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We revisit the nature of the quasi-one-dimensional Ising model on the basis of Wang-Landau

simulation. We introduce the density of states in the two dimensional energy space corre-

sponding to the intra- and inter-chain directions. We then analyze the inter-chain coupling

dependence of the specific heat of the anistropic 2D Ising model in the context of the density

of states, and further discuss the size dependences of the peak temperature. We also discuss

the feature of the phase transition for 3D case.
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1. Introduction

Effect of the inter-chain coupling in the quasi-one-
dimensional(Q1D) spin systems has been attracting
much attention. In general, the 1D spin system shows
no phase transition at a finite temperature. In the Q1D
system, however, the weak inter-chain coupling induces a
finite temperature phase transition. In fact, the 3D long
range ordering for the Q1D system has been a long stand-
ing issue.1 The recent experimental developments enable
precise investigation of 3D ordering in a wide variety
of the Q1D systems, such as coupled S = 1/2 Heisen-
berg chains.2 Very recently, moreover, it was shown that
the Q1D Ising-like XXZ antiferromagnet BaCu2V2O8 ex-
hibits the exotic incommensurate spin order in the mag-
netic field,3, 4 for which the Ising anisotropy plays an es-
sential role.

Motivated the experimental results above, we reexam-
ine the phase transition of the Q1D Ising system:

H = −J
∑

<i,j>q

SiSj − J ′
∑

<i,j>⊥

SiSj (1)

where S ∈ ±1 is the Ising spin variable, < i, j >q indi-
cates spin pairs along the chain direction, and < i, j >⊥

means the pairs perpendicular to the chain. Thus J and
J ′ respectively represent the coupling constants for the
intra-chain and inter-chain interactions. Of course the
universality of the Ising transition due to the Z2 symme-
try breaking itself is independent of the inter-chain in-
teraction. However, the quantitative details of the inter-
chain dependence of the phase transition still involves
an interesting problem,5–8 which is essential to resolve
experimental results. Recently the universal reduction of
the effective coordination number is also reported for the
Q1D Ising model.9 The aim of this paper is to understand
the role of the inter-chain coupling in the context of the
energy density of states(DOS) based on Wang-Landau
simulation11, 12 and then we discuss the size dependence
of the transition temperature of the Q1D Ising system.

For the quantitative analysis of such a phase transi-
tion of the Q1D system, we should recall that the energy
scale of the inter-chain coupling is much smaller than
that of intra-chain coupling and thus the transition tem-
perature becomes very low; the conventional metropolis

Monte Carlo simulation based on local spin flip often
fails relaxation to the proper equilibrium state. Recently
an efficient cluster algorithm is proposed for the Q1D
system.10 In this paper, however, we employ the Wang-
Landau simulation, which enable for us to estimate the
DOS through the random walk in the energy space and
to avoid trapping to a metastable state.11, 12 This is be-
cause, on the basis of the DOS, we can resolve the con-
tribution from the typical configurations at low temper-
ature, which provides an essential view point of the low
temperature behavior of the Q1D system.

This paper is organized as follows. In the next section,
we briefly explain details of the Wang-Landau simula-
tion for the Q1D system. In particular we introduce DOS
of two dimensional energy space for the intra-chain and
inter-chain directions. In §3, we discuss the phase transi-
tion for the 2D case in the context of DOS and then ana-
lyze the inter-chain interaction dependence of the phase
transition. For 3D case, we also discuss the nature of the
phase transition. In §4 conclusion is summarized.

