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“Ordinary” space, with its notions of length, distance and angle, is the source of the features that we use to define
inner product spaces, a class of vector spaces with these properties. We also use the intuitive idea that, if points
seem to be converging, then there “is” someting for the points to converge to. We then study a subclass of the inner
product spaces that have this “completeness” property of convergence, the Hilbert spaces. For us, “vectors” can
usually be thought of as position vectors.

Definition: An inner-product space with complex scalars, C, is a vector space V with complex scalars, and a
complex-valued function 〈v, w〉, called the inner product, defined on V × V, that has the following properties:

(1) For all v ∈ V, 〈v, v〉 ≥ 0.
(2) If 〈v, v〉 = 0 then v = 0.
(3) For all v and w in V, 〈v, w〉 = 〈w, v〉.
(4) For all v1, v2 and w in V, 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉.
(5) For all v, w in V, and all scalars a, 〈av, w〉 = a〈v, w〉.

In case the scalars are real, the axioms are the same, except that 〈v, w〉 is assumed to be real-valued, so the complex
conjugation is dropped in (3): 〈v, w〉 = 〈w, v〉.

When (3) is combined with (4) and (5) in turn, we have
(4′) For all v1, v2 and w in V, 〈w, v1 + v2〉 = 〈w, v1〉 + 〈w, v2〉.
(5′) For all v, w ∈ V, and all scalars a, 〈v, aw〉 = ā〈v, w〉.
Thus the inner product is linear in the first variable, and conjugate linear in the second.

The “dot product” in Euclidean space is the basic example of an inner product (the scalars are real in that case...).
Note that Re〈v, w〉 is an inner product on the real vector space obtained by restricting scalar multiplication to the
real numbers. This will be important later.

Examples include C itself, with 〈z, w〉 = zw̄; complex C([0, 1]), with 〈f, g〉 :=
∫ 1

0
f(x)g(x) dx; and L2(Rn),

with 〈f, g〉 :=
∫
f(x)g(x) dx.

We next define the length of a vector, and call it the “norm” of the vector. The distance between two vectors v and
w is then the length of (the norm of) the vector v −w. In the context of vector spaces, “norm” is a technical term
that picks out the essential features of the concept of length. A norm on a vector space V is a real-valued function
defined for each vector v in V, usually denoted ‖v‖, with properties (i) – (iii) below, assumed true for all vectors
v and w in V and for all scalars c (usually complex numbers for us, but the scalars are often real numbers):
(i) ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0 (the zero vector);
(ii) ‖cv‖ = |c|‖v‖;
(iii) ‖v + w‖ ≤ ‖v‖ + ‖w‖, the triangle inequality.

Definition: The norm of an element v in an inner product space is denoted ||v||, and is given by taking the
non-negative square root of ||v||2 = 〈v, v〉. That is, ||v|| =

√
〈v, v〉 .

Simply calling this a “norm” does not make it one. To prove this is a norm, we’ll use the very important Schwarz
inequality in the proof of the triangle inequality.

Theorem (The Schwarz Inequality): In an inner product space V, for all vectors v, w,

|〈v, w〉| ≤ ||v||||w||,

and equality holds if and only if one of v and w is a multiple of the other.

Proof: This argument uses the quadratic formula! If one of v and w is zero, then equality holds, and the one that
is zero is a multiple of the other. So suppose that neither of v and w is zero. Let z ∈ C. Consider ||v − zw||2.
Let us express z in “polar coordinates.” For θ real and fixed (to be chosen later), and for t ∈ R, put z = teiθ,
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and let f(t) = ||v − zw||2. The following are typical “expansion” steps.

f(t) = 〈v − zw, v − zw〉
= 〈v, v − zw〉 − 〈zw, v − zw〉
= 〈v, v〉 − 〈v, zw〉 − 〈zw, v〉 + 〈zw, zw〉
= 〈v, v〉 − (z̄〈v, w〉 + z〈w, v〉) + |z|2〈w,w〉
= 〈v, v〉 − 2Re z̄〈v, w〉 + |z|2〈w,w〉
= ||v||2 − 2tRe e−iθ〈v, w〉 + t2||w||2.

Next, choose θ so that e−iθ〈v, w〉 = |〈v, w〉|. With this choice of θ, we can write

f(t) = ||v||2 − 2t|〈v, w〉| + t2||w||2.

Then the quadratic polynomial f(t), being non-negative for all real t, has no real roots, or one, repeated, root. In
either case, it has non-positive discriminant. That is, 4|〈v, w〉|2 ≤ 4||v||2||w||2, as desired.

