
HOMOTOPY THEORY FOR BEGINNERS

JESPER M. MØLLER

Abstract. This note contains comments to Chapter 0 in Allan Hatcher’s book [5].
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1. Notation and some standard spaces and constructions

We will often refer to these standard spaces:
• R is the real line and Rn = R× · · · ×R is euclidian n-space
• C is the field of complex numbers and Cn = C× · · · ×C is the n-dimensional complex vector space
• H is the (skew-)field of quaternions and Hn = H × · · · ×H is the n-dimensional quaternion vector

space
• Sn = {x ∈ Rn+1 | |x| = 1} is the unit n-sphere in Rn+1

• Dn = {x ∈ Rn | |x| ≤ 1} is the unit n-disc in Rn

• I = [0, 1] ⊂ R is the unit interval
• RPn, CPn, HPn is the topological space of 1-dimensional linear subspaces of Rn+1, Cn+1, Hn+1.
• Mg is the orientable and Ng the nonorientable compact surface of genus g

If X is a topological space, Y is a set, and p : X → Y a surjective map, define the quotient topology
on Y to be {V ⊂ Y | p−1V is open in X} (General Topology, 2.74). For instance, if ∼ is a relation on X,
let X/∼ be the set of equivalence classes for the smallest equivalence relation containing the relation ∼. We
give X/∼ the quotient topology for the surjective map p : X → X/∼ taking points in X to their equivalence
classes. If A is a closed subspace of X, the quotient space X/A is the set (X − A) ∪ {A} with the quotient
topology for the map p : X → X/A taking points of X −A to points of X −A and points of A to {A}.

Example 1.1. The projective spaces have the quotient topology for the surjective maps from the unit spheres

(1.2) pn : Sn = S(Rn+1)→ RPn, pn : S2n+1 = S(Cn+1)→ CPn, pn : S4n+3 = S(Hn+1)→ HPn

given by pn(x) = Fx ⊂ Fn+1, x ∈ S(Fn+1), F = R,C,H.

If both X and Y are topological spaces a quotient map is a surjective map p : X → Y if the topology on
Y is the quotient topology, ie if for any V ⊂ Y we have: V is open in Y ⇐⇒ p−1V is open in X (General
Topology, 2.76).

The topological category, Top, is the category where the objects are topological spaces and the mor-
phisms are continuous maps between topological spaces. Two spaces are isomorphic in the topological
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category if they are homeomorphic. Topology is the study of continuity or the study of the topological
category.

In the following, space will mean topological space and map will mean continuous map.

2. Homotopy

Let X and Y be two (topological) spaces and f0, f1 : X → Y two (continuous) maps of X into Y .

Definition 2.1. The maps f0 and f1 are homotopic, f0 ' f1, if there exists a map, a homotopy,
F : X × I → Y such that f0(x) = F (x, 0) and f1(x) = F (x, 1) for all x ∈ X.

Homotopy is an equivalence relation on the set of maps X → Y . We write [X,Y ] for the set of homotopy
classes of maps X → Y . Since homotopy is well-behaved under composition of maps, in the sense that

f0 ' f1 : X → Y and g0 ' g1 : Y → Z =⇒ g0 ◦ f0 ' g1 ◦ f1 : X → Z,

composition of maps induces composition [X,Y ]× [Y,Z] ◦−→ [X,Z] of homotopy classes of maps.

Example 2.2. The identity map S1 → S1 and the map S1 → S1 that takes z ∈ S1 ⊂ C to z2 are not
homotopic (as we shall see). Indeed, none of the maps z → zn, n ∈ Z, are homotopic to each other, so that
the set [S1, S1] is infinite.

Definition 2.3. A map is nullhomotopic if it is homotopic to a constant map.

Definition 2.4. The spaces X and Y are homotopy equivalent, X ' Y , if there are maps, homotopy

equivalences X → Y and Y → X, such that the two compositions, X
f //Y

g //X and Y
g //X

f //Y ,
are homotopic to the respective identity maps.