2. Simulation details

The Wang-Landau simulation is based on the random
walk in the energy space without trapping metastable
state and enables for us to estimate DOS. For the Q1D
system, however, the energy scale of the inter-chain cou-
pling is fairy different from the intra-chain coupling. For
the purpose of treating such a highly anisotropic system
more efficiently, we further introduce the two dimensional
energy space defined by

eq ≡
∑

<i,j>q

SiSj , and e⊥ ≡
∑

<i,j>⊥

SiSj . (2)

where eq and e⊥ mean (dimensionless) unbiased energy
for the intra-chain direction and inter-chain direction.
Then the total energy is given by E = −Jeq −J ′e⊥. The
Wang-Landau simulation itself is performed for this two

dimensional space of the spatially isotropic Ising model

and then obtain DOS g(eq, e⊥) in (eq, e⊥) space. The
expectation value for various J ′ can be obtained through
reweighting.

The detailed conditions for the Wang-Landau simula-
tion was given as the followings. At the start of a simu-
lation, DOS is unknown, so it is simply set g(eq, e⊥) =

http://arXiv.org/abs/0901.0637v1
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Fig. 1. Two dimensional DOS of the 2D Ising model of the system
size L=10

1 for all possible (eq, e⊥) . Then we begin a random
walk in (eq, e⊥) space with a probability proportional to
1/g(eq, e⊥) . The transition probability from (e

′

q
, e

′

⊥
) to

(e
′′

q
, e

′′

⊥
) is

Prob((e
′

q
, e

′

⊥) → (e
′′

q
, e

′′

⊥)) = min

[

g(e
′

q
, e

′

⊥
)

g(e
′′

q
, e

′′

⊥
)
, 1

]

, (3)

and g(eq, e⊥) is iteratively updated by a modification fac-
tor f as

ln g(eq, e⊥) → ln g(eq, e⊥) + ln f, (4)

when the state is visited. At the same time, the his-
togram is updated like H(eq, e⊥) → H(eq, e⊥) + 1.
When the histogram becomes ”flat”, the modification
factor is reduced ln f → (ln f)/2 and we reset the his-
togram to zero. Then we perform random walk again. To
check the flatness of the histogram, we use the criterion
(Hmax −Hmin)/(Hmax + Hmin) ≤ 0.1 ∼ 0.3, where Hmax

and Hmin are the maximum and minimum histogram
counts respectively.13 We end the simulation when the
modification factor is smaller than a predefined value (we
set ln ffinal = 10−6). The initial value of the modification
factor is ln f0 = 1. The update of g(eq, e⊥) and H(eq, e⊥)
is performed every N spin flip, where N is the number
of the spins in the system.14

3. Results

3.1 2D Ising model

Let us first consider the 2D Ising model on the L × L
square lattice, the exact solution of which is well known15

and very useful to verify the simulation results. The
Hamiltonian of the 2D Ising model is written as

H = −J
L

∑

i,j

Si,jSi+1,j − J ′

L
∑

i,j

Si,jSi,j+1 (5)

where i and j are indexes of the intra- and inter-chain
directions respectively. The unbiased energies for the
intra- and inter-chain directions are explicitly given by
eq =

∑L
i,j Si,jSi+1,j and e⊥ =

∑L
i,j Si,jSi,j+1. Since

g(eq, e⊥) = g(−eq, e⊥) = g(eq,−e⊥) = g(−eq,−e⊥) is
hold, it is sufficient to perform simulation in the region
eq ≧ 0, e⊥ ≧ 0. The system sizes are L = 10, 20, 30, 40,
and 50. The max histogram count per stage is Hmax =

Fig. 2. Specific heat for J ′/J = 0.025. Inset: magnification of the
low temperature peak.

Fig. 3. Two dimensional DOS of the 2D Ising model of L = 10
near the groundstate(88 ≦ eq ≦ 100, 0 ≦ e⊥ ≦ 100). The figures
in the right panel indicate the configurations for (a) the ground
state, (b) single spin flipped state, and (c) chain flipped state

3024, and the max Monte Carlo steps per stage is
1.7 × 108 for L = 10 system. Then the total stage num-
ber is 21, and the total CPU time is 2 minutes with a
2.66GHz Core2Duo processor. For L = 30, Hmax = 7981,
the max Monte Carlo steps per stage is 3.3 × 1011. The
total stage number is also 21 and the total CPU time is
55 hours. In Fig .1, we show the typical result of DOS
g(eq, e⊥) for L = 10.