If equality holds, then f(t) has zero discriminant, hence a root for the chosen value of θ. By the definition of f,
this means that v = zw.

Theorem: An inner product space, with ||v|| as norm, is indeed a normed space.
Proof: By (1) and (2) in the definition of an inner product space, ||v|| is non-negative, and is 0 if and only if v = 0.
When c is a scalar, ||cv||2 = 〈cv, cv〉 = |c|2||v||2. The triangle inequality is an application of the Schwarz inequality:
||v + w||2 = ||v||2 + 2Re〈v, w〉 + ||w||2 ≤ ||v||2 + 2||v||||w|| + ||w||2 = (||v|| + ||w||)2; the inequality follows.

An inner product space is a Hilbert space if it is complete with respect to the norm just defined. This means that, for
every sequence {vn} of vectors in V, if ‖vm − vn‖ → 0 as m and n both tend to infinity, then there is, in V, a
vector vω ∈ V such that ‖vn−vω‖ → 0 as n → ∞. Sequences with the property that limm→∞, n→∞ ‖vm−vn‖ = 0
are called Cauchy sequences. Usually we work with Hilbert spaces, since it’s handy to have limits of Cauchy sequences
available. The first and third of the examples are Hilbert spaces; the second is not. Finite dimensional inner product
spaces are Hilbert spaces “automatically.”
The parallelogram identity is useful (the diagonals of a parallelogram sum to its perimeter):

For all u, v in V, ||u + v||2 + ||u− v||2 = 2||u|2 + 2||v||2.
The proof is a direct calculation, by expansion of the left-hand side, as done in the proof of the Schwarz inequality.
The polarization formula (this is how we can find inner products, if we can measure enough “energies”):

〈v, w〉 =
1
4

3∑
k=0

, ik||v + ikw||2.

This is proved by expansion and simplification on the right-hand side, using i2 = −1, i3 = −i, i4 = 1. If the scalars
are real, there is a similar, simpler formula, the discovery of which is left to the reader as an exercise.

Definition: Vectors v, w in an inner product space V are orthogonal if 〈v, w〉 = 0. In particular, 0 is orthogonal
to every vector v. Notation: v ⊥ w.

An inner product space can be embedded into its dual space by a conjugate-linear isometry

If V is an inner product space, we let V ∗ denote the space of continuous linear functionals on V. We will let
v∗, w∗, etc. denote generic elements of V ∗. Thus, for all v and w in V, and for all complex scalars α and β,
v∗(αv + βw) = αv∗(v) + βv∗(w) (v∗ is linear) and lim

v→vo

v∗(v) = v∗(vo) (v∗ is continuous). V ∗ is alled the dual

space of V. V ∗ is a Banach space, namely a vector space in which Cauchy sequences converge (the proof is not
relevant to this course). The norm we will use on V ∗, at least at first, is

||v∗||∗ := sup
||v|||≤1

|v∗(v)|.
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The proof that this is a norm will be omitted here. We will use the notation 〈v, w〉 for the inner product of v and
w in V, and ||v|| for the norm of v in V.

A conjugate-linear embedding of V into V ∗

For each vo ∈ V, we define Evo(v) := 〈v, vo〉. Thus Evo is a linear functional on V.

Claim: Evo belongs to V ∗ , and ||Evo||∗ = ||vo||.
Proof: |Evo(v)| = |〈v, vo〉| ≤ ||v||||vo||, by the Schwarz inequality. Therefore ||Evo||∗ ≤ ||vo||. If vo �= 0, then
v := vo/||vo|| yields Evo(v) = 〈vo/||vo||, vo〉 = ||vo|| ≤ ||Evo||∗, so actually ||Evo||∗ = ||vo|| (if vo = 0, then
Evo = 0 (of V ∗)).

A pair of properties of the mapping E: E(vo +v1) = Evo +Ev1, and Eavo = āEvo; that is, E is conjugate linear.
In particular, E(vo − v1) = Evo − Ev1. These properties are proved using the definition of E. Therefore,

E is an isometry (a distance-preserving map) of V onto a subset of V ∗.

The conjugate-linear embedding E of V into V ∗ has dense range

Theorem: E(V ) is dense in V ∗.

Proof: What we have to prove is that, for each v∗ in V ∗, there exists a sequence {vn} of elements of V such
that Evn → v∗ in the norm of V ∗. Let v∗ ∈ V ∗. If v∗ = 0, then E0 = v∗, so we may assume that v∗ �= 0.
Further, we may assume that ||v∗||∗ = 1. Then,

there exists a sequence {vn} of elements of V, with ||vn|| = 1 for each n, such that 0 ≤ v∗(vn) → 1, from below,
as n → ∞.