More explicitly: X and Y are homotopy equivalent if there exist maps f : X → Y , g : Y → X, and homo-
topies H : X × I → X, G : Y × I → Y , such that H(x, 0) = x, H(x, 1) = gf(x) for all x ∈ X and G(y, 0) = y,
G(y, 1) = fg(y). If two spaces are homeomorphic they are also homotopy equivalent.

If X //Yoo are homotopy equivalences, then the induced maps [T,X] // [T, Y ]oo and [X,T ] // [Y, T ]oo

are bijections for any space T .
Homotopy equivalence is an equivalence relation on spaces. A homotopy type is an equivalence class of

homotopy equivalent spaces. Here is the most simple homotopy type.

Definition 2.5. A space is contractible if it is homotopy equivalent to a one-point space, X ' {∗}.

Proposition 2.6. The space X is contractible if and only if one of the following equivalent conditions holds:
• There is a point x0 ∈ X and a homotopy C : X × I → X such that C(x, 0) = x and C(x, 1) = x0 for

all x ∈ X.
• The identity map 1X of X is nullhomotopic

If X is contractible then [T,X] = {∗} and [X,T ] is the set of path-components of T for any space T .

Example 2.7. Rn is contractible, Sn is not contractible. The House with Two Rooms [5, p 4] and the House
with One Room are contractible. The infinite dimensional sphere S∞ is contractible (Example 4.11).

Any map X → Rn is nullhomotopic. The standard inclusion Sn → Sn+1 is nullhomotopic since it factors
through the contractible space Sn+1 − {∗} = Rn+1.

The homotopy category of spaces, hoTop, is the category where the objects are topological spaces.
The morphisms between two spaces X and Y is the set, [X,Y ], of homotopy classes of maps of X into Y .
Composition in this category is composition of homotopy classes of maps. Two spaces are isomorphic in the
homotopy category if they are homotopy equivalent. Topology is the study of the category of topological
spaces. Algebraic topology is the study of the homotopy category of spaces.

2.1. Relative homotopy. Let X be a space and A ⊂ X a subspace. Suppose that f0, f1 : X → Y are maps
that agree on A, ie that f0(a) = f1(a) for all a ∈ A.

Definition 2.8. The maps f0 and f1 are homotopic relative to A, f0 ' f1 rel A, if there exists a homotopy
F : X × I → Y from f0 to f1 such that f0(a) = F (a, t) = f1(a) for all a ∈ A and all t ∈ I.

http://www.math.cornell.edu/~hatcher/AT/AT-house.pdf
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If two maps are homotopic rel A, then they are homotopic.
A pointed space is a pair (X,x0) consisting of space X and one of its points x0 ∈ X. The pointed topo-

logical category, Top∗, is the category where the objects are pointed topological spaces and the morphisms
are base-point preserving maps, based maps. The pointed homotopy category, hoTop∗, is the category where
the objects are pointed topological spaces and the morphisms are based homotopy classes of based maps.

2.2. Retracts and deformation retracts. Let X be a space, A ⊂ X a subspace, and i : A→ X the
inclusion map.

Definition 2.9. A is retract of X if the the identity map of A can be extended to X. A is deformation
retract of X if the identity map of A can be extended to map that is homotopic relative to A to the identity
map of X.

Definition 2.10. A retraction of X onto A is a map r : X → A such that r(a) = a for all a ∈ A. If also
ir ' 1X rel A then r is a deformation retraction of X onto A.

A_�

i

��

A A_�

i

��

A
� � i // X

X

r

>>

X

r

>>

ir'1X rel A

77nnnnnnnnnnnnnn

Proposition 2.11. A is a deformation retract of X if and only if there exists a homotopy R : X × I → X
such that R(x, 0) = x, R(x, 1) ∈ A for all x ∈ X, and R(a, t) = a for all a ∈ A, t ∈ I

Example 2.12. We’ll later prove that S1 is not a retract of D2. S1 is a retract, but not a deformation
retract, of the torus S1 × S1. The wedge of two circles, S1 ∨ S1, is a deformation retract of a punctured
torus. Any Seifert surface deformation retracts to a graph. If X deformation retracts onto one of its points
then X is contractible but there are contractible spaces that do not deformation retract to any of its points.