On the basis of DOS g(eq, e⊥), we calculate the specific
heat; Figure 2 shows the size dependence of the specific
heat for J ′/J = 0.025. According to the exact solution
of the 2D Ising model, the transition temperature for
J ′/J = 0.025 is given by Tc/J = 0.6221 · · · . The result
clearly shows that the peak of C corresponding to the
critical divergence gradually develops for L = 50 in the
vicinity of Tc. In addition to the critical point, we can
also see the small peak at the low temperature region
T/J ∼ 0.2. As L increases, the peak temperature of this
small peak shifts to the higher temperature side and the
peak hight itself reduces rapidly.

In order to see the origin of the low temperature
peak, we show the DOS g(eq, e⊥) in low energy region
in Fig. 3. Note that the scale of eq is much smaller
than e⊥; Since J ′ ≪ J for the Q1D system, the range
of the horizontal axis in Fig.3 is adjusted by the ra-
tio: eq/e⊥ ∼ J ′/J = 1/40. The ground state energy is
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Fig. 4. Canonical distribution function for J ′/J = 0.025 with
L = 10. The solid squares indicate the distribution function for
T/J = 0.23, which corresponds to the low temperature peak
of the specific heat. The open circles indicate that for the high
temperature peak (T/J = 0.91). Each distribution function is
normalized so that the maximum value corresponds to unity.

Eg = −(J + J ′)L×L and its configuration is illustrated
as Fig. 3(a), which is located at (eq, e⊥) = (100, 100).
As a low energy excitation, we usually consider the sin-
gle spin flipped sate given by Fig. 3(b), whose energy is
E(b) = Eg +4(J+J ′). For Q1D system, however, another
important excitation we should discuss is “chain flipped
excitation”, a typical example of which is depicted in
Fig. 3(c), and its energy is given by E(c) = Eg + 4J ′L.
The DOS of the chain flipped configuration is located at
e⊥ = 60, 20 · · · on the edge of eq = 100. In Fig. 1, we can
also confirm that the DOS of these configurations deviate
at the edges g(eq, e⊥) plane. Moreover, note that “gap”
in DOS at every e⊥ = 20 in Fig. 3 is also originating
from the chain structure of the lattice. Since L < J/J ′,
we can see that the chain flipped excitation has a lower
energy than the single spin flipped state and then it be-
comes the dominant excitation at a low temperature. As
L increases beyond J/J ′, the energy of the chain flipped
excitations shifts to the higher energy region, so that the
contribution from such configurations reduces gradually.
Thus the low temperature peak of the specific heat in
Fig. 2 can be well described by the chain flipped excita-
tions, which is peculiar to the Q1D system.

In order to see the weight of each energy state in the
equilibrium, we calculate the canonical distribution func-
tion

P (eq, e⊥) = g(eq, e⊥) exp [(Jeq + J ′e⊥)/T ] (6)

for J ′/J = 0.025, which is shown in Fig.4 . Note that
T/J = 0.23 is the temperature of the low temperature
peak of the specific heat and T/J = 0.91 corresponds to
the high temperature peak of L = 10. In the figure, the
dominant contribution at T/J = 0.23 clearly comes from
the states at the edge of e⊥ = 100, which implies that the
chain flipped state is essential for the small peak; For the
relatively small system size(L < J/J ′), the energy of the
excitations actually satisfies 4(J + J ′) > 4J ′L. On the
other hand, the P (eq, e⊥) for T/J = 0.91 shows Gaussian
like shape around (eq, e⊥) ∼ (90, 20), where the chain
flipped state gives only minor contribution in DOS.