The non-negativity of v∗(vn) is a useful convenience. It is assured by multiplying some “original vn’s” by suitable
complex numbers of unit length, as in the proof of the Schwarz inequality. See Deferred proofs, Item 1 for details.

We will show that, as n → ∞, Evn → v∗, in the norm of V ∗. If v∗(v) is to act like 〈v, vn〉 and w ⊥ vn, we
expect v∗(w) to be a smaller and smaller fraction of ||w||, as n increases. First we will prove a Lemma to that
effect, and a useful Corollary of it. The Lemma gives an estimate for v∗(w) when w ⊥ vn.

Lemma: If v∗ ∈ V ∗, v ∈ V, and ||v∗||∗ = 1 = ||v||, then whenever w ∈ V and w ⊥ v,

|v∗(w)| ≤
√

1 − |v∗(v)|2 ||w||.

Remark If we knew that v∗(w) = 〈w, v̂〉 for some v̂ in V, this would follow from the fact that the cosine of the
angle between v̂ and w is more or less equal (in absolute value) to the sine of the angle between v̂ and v.

Proof: We notice that |v∗(v)| ≤ 1, so the square root makes sense. We’ll use the quadraric formula to make the
estimate. Let a be a complex number. Since v∗ has norm one and w ⊥ v,

|v∗(av + w)| ≤ ||v∗||∗||av + w|| = 1 ·
√
|a|2 + 2Re 〈av, w〉 + ||w||2 =

√
|a|2 + ||w||2 .

Thus |v∗(av + w)|2 ≤ |a|2 + ||w||2.
Here is another way to express |v∗(av + w)|2:

|v∗(av + w)|2 = |v∗(av) + v∗(w)|2 = |a|2v∗(v)2 + 2Re āv∗(v)v∗(w) + |v∗(w)|2.

Therefore,
|a|2v∗(v)2 + 2Re āv∗(v)v∗(w) + |v∗(w)|2 ≤ |a|2 + ||w||2.

Now we let a = reiϕ where r is an arbitrary real number – it doesn’t have to be non-negative – and we choose ϕ,
also real, so that āv∗(v)v∗(w) = r|v∗(v)||v∗(w)|. After we substitute the formula a = reiϕ into the last inequality
and do some rearranging, we find that, for all real r,

0 ≤ r2(1 − v∗(v)2) − 2r|v∗(v)||v∗(w)| + (||w||2 − |v∗(w)|2).
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The discriminant of this non-negative quadratic must therefore be non-positive; that is,

|v∗(v)|2|v∗(w)|2 ≤ (1 − |v∗(v)|2)(||w||2 − |v∗(w)|2).

We add (1 − |v∗(v)|2)|v∗(w)|2 to both sides of this inequality and take square roots to complete the proof.

Corollary: If v∗ ∈ V ∗, v ∈ V, ||v∗||∗ = 1 = ||v||, and 0 ≤ v∗(v), then ‖Ev − v∗‖∗ ≤ δ + δ2, where δ is
non-negative and δ2 := 1 − v∗(v)2.

Proof: For any u ∈ V, (Ev − v∗)(u) = 〈u, v〉 − v∗(u− 〈u, v〉v) − 〈u, v〉v∗(v).
Now w := u− 〈u, v〉v ⊥ v, so ||w|| ≤ ||v||, by Pythagoras’ Theorem. Thus by the Lemma

|(Ev − v∗)(u)| ≤ |〈u, v〉|(1 − v∗(v)) + δ||w|| ≤ ||u||(δ2 + δ).

This completes the proof (we actually got the smaller but uglier estimate ‖Ev − v∗‖∗ ≤ δ + (1 − v∗(v)) ).

We can now quickly complete the proof of the Theorem. We had to show that as n → ∞, Evn → v∗ in the norm
of V ∗. We set δn :=

√
1 − |v∗(vn)|2 . By the Corollary, ||Evn − v∗||∗ ≤ δn(1 + δn) → 0 as n → ∞. We’re done!

Consequences of the Theorem, and what preceded it

1. {Evn} is a Cauchy sequence in V ∗ because it converges. By the isometric property of E, {vn} is Cauchy in
V, so if V is already complete, and v := limn→∞ vn, then v∗ = Ev. Thus, if V is a Hilbert space, E is onto as
well as one-to-one. This gives us the

Riesz Representation Theorem: Let H be a Hilbert space. If λ(x) is a continuous linear functional on H,
then there exists a unique y ∈ H such that λ(x) = 〈x, y〉, and ||λ||∗ = ||y||.
That is, there is an isometric one-to-one correspondence between H and H∗.

