free associative algebra) modulo the ideal generated by the six ‘q-
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