There are several other good examples of (deformation) retracts in [5]. Any retract A of a Hausdorff space
X is closed as A = {x ∈ X | r(x) = x} is the equalizer of two continuous maps [7, Ex 31.5].

If r : X → A is a deformation retraction of X onto A, then r is a homotopy equivalence with the inclusion
map i : A ↪→ X as homotopy inverse because ri = 1A ' 1A and ir ' 1X rel A. Conversely, if the inclusion
map is a homotopy equivalence, there exists a map r : X → A such that ri ' 1A and ir ' 1X . This is not
quite the same as saying that A is a deformation retract of X since r may not fix the points of A and, even
if it does, the points in A may not be fixed under the homotopy from ri to the identity of A. However,
surprisingly enough, the converse does hold if the pair (X,A) is sufficiently nice (4.6.(2)).

2.3. Constructions on topological spaces. We mention some standard constructions on topological
spaces and maps.

Example 2.13 (Mapping cylinders, mapping cones, and suspensions). Let X be a space. The cylinder on
X is the product

X × I
of X and the unit interval. X = X × {1} is a deformation retract of the cylinder. What is the cylinder on
the n-sphere Sn?

The cone on X

CX =
X × I
X × 1

is obtained by collapsing one end of the cylinder on X. The cone is always contractible. What is the cone
on the n-sphere Sn?

The (unreduced) suspension of X

SX =
X × I

(X × 0, X × 1)
is obtained by collapsing both ends of the cylinder on X. What is the suspension of the n-sphere Sn?
(General Topology, 2.147) The cylinder, cone, and suspension are endofunctors of the topological category.

http://www.win.tue.nl/~vanwijk/seifertview/knot_gallery.html
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Let f : X → Y be a map. The cylinder on f or mapping cylinder of f

Mf =
(X × I)q Y
(x, 0) ∼ f(x)

is obtained by gluing one end of the cylinder on X onto Y by means of the map f . The mapping cylinder
deformation retracts onto its subspace Y . What is the mapping cylinder of z → z2 : S1 → S1?

The mapping cone on f

Cf =
CX q Y

(x, 0) ∼ f(x)
is obtained by gluing the cone on X onto Y by means of the map f . What is the mapping cone of
z → z2 : S1 → S1?

There is a sequence of maps

X
f // Y // Cf // SX

Sf // SY // CSf // SSX // · · ·

where the map Cf → SX is collapse of Y ⊂ Cf .

Example 2.14 (Wedge sum and smash product of pointed spaces). Let (X,x0) and (Y, y0) be pointed spaces.
The wedge sum and the smash product of X and Y are

X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y, X ∧ Y =
X × Y
X ∨ Y

The (reduced) suspension of the pointed space (X,x0) is the smash product

ΣX = X ∧ S1 = X ∧ I/∂I =
X × I

X × ∂I ∪ {x0} × I
of X and a pointed circle (S1, 1) = (I/∂I, ∂I/∂I). (The last equality holds when X is a locally compact
Hausdorff space (General Topology, 2.171).) Suspension is an endo-functor of Top∗. How does the reduced
suspension differ from the unreduced suspension?

What is the smash product X ∧ I? What is the smash product Sm ∧ Sn? (General Topology, 2.171)

Proposition 2.15. Any map factors as an inclusion map followed by a homotopy equivalence.

Proof. For any map f : X → Y there is a commutative diagram using the mapping cylinder

Mf

(x,t)→(x,0)'
��

X
. �

x→(x,1)
>>|||||||| f // Y

where the slanted map is an inclusion map and the vertical map is a homotopy equivalence (even a deformation
retraction). �

Example 2.16 (Adjunction spaces). See (General Topology, 2.85). From the input X ⊃ A ϕ−→ Y consisting
of a map ϕ defined on a closed subspace A of X, we define the adjunction space X ∪ϕ Y as (X q Y )/ ∼
where A 3 a ∼ f(a) ∈ Y .