2. If E is onto, the isometric property shows that, because V ∗ is complete, so is V.

3. The inner product can be “exported” to V ∗. For v∗, w∗ in V ∗, let

〈v∗, w∗〉∗ := lim
n→∞

1
4

3∑
k=0

ik||wn + ikvn||2 = lim
n→∞

〈wn, vn〉,

where Evn → v∗, Ewn → w∗.

To show 〈v∗, w∗〉∗ is well-defined

Suppose Eṽn → v∗, Ew̃n → w∗. Then

||w̃n + ikṽn||2 = ||w̃n − wn + wn + ikṽn||2 = ||w̃n − wn||2 + 2Re 〈w̃n − wn, wn + ikṽn〉 + ||wn + ikṽn||2.

The first 2 terms tend to zero. We repeat the calculation to replace ṽn by vn. Each sequence is Cauchy in V
because the mapping E is isometric.

To show: the well-defined quantity 〈v∗, w∗〉∗ is an inner product

It is immediate that 〈v∗, w∗〉∗ is additive in each argument. Congugate symmetry and the properties of 〈v∗, v∗〉∗
are also immediate. Since Evn → v∗, for any scalar a, E(āvn) → av∗, so

〈av∗, w∗〉∗ = lim
n→∞

〈wn, āvn〉 = a〈v∗, w∗〉∗.

A similar arugment shows 〈v∗, aw∗〉∗ = ā〈v∗, w∗〉∗. The norm given by this inner product:

||v∗||2 = lim
n→∞

〈vn, vn〉 = lim
n→∞

Evn(vn) = lim
n→∞

||Evn||2∗

agrees with the standard norm ||v∗||∗ in V ∗, and this completes the proof that 〈v∗, w∗〉∗ is an inner product on
V ∗. We have shown:
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If V is an inner product space, then V ∗ is a Hilbert space, that is homeomorphic to the completion of V with
respect to its norm. Moreover, the linear-functional norm on V ∗ coincides with its Hilbert-space norm.

A further note: if V is a Hilbert space, we may use 〈E−1v∗, E−1w∗〉 in place of the limits used in the definition of
the inner product on V ∗.

Orthogonal decomposition and projections

We can “drop a perpendicular” in a Hilbert space. Put another way: if d is the distance from a point y to a closed
convex set X in H , then the closed ball of radius d, center y, meets X at exactly one point xo. With reference
to that point, “real” angles between y and points x in X are at least 90◦. I.e., Re〈y − xo, x− xo〉 ≤ 0. (A set
X in a vector space is convex if the line segments joining pairs of points in X lie in X also.)

Theorem: If X is a closed convex set in a Hilbert space H, then for every y in H, there is a unique ξ ∈ X
such that Re 〈y − ξ, x− ξ〉 ≤ 0 for all x ∈ X. Indeed, ξ is the element of X closest to y.

Proof: This classic argument exploits the parallelogram identity. Let d := dist(y,X) = infx∈X ||y−x||. Then there
is a sequence {xn} in X such that d = limn→∞ ||y − xn||. We define εn by ε2n = ||y − xn||2 − d2. Then

||(y − xn) + (y − xm)||2 + ||xm − xn||2 = 2||y − xn||2 + 2||y − xm||2,

or (making changes on both sides of this equation)

4
∥∥∥∥y − xn + xm

2

∥∥∥∥
2

+ ||xm − xn||2 = 4d2 + 2ε2n + 2ε2m.

Since X is convex, ||y− xn+xm

2 || ≥ d. Hence 4d2 + ||xm − xn||2 ≤ 4d2 + 2ε2n + 2ε2m. Thus {xn} is Cauchy, and so
converges to an element ξ of X. This argument, applied with some other minimizing sequence {x̂n} in place of
{xm} and ε̂n

2 in place of ε2m, shows the uniqueness of ξ.

To verify the statement about angles in the “real” version of H, let x ∈ X. Then

d2 ≤ ||y − x||2 = ||y − ξ||2 + 2Re 〈y − ξ, ξ − x〉 + ||ξ − x||2.

Since d = ||y − ξ||,

0 ≤ 2Re 〈y − ξ, ξ − x〉 + ||ξ − x||2, or Re 〈y − ξ, x− ξ〉 ≤ 1
2
||ξ − x||2.

For 0 < r < 1, let x∗ := x + r(ξ − x) ∈ X, so Re 〈y − ξ, x∗ − ξ〉 ≤ 1
2 ||ξ − x∗||2. Since x∗ − x = r(x− ξ), we have

Re 〈y − ξ, ξ − x〉 ≤ r
2 ||ξ − x||2. We now let r → 0.