As mentioned above, the dominant contribution to the

Fig. 5. The decomposed specific heats for J ′/J = 0.025. (a) the
energy fluctuation in the chain direction C⊥, and the cross term
of the chain and inter-chain directions Ccross.

low temperature peak(T/J = 0.229) is the chain flipped
states near the ground state. This implies that the polar-
ization of the spins in the same chain is basically frozen
and the aligned spins of the chain can behave as a single
spin, which forms an effective 1D spin chain through the
weak inter-chain coupling LJ ′ in the inter-chain direc-
tion. Thus we can see that the fluctuation in the inter-
chain direction is dominant for the low temperature peak,
while at the high temperature peak, the fluctuations in
both the intra- and inter-chain directions give the sig-
nificant contributions. Of course, the low temperature
peak is basically a finite size effect and it vanishes in the
bulk limit. However the region where finite size effect
can clearly appear is up to L ∼ J/J ′, which is a certain
large number for the Q1D system. This implies that the
true critical divergence of the specific heat is eventually
masked by the analytic contribution originating from the
low temperature peak, up to L ∼ J/J ′. Thus the finite
size scaling analysis based on the data L < J/J ′ should
be performed carefully.17

In order to extract the proper critical behavior for
L < J/J ′, we examine the decomposition of the specific
heat into three parts: the fluctuation along the chain Cq,
the fluctuation in the inter-chain directions C⊥ and cross
term of the intra- and inter-chain directions Ccross.

C = (〈E〉2 − 〈E2〉)/NT 2

= Cq + C⊥ + Ccross, (7)

Cq = J2(〈e2
q
〉 − 〈eq〉

2)/NT 2, (8)

C⊥ = J ′2(〈e2
⊥
〉 − 〈e⊥〉

2)/NT 2, (9)

Ccross = 2JJ ′ (〈eqe⊥〉 − 〈eq〉 〈e⊥〉) /NT 2. (10)

In Fig. 5, we show C⊥ and Ccross for J ′/J = 0.025(Cq

is not presented here). In the figure, C⊥ shows the shot-
key like peak for small system sizes(L < 20). As L in-
creases, the peak position shifts to the high temperature
side and the peak hight itself rapidly reduces. This be-
havior is consistent with that the inter-chain fluctuation
is the dominant contribution for L < J/J ′. Indeed, we
have verified that the low temperature peak of L = 10
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Fig. 6. The size dependences of the peak temperatures for C, Cq ,
C⊥ ,and Ccross: (a) J ′/J = 0.1 and (b) J ′/J = 0.025. The solid
circles at the vertical axis indicate the exact transition temper-
atures

can be well fitted by the specific heat of the 1D Ising
chain of the effective coupling LJ ′ with L = 10. In ad-
dition to the low temperature peak, we can also see that
a broad peak emerges around T/J ∼ 0.6 as L increases;
this peak corresponds to the critical divergence in the
bulk limit. Thus the crossover of C⊥ from the effective
1D Ising model behavior to the 2D Ising model clearly
appears around L ∼ J/J ′ On the other hand, the cross
term Ccross shows the divergence behavior only near the
correct critical temperature Tc = 0.622 · · · . This suggests
that Ccross may capture the critical behavior more effec-
tively than the total specific heat C.

We further analyze size dependence of the peak tem-
peratures of decomposed specific heats C, Cq, C⊥ and
Ccross. Let us write the peak temperature for the system
size L as Tc(L) Then, in the critical regime, the peak
temperature is expected to follow the size scaling,

Tc(L) − Tc = AL−1/ν (11)

where A is a nonuniversal constant. First we discuss the
result for J ′/J = 0.1, which are illustrated in Fig 6(a).
In the figure we can see that C, Cq and C⊥ gradually
approach Tc, for which the scaling behavior is not still
observed. However the cross term of the specific heat
Ccross well satisfies (11) within relatively small system
size(1/L < 0.06), suggesting that Ccross is rather effec-
tive to capture the critical behavior than C. Another
interesting feature for the Q1D system is that Tc(L) ap-
proaches Tc from the under side of Tc, namely A > 0, for
sufficiently large L. This behavior is contrasted to A < 0
for the isotropic case where the peak temperatures of the
all Cs monotonously approach Tc from T > Tc.