Example 2.17 (The n-cellular extension of a space). Let X be a space and φ :
∐
Sn−1
α → X a map from a

disjoint union of spheres into X. The adjunction space X ∪ϕ
∐
Dn is the push-out of the diagram∐

Sn−1
α

φ //
� _

��

X� _

��∐
Dn
α

φ // X ∪φ
∐
Dn
α

and it is called the n-cellular extension of X with attaching map φ and characteristic map φ. (Alter-
natively, X ∪φ

∐
Dn
α is the mapping cone on ϕ.) This space is the disjoint union of the closed subspace X

and the n-cells enα = ϕ(Dn
α − Sn−1

α ).

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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3. CW-complexes

The CW-complexes are a class of spaces that are particularly well suited for the methods of algebraic
topology. CW-complexes are built inductively out of cells.

Definition 3.1. A CW-complex is a space X with an ascending filtration of subspaces (called skeleta)

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X =
⋃
Xn

such that
• X0 is a discrete set of points
• Xn is (homeomorphic to) an n-cellular extension of Xn−1 for n ≥ 1
• The topology on X is coherent with the filtration in the sense that

A is closed (open) in X ⇐⇒ A ∩Xn is closed (open) in Xn for all n

for any subset A of X.

X0 is a discrete topological space. X1 is a topological space since it is a 1-cellular extension of X0. In
fact, all the skeleta Xn are topological spaces and Xi is a subspace of Xj for i < j. The purpose of the third
item of the defintion is to equip the union of all the skeleta with a topology. (Check that it is a topology!)

A CW-complex X is finite-dimensional if X = Xn for some n. Any CW-complex is the disjoint union of
its cells. Any CW-complex is a normal topological space [7, Exercise 35.8] (solution). CW-decompositions
are not unique; there are generally many CW-decompositions of a given space X – consider for instance
X = S2.

Example 3.2 (Compact surfaces as CW-complexes).

?????????���������

????????? ���������

?????????

__ a1

oob1���������

??a1

OOb1

?????????
��
a2 //

b2
���������

��
a2

��
b2

M2

11111111111
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11111111111

XX a1

oo
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��a2

11111111111

��a2

//
a3














FF
a3

N3

The closed orientable surface Mg = (S1 × S1)# · · ·#(S1 × S1) of genus g ≥ 1 is a CW-complex

Mg =
∨

1≤i≤g

S1
ai
∨ S1

bi
∪Q

[ai,bi] D
2

with 1 0-cell, 2g 1-cells, and 1 2-cell. (Picture of M2.)
The closed nonorientable surface Nh = RP 2# · · ·#RP 2 of genus h ≥ 1 is a CW-complex

Nh =
∨

1≤i≤h

S1
ai
∪Q

a2
i
D2

with 1 0-cell, h 1-cells, and 1 2-cell.

Example 3.3 (Spheres as CW-complexes). Points on the n-sphere Sn ⊂ Rn+1 = Rn ×R have coordinates
of the form (x, u). Let Dn

± be the images of the embeddings Dn → Sn : x→ (x,±
√

1− |x|2). Then

Sn = Sn−1 ∪Dn
+ ∪Dn

− = Sn−1 ∪idqid (Dn qDn)

is obtained from Sn−1 by attaching two n-cells. The infinite sphere S∞ is an infinite dimensional CW-complex

S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ · · · ⊂ S∞ =
∞⋃
n=0

Sn

with two cells in each dimension. A subspace A of S∞ is closed iff A ∩ Sn is closed in Sn for all n.

http://www.math.ku.dk/~moller/e02/3gt/opg/S35.pdf
http://www.math.ku.dk/~moller/blok1_05/M2surface.pdf
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Example 3.4 (Projective spaces as CW-complexes). Real projective n-space RPn can be obtained from
RPn−1 by attaching one n-cell along the canonical quotient map pn−1 : Sn−1 → RPn−1. To see this, regard
Sn as a subspace of Rn+1 = Rn×R and let Dn

+ be the image of the embedding Dn → Sn : x→ (x,
√

1− |x|2).
Since every point of RPn = Sn/ ∼ has a representative in the subspace Sn−1 ∪Dn