Remark The argument just completed really took place in the three-dimensional real vector space spanned by x, y
and ξ, using the given inner product.

Corollary: If X is a closed subspace of H, then y − ξ ⊥ X. If ξ′ ∈ X and y − ξ′ ⊥ X, then ξ′ = ξ.

Proof: Because X is a subspace, we also have x∗ := x− r(x−x) ∈ X, so Re 〈y− ξ, x− ξ〉 ≥ 0 as well. The same
is true when r is replaced by ir, or by −ir. This yields Im 〈y − x, x− x〉 = 0, so that y − ξ ⊥ X.

If ξ′ ∈ X and y − ξ′ ⊥ X, then

d2 = ||y − ξ||2 = ||y − ξ′ + ξ′ − ξ||2 = ||y − ξ′||2 + ||ξ′ − ξ||2 ≥ d2 + ||ξ′ − ξ||2,

and this implies that ξ′ = ξ.

Definition of orthogonal complement and orthogonal projection

If X is a closed subspace of H, set X⊥ = {y ∈ H : 〈y, x〉 = 0 for all x ∈ X}. Then X⊥ is a closed
subspace (routine to show it), and X⊥ ∩X = 0. X⊥ is called the orthogonal complement of X. For u ∈ H, let
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P (u)(= PX(u)) denote the element of X closest to u. Recall that it is unique, and is the only element x of X
such that u− x ⊥ X.

Theorem: P (u) is a linear map.

Proof: Suppose that a, b are scalars, and that u, v are elements of H. Then

〈au + bv − (aP (u) + bP (v)), x〉 = 〈au− aP (u), x〉 + 〈bv − bP (v), x〉 = a〈u− P (u), x〉 + b〈v − P (v), x〉 = 0

for all x ∈ X. Hence, P (au + bv) = aP (u) + bP (v).

Now we can express u = PXu+(u−PXu) as the sum of terms in X and in X⊥. This implies too that I−PX = PX⊥ .
These are called the orthogonal projections onto X and X⊥, respectively. It is routine to show that they are
projections. Orthogonality shows that ||u||2 = ||PXu||2 + ||u − PXu||2 ≥ ||PXu||2, so PX is continuous, and has
(routine) operator norm 1. The formula I − PX = PX⊥ leads easily to a proof of the relation (X⊥)⊥ = X. All
this can be applied to deduce such things as: Ths span of a subset S of H is dense in H if and only if y ⊥ S
implies y = 0.

Existence and properties of an orthonormal basis

A set S in an inner product space is orthogonal if v ⊥ w whenever v and w are two different elements of S. If
every element of an orthogonal set S has norm 1, we say S is orthonormal. We want to know that, in Hilbert
spaces, orthonormal sets exist with the useful propeerty that every element x of the Hilbert space can be “expanded”
as an infinite series of the form x =

∑
v∈S〈x, v〉v. The meaning of such a series has to be clarified, and we also want

the formula ||x||2 =
∑

v∈S |〈x, v〉|2 to be true (and properly explained).

Theorem: Every non-trivial inner product space has a maximal orthonormal set.

Proof: This argument uses one of the forms of the Axiom of Choice (called “The Maximal Principle” in [1, p. 33]).
The collection of (non-empty) orthonormal subsets of an inner product space is non-empty, since for each non-zero
v ∈ V, {v/||v||} is a non-empty orthonormal set. If a collection of orthonormal sets is linearly ordered by inclusion,
it is routine to show that the union of them all is an orthonormal set. Hence, there is a maximal such set.

Corollary: Every orthonormal subset of a Hilbert space is contained in some maximal orthonormal set.

Theorem: The span of a maximal orthonormal set in a Hilbert space is dense.

Proof: Suppose not. Let X denote the closure of the span of the maximal orthonormal set under discussion. Let
y ∈ H \X. Then 0 �= v = y − PXy ∈ X⊥, so the union of the given maximal orthonormal set and {v/||v||} is a
larger orthonormal set, contradicting maximality.

Definition: A maximal orthonormal set in a Hilbert space is called an orthonormal basis.

An orthonormal basis is not a basis in the usual sense, unless it is finite. This is a consequence of completeness, and
will be shown later, in Deferred proofs, Item 2. One feature of orthonormal sets is:

Theorem (Bessel’s inequality): If O is an orthonormal set in an inner product space V, then for each v ∈ V,
at most countably many of the numbers 〈v, y〉 can be non-zero, and

∑
y∈O |〈v, y〉|2 ≤ ||v||2.