The peak temperatures for J ′/J = 0.025, which
are shown in Fig.6(b), demonstrate a more typical
size dependences of the Q1D system; The peak of Cq

monotonously decreases from the upper side of Tc, while
C⊥ clearly exhibits the crossover behavior. For small
L(< 0.04), the peak position of C⊥ originates from
the chain flip configuration. However we can see that it

rapidly crossovers to that of the critical behavior around
1/L ∼ 0.04. On the other hand, Ccross seems to ap-
proach Tc smoothly, suggesting that Ccross is more suit-
able for finite size analysis of the critical behavior. For
J ′/J = 0.025, however, we should note that system size
may be still insufficient for the precise verification of the
critical exponent ν.

3.2 3D Ising model

Let us discuss the 3D Ising model in the same line of
argument as the 2D case. The Hamiltonian is written as

H = −J
L

∑

i,j,k

Si,j,kSi,j,k+1

− J ′

L
∑

i,j,k

[Si,j,kSi+1,j,k + Si,j,kSi,j+1,k] (12)

where k is assumed to run in the chain direction. In ac-
tual computations, the max histogram count per stage is
Hmax = 6024, and the max Monte Carlo steps per stage
is 6.5 × 109 for L = 6 system. The total stage number is
21 and the total CPU time is 50 minutes. For L = 10,
Hmax = 6748, the max Monte Carlo steps per stage is
7.5×1011, and the total CPU time is about 6 days. Here
we note that, for 3D Ising model, Wang-Landau simu-
lation in the 2D energy space (2) sometimes does not
achieve well convergence near the edges of the 2D energy
space. For such a case, we have supplementary performed
Wang-Landau simulation for the conventional 1D energy
space.

Figure 7(a) shows the size dependence of the specific
heat C for J ′/J = 0.025 up to L = 18. In the figure,
we can see the broad maximum of C of L = 6 around
T/J ∼ 1.0. At the same time, there emerges the small
peak in the low temperature region, reflecting the 1D na-
ture of the system. As L increases, this small peak rapidly
merges into the broad peak coming down from the higher
temperature side. We can then see that the merged peak
rapidly develops into the sharp peak associated with the
critical divergence at T/J ∼ 0.8.

We next resolve the peak structure of the total specific
heat by Cq, C⊥ and Ccross. Fig. 7(b) illustrates Cq, which
exhibits the broad peak for small system size. Since J ≫
J ′, this broad peak can be attributed to the fluctuation
of spins in the chain governed by the energy scale J . As L
increases, the peak temperature shifts down toward T ∼
0.8 and the peak hight itself increases in accordance with
the criticality. On the other hand, C⊥ in Fig. 7(c) shows
a clear finite size peak originating from the inter-chain
fluctuation of the energy scale LJ ′. As L increases, the
peak temperature gradually increases from T/J ∼ 0.4
toward 0.8. Then, an interesting point on C⊥ is that the
shape of the peak is almost unchanged during shifting,
in contrast to the 2D case where the peak considerably
reduces its shape. Here, let us recall that, in sufficiently
low temperature, the effective spins frozen in the chain
direction form 2D network. Thus an important difference
between 2D and 3D cases is that, for 3D, the effective 2D
Ising model in the small J ′ limit can involve the quasi-
critical divergence, while for 2D, the specific heat of the
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Fig. 7. C, Cq , C⊥, and Ccross for the 3D Ising model of J ′/J =
0.025

effective 1D Ising model does not show such divergence
since there is no phase transition in the 1D Ising model.
In Fig. 7(d), we finally present Ccross, the peak of which
develops near Tc and is smoothly connected to the critical
divergence.