+ of Sn we see that

RPn = Sn/ ∼= (Sn−1 ∪Dn
+)/ ∼= RPn−1 ∪pn−1 D

n

where we also use that Sn−1 ↪→ Dn → Dn
+ → RPn is the projection Sn−1 → RPn−1 to identify the attaching

map. Since RPm = RPm−1 ∪pm−1 D
m for all m ≤ n, RPn is a finite CW-complex with one cell in each

dimension 0 through n. In particular, RP 0 is a point and RP 1 = RP 0 ∪D1 = S1 is a 1-sphere. The infinite
real projective space RP∞ =

⋃∞
n=0 RPn is an infinite dimensional CW-complex

∗ = RP 0 ⊂ S1 = RP 1 ⊂ · · · ⊂ RPn−1 ⊂ RPn ⊂ · · · ⊂ RP∞

when equipped with the coherent topology.
Complex projective n-space CPn can be obtained from CPn−1 by attaching one 2n-cell along the canonical

quotient map pn : S2n−1 → CPn−1. To see this, regard S2n+1 as a subspace of Cn+1 = Cn ×C and let D2n
+

be the image of the embedding D2n → S2n+1 : x → (x,
√

1− |x|2). Since every point of CPn = S2n+1/ ∼
has a representative in the subspace S2n−1 ∪D2n

+ of S2n+1 we see that

CP 2n = S2n+1/ ∼= (S2n−1 ∪D2n
+ )/ ∼= CPn−1 ∪pn−1 D

2n

where we also use that S2n−1 ↪→ D2n → Dn
+ → CPn is the projection S2n−1 → CPn−1 to identify the

attaching map. view the points of
Since CPm = CPm−1 ∪pm−1 D

2m for all m ≤ n, CPn is a finite CW-complex with one cell in each
dimension 0 through n. In particular, CP 0 is a point and CP 1 = CP 0 ∪D2 = S2 is a 2-sphere. The infinite
complex projective space CP∞ =

⋃∞
n=0 CPn is an infinite dimensional CW-complex

{∗} = CP 0 ⊂ S2 = CP 1 ⊂ · · · ⊂ CPn−1 ⊂ CPn ⊂ · · · ⊂ CP∞

when equipped with the coherent topology.
Similarly, quaternion projective n-space HPn can be obtained from HPn−1 by attaching one 4n-cell along

the canonical quotient map pn−1 : S4n−1 → HPn−1. Thus HPn is a CW-complex with one cell in each of
the dimensions 0, 4, . . . , 4n. In particular, HP 0 is a point and HP 1 = HP 0 ∪D4 = S4 is a 4-sphere

The Hopf maps are the maps

(3.5) S0 → S1 → S1, S1 → S3 → S2, S3 → S7 → S4,

that we obtain from the canonical maps (1.2) when n = 1.

Definition 3.6. A subcomplex of a CW-complex X is a closed subspace that is a union of cells of X.

Any subcomplex A of a CW-complex X is a CW-complex. The 0-skeleton A0 is a subset of X0, and
An is obtained by attaching to An−1 a subset of the n-cells of X. The quotient space of a CW-complex
by a subcomplex is a CW-complex. For instance, Dn/Sn−1 = Sn, Mg/M

1
g = S2, and, more generally,

Xn/Xn−1 =
∨
Sn for any CW-complex X.

The product of two CW-complexes X and Y is a CW-complex whose cells are enα × fmβ where enα is a cell
of X and emβ a cell of Y . (There is a little warning here as the CW-topology on X × Y may not equal the
product topology when X and Y are infinite complexes.)

Definition 3.7. Let A be any topological space. A relative CW-complex on A is a space X with an ascending
filtration of subspaces (called skeleta)

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X =
⋃
Xn

such that
• X0 is the union of A and a discrete set of points
• Xn is (homeomorphic to) an n-cellular extension of Xn−1 for n ≥ 1
• The topology on X is coherent with the filtration in the sense that

B is closed (open) in X ⇐⇒ B ∩Xn is closed (open) in Xn for all n

for any subset B of X.
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4. The Homotopy Extension Property

The Homotopy Extension Property will be very important to us. Let X be a space with a subspace A ⊂ X.