Proof: Let F be a finite subset of O. Let w =
∑

y∈F 〈v, y〉y. Then, by orthonormality,

||w||2 =
∥∥∥ ∑

y∈F
〈v, y〉y

∥∥∥2

=
∑
y∈F

|〈v, y〉|2,

and y ⊥ v − w for each y ∈ F . Thus, w ⊥ v − w, so ||v||2 = ||w||2 + ||v − w||2 ≥ ||w||2, as claimed, at least for
finite orthonormal sets.

It follows that there are only finitely many y ∈ O such that |〈v, y〉| ≥ 1, |〈v, y〉| ≥ 1/2, |〈v, y〉| ≥ 1/3, and so on.
This proves the countability assertion. We define

∑
y∈O |〈v, y〉|2 as follows:∑

y∈O
|〈v, y〉|2 := sup

y∈F⊆O, F finite

∑
y∈F

|〈v, y〉|2.
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Each sum on the right is bounded by ||v||2, so Bessel’s Inequality holds.

a continuation valid in Hilbert spaces:

Now ||v||2 =
∑

y∈F |〈v, y〉|2 + ||v − w||2, where w =
∑

y∈F 〈v, y〉y. Since ||v − w||2 = inf
ŵ∈ spanF

||v − ŵ||2, we can

show that
||v||2 =

∑
y∈O

|〈v, y〉|2 + inf
w∈ spanO

||v − w||2 =
∑
y∈O

|〈v, y〉|2 + d2,

where d2 denotes the square of the distance from v to spanO. Let us prove this (in Deferred proofs, Item 3)
after we look at some applications. If O is an orthonormal basis then d2 = 0, and so, in a Hilbert space,

Theorem (Parseval’s relation): If O is an orthonormal basis in a Hilbert space, then for all x ∈ H,

||x||2 =
∑
y∈O

|〈x, y〉|2.

Polarization, in H and in C gives Plancherel’s Theorem:

Theorem (Plancherel’s Theorem): Suppose O is an orthonormal basis in a Hilbert space H. Then, for all
x ∈ H, y ∈ H,

〈x, y〉 =
∑
u∈O

〈x, u〉〈u, y〉.

An application of Parseval’s relation: if 〈x, y〉 = 〈x′, y〉 for all y in an orthonormal basis of a Hilbert space, then
x = x′ (we replace x by x− x′ in Parseval’s relation).

Just as these numerical series converge, so do vector-valued series of the form
∑

y∈O cyy, where O is an orthonormal
set in a Hilbert space, whenever

∑
y∈O |cyy|2 < ∞. Proof that the “sum” is independent of the order of the terms

will be part of Deferred proofs (Item 4). Proof that a specific (as to order) such “sum” exists is part of the proof
of the next Theorem, in which we change our point of view, starting there with a set of coefficients as “givens.”

Theorem of Fischer and Riesz: If O is an orthonormal set in a Hilbert space H, and for each y ∈ O, cy is
a given complex number such that

∑
y∈O |cy|2 < ∞, then there exists x ∈ H such that 〈x, y〉 = cy for all y ∈ O.

Proof: Since
∑

y∈O |cy|2 < ∞, the set of y such that cy is not zero is countable. They can be enumerated
in some way: y1, y2, . . . Consider xn :=

∑n
k=1 ckyk, where ck denotes the cumbersome cyk

. If m < n, then
||xn − xm||2 =

∑n
k=m+1 |ck|2, so {xn} is Cauchy, hence has a limit x in H . By continuity of the inner product,

for k fixed 〈x, yk〉 = limn→∞〈xn, yk〉 = ck. If y ∈ O is not one of the yk, then 〈xn, y〉 = 0 for every n, so
〈x, y〉 = 0 = cy.

Hilbert space isomorphism

Here we take up the question of when two Hilbert spaces are isommorphic in a way that preserves “Hilbert space
structure.” The answer depends on the cardinal number of an orthonormal basis.

Theorem: Two orthonormal bases in a Hilbert space have the same cardinal number.

Proof: Let U , V be orthonormal bases for a Hilbert space H. If one is finite so is the other and they have the
same number of elements, by the replacement theorem from linear algebra. Otherwise, without loss of generality
we may assume card V ≤ card U . For each v ∈ V, let U(v) = {u ∈ U : 〈u, v〉 �= 0}. Each U(v) is nonempty,
countable, and

⋃
v∈V U(v) = U . In particular, if V is countable, so is U . If not, the cardinal number of the union

is at most card V. Hence card V ≥ card U , so card V = card U , as desired.