In Fig. 8, we summarize the above size dependences of
the peak temperatures for the specific heats. In the fig-
ure, the horizontal axis indicates the scaled system size
L−1/ν , where we have used ν = 0.6301.16 We can see
that the round peak of Cq comes down from the higher
temperature side, but it still does not achieve the scaling
region. On the other hand, we can see that C⊥ and Ccross

are well fitted by linear functions, which are shown as the
solid and broken lines in Fig.8. The straightforward ex-
trapolation yields Tc ≃ 0.85, which is consistent with
a precise estimation Tc = 0.83 based on the simulation
up to the size 10 × 10 × 100(the result is not presented
here). The similar analysis for the susceptibility was also
reported in Ref.,8 where the peak temperature of the
intra-chain spin fluctuation behaves similarly to C⊥. The
present result is consistent with the this previous anal-
ysis of the susceptibility. As can be seen Fig. 7(a), the
divergences of Ccross and C⊥ massively contribute to the
critical divergence of the total specific heat C within the
small system size. This suggests that Ccross can be ex-
pected to be suitable for finite size analysis of the critical
behavior as well, although C exhibits rather complicated

size dependence of the peak structure in the 3D case. .

Fig. 8. The size dependences of the peak temperatures of C, Cq ,
C⊥, and Ccross for the 3D Ising model of J ′/J = 0.025. The
scale of the horizontal axis follows L−1/ν with ν = 0.6301.16

.

4. Summary

We have studied the feature of the Q1D Ising model,
using Wang-Landau simulation. In order to treat the dif-
ference of energy scale for the intra- and inter-chain di-
rections, we have particularly introduced the two dimen-
sional energy space (eq, e⊥) corresponding to the intra-
and inter-chain directions. We further decomposed the
total specific heat C as contributions from intra-chain
fluctuation Cq, inter-chain fluctuation C⊥, and cross term
of the intra- and inter-chain fluctuation Ccross. Then the
finite size effect peculiar to the Q1D system is discussed
on the basis of the two dimensional DOS, and it was
demonstrated that the chain flip configuration plays an
essential role for the low temperature peak of the spe-
cific heat. We have also analyzed the shift exponent of
the peak of the specific heat, and then found that Ccross

can capture the critical behavior more effectively than
the total specific heat C, within a relatively small sys-
tem size. We have also discussed the qualitative differ-
ence between 2D and 3D cases in the low temperature
and small J ′ limit; For 2D, the cross over of C⊥ from
effective 1D chain to 2D model occurs rapidly around
L ∼ J/J ′. While for 3D, the effective 2D Ising model
itself involves the quasi-critical divergence, due to which
C⊥ smoothly crossorvers from the effective 2D model into
the 3D critical behavior. Here, it should be recalled that
the analytic contribution is non negligible for the anal-
ysis of the critical behavior of the specific heat for the
isotropic 3D Ising model.19 As can be seen in Fig. 7,
the complicated behavior of the total specific heat in the
Q1D system might be adiabatically connected to such an
analytic contribution in the isotropic case.

In this paper, we have analyzed the Q1D Ising model
in the context of the two dimensional DOS. The actual
computation cost to obtain the two dimensional DOS in-
creases rapidly, as increasing system size, and then the
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cluster algorithm seems to be more efficient for a simu-
lation of a larger system. However, the present descrip-
tion based on the two dimensional DOS provides the es-
sential insight for qualitative understanding of the low
energy excitations in the Q1D system. In addition, for
the purpose of suppressing the finite size effect peculiar
to the Q1D system, the aspect ratio usually follows the
ratio of the anisotropic correlation length in analyzing
the critical behavior. We can also see that a possible as-
pect ratio of the system is L′/L = (D − 1)J ′/J , where
D is the dimension of the system, L is the length of
a chain and L′ is the size of the inter-chain directions.
This is because the scale of the single spin flip excita-
tion and the chain flipped state can be of the same order
4J + 4(D − 1)J ′ ≃ 4(D − 1)J ′L for J ≫ J ′.
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