Definition 4.1. [1, VII.1] The pair (X,A) has the Homotopy Extension Property (HEP) if any partial
homotopy A× I → Y of a map X → Y into any space Y can be extended to a (full) homotopy of the map.

Diagrammatically, (X,A) has the HEP if it is always possible to complete the diagram

X × {0} ∪A× I //
� _

incl

��

Y

X × I

88

for any space Y and any partial homotopy of a map X → Y .
The pair (X, ∅) always has the HEP. A nondegenerate base point is a point x0 ∈ X such that (X, {x0})

has the HEP.

Proposition 4.2. [5, p 14, Ex 0.26] Let X a space and A ⊂ X a subspace. The following three conditions
are equivalent

(1) (X,A) has the HEP
(2) X × {0} ∪A× I is a retract of X × I on X.
(3) X × {0} ∪A× I is a deformation retract of X × I on X.

Proof. (1) =⇒ (2): We apply the HEP to the universal example. If (X,A) has the HEP then the identity
map of the partial cylinder X × {0} ∪ A × I extends to a retraction of the cylinder X × I onto the partial
cylinder:

X × {0} ∪A× I 1 //
� _

incl

��

X × {0} ∪A× I

X × I

r
55

(2) =⇒ (1): If the inclusion of the partial cylinder into the cylinder has a left inverse r then it is very easy

X × {0} ∪A× I h //
� _

incl

��

Y

X × I
hr

88qqqqqqqqqqqq
r

OO

to find an extension of any partial homotopy h. This shows that (1) ⇐⇒ (2).
(3) =⇒ (2): Clear.
(2) =⇒ (3): Given a retraction r : X × I → X × {0} ∪A× I, written as r(x, t) = (r1(x, t), r2(x, t)), we can
manufacture a deformation retraction H : X × I × I → X × I by [2, p 329]

H(x, t, s) = (r1(x, st), (1− s)t+ r2(x, st))

We check that H(x, t, 0) = (r1(x, t), t+r2(x, 0)) = (x, t+0) = (x, t), H(x, t, 1) = (r1(x, t), r2(x, t)) = r(x, t) ∈
X ×{0}∪A× I, H(x, 0, s) = (x, 0), and H(a, t, s) = (r1(a, ts), (1− s)t+ r2(a, st)) = (a, (1− s)t+ st) = (a, t)
for all a ∈ A so that H is indeed a deformation retraction of the cylinder X × I onto the cylinder on the
inclusion, X × {0} ∪A× I. �

Corollary 4.3. The pair (Dn, Sn−1) has the HEP for all n ≥ 1. More generally, the pair (CX,X) has the
HEP for all spaces X.
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Proof. For instance, D1× I ⊂ R× I ⊂ R2 (deformation) retracts onto D1×{0}∪S0× I by radial projection
from (0, 2). as indicated in this picture:

•

_______

In fact, Dn × I ⊂ Rn × I ⊂ Rn+1 (deformation) retracts onto Dn × {0} ∪ Sn−1 × I by a radial projection
from (0, . . . , 0, 2).

More generally, for any space X, the pair (CX,X) has the HEP because CX × {0} ∪X × I is a retract
of CX × I. The below picture indicates a retraction R : I × I → {0} × I ∪ I × {0}, sending all of {1} × I to
(1, 0).

•

�
�
�
�
�
�
�_______

The map id×R : X × I × I → X × {0} × I ∪X × I × {0} factors through

X × I × I
id×R //

��

X × {0} × I ∪X × I × {0}

��
X×I
X×{1} × I // X × {0} × I ∪ X×I

X×{1} × {0}

to give the required retraction CX × I → X × I ∪ CX × {0}. (Remember that the left vertical map is a
quotient map by the Whitehead Theorem from General Topology.) �

Proposition 4.4. If (X,A) has the HEP and X is Hausdorff, then A is a closed subspace of X.