Definition: The common cardinal number of the orthonormal bases of a Hilbert space is called the Hilbert space
dimension of H.

I don’t know how common this term is...
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Two Hilbert spaces are isomorphic as Hilbert spaces if there is a one-to-one correspondence between them that
preserves inner products. It is straightforward to show that such correspondences are linear and continuous. They
are thus “operators,” and these special operators are called unitary operators.

Theorem: Hilbert spaces H1 and H2 are isomorphic as Hilbert spaces if and only if they have the same Hilbert
space dimension.

Proof: Let O1, O2 be orthonormal bases in H1, H2 respectively. If the Hilbert space dimensions are the same, let
λ be a one-to-one correspondence between O1 and O2. Then Ux :=

∑
y1∈O1

〈x, y1〉λ(y1) is a unitary isomorphism.
This is an application of previous theorems. Now suppose U : H1 → H2 is a unitary isomorphism. Then U(O1) is
an orthonormal set in H2. Since

spanU(O1) = U(spanO1) = U
(
spanO1

)
= H2,

U(O1) is maximal, so dim H2 = card U(O1) = dim H1.

Theorem: A Hilbert space H is separable if and only if it has a countable orthonormal basis.

Proof: If H has a countable orthonormal basis then H � +2, which is separable.

If H is separable and U is an orthonormal basis of H then there is a countable dense subset {yk}∞k=1 of H. For
each element u ∈ U there is some positive integer k(u) such that ‖u− yk(u)‖ < 1/2. If U were uncountable there
would exist u1 �= u2 in U such that k(u1) = k(u2) =: K. But then 2 = ‖u1−u2‖2 ≤ (‖u1−yK‖+‖yK −u2‖)2 < 1.
This contradiction shows that U is countable.

Deferred proofs

Item 1 The following appeared in the proof that E(V ) is dense in V ∗.

We assumed that ||v∗||∗ = 1. We want to show that there exists a sequence {vn} of elements of V, with ||vn|| = 1
for each n, such that 0 ≤ v∗(vn) → 1, as n → ∞, with all v∗(vn) ≤ 1.

||v∗||∗ = 1 means that there exist vectors ṽn �= 0 such that ‖ṽn‖ ≤ 1 and |v∗(ṽn)| → 1. We set vn := eiθn ṽn,
where the numbers θn will be chosen in a moment, we have, since ‖ṽn‖ ≤ 1, that

1 ≥ |v∗(vn)| =
∣∣∣∣v∗( ṽn

‖ṽn‖
)
∣∣∣∣ =

1
‖ṽn‖

|v∗(ṽn)| ≥ |v∗(ṽn)| → 1,

so |v∗(vn)| → 1, by the Squeeze Principle. We now choose θn so that v∗(eiθn ṽn) = eiθnv∗(ṽn) = |v∗(ṽn)|. When
we divide by ‖ṽn‖ we get what we wanted: v∗(vn) = |v∗(vn)| → 1.

Item 2 An orthonormal basis is not a basis in the usual sense, unless it is finite. This is a consequence of completeness.

Suppose not, namely, we have an infinite orthonormal basis that is a basis in the usual sense.

We may select a denumerable set {yn}∞n=1 of members of the orthonormal basis. Then the following series (i.e.
sequence of partial sums) converges in the Hilbert space to a non-zero vector x:

∞∑
n=1

yn

n2
.

Proof that this is so is left to the reader. It involves straightforward checking that the definition of “Cauchy sequence”
is satisfied by the partial sums. The limiting vector x is non-zero because 〈x, y1〉 = 1.

Since our o.n. basis is a linear-algebra basis, we can also write x =
∑

y∈F cy y, where F is a finite subset of our
o.n. basis. Therefore

0 =
∞∑

n=1

yn

n2
−

∑
y∈F

cy y.
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But F is finite, so for all k sufficiently large we have to have

0 =

〈 ∞∑
n=1

yn

n2
−

∑
y∈F

cy y, yk

〉
=

〈 ∞∑
n=1

yn

n2
, yk

〉
= 1/k2,

which is a contradiction.

Remark Completeness was really used in the last argument! Here is an example of a normed space with a countable
basis in the linear-algebra sense. Let V be the collection of all polynomials in d real variables, with real coefficients.
This means that a typical element of V has the form

P (x) =
∑
α≥0

pαx
α,

where only finitely many of the coefficients pα are non-zero, the quantities α are “multi-indices” belonging to N
d,

the collection of all d-tuples of non-negative integers, and xα := xα1
1 · · ·xαd

d .

For example, P (x) := |x|2 =
∑d

k=1 x
2ek .

We define the norm of P by ‖P‖2 :=
∑

α≥0 p
2
α. It can be shown (using polarization) that this norm is given by an

inner product. Now the set {xα : α ∈ Nd} is a basis for V in the sense of linear algebra. Of course, V is not a
Hilbert space.

Item 3 We are to show that for all v ∈ H (and we will assume v �= 0)

||v||2 =
∑
y∈O

|〈v, y〉|2 + inf
w∈ spanO

||v − w||2 =
∑
y∈O

|〈v, y〉|2 + d2,

where d2 denotes the square of the distance from v to spanO.

First, we know that the projection operator Po for spanO is defined and continuous. We are given some v ∈ H.
Thus we know that

d2 = inf
w∈ spanO

||v − w||2 = ||v − Pov||2.

For the given v, we let NZ := {y ∈ O : 〈v, y〉 �= 0}. Then NZ is countable, so we can enumerate the elements in
NZ, putting them into a sequence {yk}∞k=1. Let us define vo :=

∑∞
k=1〈v, yk〉yk. To show that this definition makes

sense, we set vn :=
∑n

k=1〈v, yk〉yk and proceed as we did in the proof of the Theorem of Fischer and Riesz, to show
that the sequence {vn} is Cauchy. We then set vo equal to the limit. In particular, we have ‖vn − vo‖ → 0. Now
suppose that y ∈ O. Then

〈vo, y〉 = lim
n→∞

〈vn, y〉 = lim
n→∞

n∑
k=1

〈〈v, yk〉yk, y〉 =
{
〈v, y〉, if y ∈ NZ
0, if y /∈ NZ.

Therefore for all y ∈ O, we have 〈v − vo, y〉 = 0. The same is true when y is replaced by any element of spanO.
Now let us suppose that w ∈ spanO. Then there is a sequence {wk} of elements of spanO such that wk → w.
This gives us

〈v − vo, w〉 = lim
k→∞

〈v − vo, wk〉 = 0.

That is, v − vo ⊥ w for all w ∈ spanO. By the uniqueness of the projection, vo = Pov. Therefore

‖v‖2 = ‖v − vo‖2 + ‖vo‖2 = ‖v − Pov‖2 +
∞∑

k=1

|〈v, yk〉|2 = d2 +
∑
y∈O

|〈v, y〉|2,

as desired.
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Item 4 Proof that the “sum”
∑

y∈O cyy, where O is an orthonormal set in a Hilbert space, and
∑

y∈O |cyy|2 < ∞,
is independent of the order of the terms.

As in Item 3 and as in the proof of the Theorem of Fischer and Riesz, for every enumeration of the non-zero
coefficients cy, we have a well-defined element of H given by a Cauchy sequence. Let us choose one enumeration
as the starting one. Then every other enumeration is a rearrangement of the chosen one. Let us distinguish them
by the name of the mapping π : Z+ → Z

+, one-to-one and onto, that accomplishes the rearrangement. Thus we let
ck denote the coefficients of the starting element, xo :=

∑∞
k=1 ck yk, and we let xπ :=

∑∞
n=1 cπn yπn. We want to

show that xπ = xo no matter which π is used. We can do this by showing that, for all ε > 0, ‖xπ − xo‖ < ε. We
may choose K so large that ∑

k>K

|ck|2 < ε2/9.

We can then be sure that there is N so large that for each k ≤ K, it is true that k ∈ {π1, . . . πN}. Then

xo − xπ =
K∑

k=1

ck yk + Ro,K −
N∑

n=1

cπn yπn −Rπ,N ,

where the terms with R denote the “tails” of the corresponding series. All the terms in the very first sum are
cancelled by terms in the first “negated” sum. We can thus write

xo − xπ = Ro,K −
N∑

n=1

[πn > K]cπn yπn −Rπ,N .

Thus ‖xo − xπ‖ ≤ ‖Ro,K‖ + ‖
∑N

n=1[πn > K]cπn yπn‖ + ‖Rπ,N‖. By construction, ‖Ro,K‖ < ε/3. Since we have
made no use at all of rearrangement invariance, we can use Parseval’s relation on the Hilbert space spanO. Thus

∥∥∥∥∥
N∑

n=1

[πn > K]cπn yπn

∥∥∥∥∥
2

=
N∑

n=1

[πn > K]|cπn yπn|2 ≤
∑
k>K

|ck|2 < ε2/9

and (similarly) ‖Rπ,N‖2 < ε2/9. Thus ‖xπ − xo‖ < ε. It follows that xπ − xo, which is what we had to show.
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