Proof. X × {0} ∪ A × I is a closed subspace of X × I since it is a retract. Now look at X at level 1
2 inside

the cylinder X × I. �

See [1, VII.1.5] for a necessary condition for an inclusion to have the HEP.

Example 4.5. (A closed subspace that does not have the HEP) (General topology exam, Problem 3). (I,A)
where A = {0} ∪ { 1

n |n = 1, 2, . . .} does not have the HEP since I × {0} ∪ A × I is not a retract of I × I.
Indeed, assume that r : I × I → I × {0} ∪A× I is a retraction. For each n ∈ Z+, the map t → (t × 1),
t ∈ [ 1

n+1 ,
1
n ], is a path in I × I from 1

n+1 × 1 to 1
n × 1 and its image under the retraction, t 7→ r(t × 1),

1
n+1 ≤ t ≤ 1

n , is a path in A connecting the same two points. Such a path must pass through all points of
( 1
n+1 ,

1
n ) × {0} ⊂ I × {0} because π1r([ 1

n+1 ,
1
n ] × {1}) ⊃ [ 1

n+1 ,
1
n ] by connectedness. Thus there is a point

tn ∈ ( 1
n+1 ,

1
n ) such that r(tn × 1) ∈ ( 1

n+1 ,
1
n )× {0}. This contradicts continuity of r for tn × 1 converges to

0× 1 and r(t1 × 1) converges to 0× 0 6= r(0× 1). (A similar, but simpler, argument shows that there is no
retraction r : A× I → A× {0} ∪ {0} × I so that 0 is a degenerate base-point of A.)

The following proposition show the usefulness of the HEP.

Proposition 4.6. [5, Proposition 0.17] [5, Proposition 0.18, Ex 0.26] [1, VII.4.5] Suppose that (X,A) has
the HEP.

(1) If the inclusion map has a homotopy left inverse then A is a retract of X.
(2) If the inclusion map is a homotopy equivalence then A is a deformation retract of X.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e02/3gt/opg/jan05.pdf
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(3) If A is contractible then the quotient map X → X/A is a homotopy equivalence.
(4) Let Y be any space and ϕ0 : A→ Y any map. Then the homotopy type of the adjunction space Y ∪ϕ0X

only depends on the homotopy class of the attaching map ϕ0 : A→ Y .

Proof. (1) Assume that r : X → A is a map such that ri ' 1A. We must change r on A so that it actually
fixes points of A. There is a map X × {0} ∪ A× I → A which on X × {0} is r and on A× I is a homotopy
from ri to the identity of A. Using the HEP we may complete the commutative diagram

X × {0} ∪A× I //
� _

��

A

X × I
h

77

and get a homotopy h : X × I → A. The (corestriction of the) end-value of this homotopy is a map h1 : X → A
such that h1i = 1A (a retract).
(2) Let i : A→ X be the inclusion map. The assumption is that there exists a map r : X → A such that
ri ' 1A and ir ' 1X . By point (1) we can assume that ri = 1A, ie that A is a retract of X. Let
G : X × I → X be a homotopy with start value G0 = 1X and end value G1 = ir. For a ∈ A, G(a, 0) = a
and G(a, 1) = a but we have no control of G(a, t) when 0 < t < 1. We want to modify G into a deformation
retraction, that is a homotopy from 1X to ir relative to A. Since (X,A) has the HEP so does (X,A)×(I, ∂I) =
(X × I, A× I ∪X ×∂I) ((4.9).(3)). Let H : X × I × I → X × I be an extension (a homotopy of homotopies)
of the map X × I × {0} ∪A× I × I ∪X × ∂I × I given by

H(x, t, 0) = G(x, t)

H(a, t, s) = G(a, t(1− s)) for a ∈ A
H(x, 0, s) = x

H(x, 1, s) = G(ir(x), 1− s)

Note that H is well-defined since the first line, H(x, 1, 0) = G(x, 1) = ir(x), and the fourth line, H(x, 1, 0) =
G(ir(x), 1) = irir(x) = ir(x), yield the same result. The end value of H, (x, t) 7→ H(x, t, 1), is a homotopy
rel A of H(x, 0, 1) = x to H(x, 1, 1) = G(ir(x), 0) = ir(x). This is a homotopy rel A since H(a, t, 1) =
G(a, 0) = a for all a ∈ A.
(3) What we need is a homotopy inverse to the projection map q : X → X/A and this is more or less the
same thing as a homotopy X × I → X from the identity to a map that collapses A inside A. How can we
get such a homotopy? Well, precisely from the HEP! (This could be used as the motivation for HEP.) Let
C : A× I → A ⊂ X be a contraction of A, a homotopy of the identity map to a constant map. Use the HEP
to extend the contraction of A and the identity on X

X × {0} ∪A× I� _

��

1X∪C // X

X × I
h

77

to a homotopy h : X × I → X such that h0 is the identity map of X, ht sends A to A for all t ∈ I, and
g := h1 sends A to a point of A. By the universal property of quotient maps (General Topology, 2.81), the
homotopy h induces a homotopy h and the map g induces a map g such that the diagrams

X × I h //

q×1I

��

// X

q

��
X/A× I h // X/A

X
g //

q

��

X

q

��
X/A

g

;;xxxxxxxxx

h1

// X/A

commute. (The product map q × 1: X × I → X/A× I is quotient since I is locally compact Hausdorff

(General Topology, 2.87).) We claim that X
q //X/A
g

oo are homotopy inverse to each other. This is because

gq = g = h1 ' h0 = 1X and qg = h1 ' h0 = 1X/A.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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•
Y A× I

X × {1}

Figure 1. Y ∪ϕ (X × I) deformation retracts onto Y ∪ϕ1 X

(4) Let ϕ : A× I → Y be a homotopy from ϕ0 to ϕ1. We want to show that Y ∪ϕ0 X and Y ∪ϕ1 X are
homotopy equivalent. The point is that both Y ∪ϕ0 X and Y ∪ϕ1 X are deformation retracts of Y ∪ϕ (X× I).
We get the deformation retraction from the deformation retraction of X × I onto A × I ∪ X × {0} and
A× I ∪X × {1} as indicated in Figure 1.

We intend to show that the inclusions

Y ∪ϕ0 X = Y ∪ϕ (X × {0} ∪A× I) ⊂ Y ∪ϕ (X × I) ⊃ Y ∪ϕ (X × {1} ∪A× I) = Y ∪ϕ1 X

are homotopy equivalences rel Y . (The equality signs are there because all points of A×I have been identified
to points in Y .) The left inclusion is a homotopy equivalence because the subspace is a deformation retract
of the big space. The deformation retraction h of Y ∪ϕ (X × I) onto Y ∪ϕ0 X is induced by the universal
property of adjunction spaces (General Topology, 14.17) as in the diagram

A× I� _

incl

��

f // Y

��

A× I × I
π1×π2

ffMMMMMMMMMM
f×1 //

� _

incl

��

Y × I

��

π1

55kkkkkkkkkkkkkkkkk

X × I × I //

h

yysssssssssss
Y ∪ϕ (X × I)× I

h

((
X × I // Y ∪ϕ (X × I)

from a deformation retraction h : X × I × I → X × I of X × I onto X × {0} ∪ A × I (4.2.(3)). Here, the
outer square is the push-out diagram for Y ∪ϕ (X × I) and the inner square is just this diagram crossed
with the unit interval. The homotopy h : X × I × I → X × I starts as the identity map, is constant on the
subspace X × {0} ∪ A × I ⊂ X × I, and ends as a retraction of X × I onto this subspace. The induced
homotopy h : Y ∪ϕ (X × I)× I → Y ∪ϕ (X × I) starts as the identity map, is constant on the subspace
Y ∪ϕ (X × {0} ∪ A × I) = Y ∪ϕ0 X, and ends as a retraction onto this subspace. We conclude that
Y ∪ϕ (X × I) deformation retracts onto its subspace Y ∪ϕ0 X. Similarly, Y ∪ϕ (X × I) deformation retracts
onto its subspace Y ∪ϕ1 X. Thus Y ∪ϕ0 X and Y ∪ϕ1 X are homotopy equivalent spaces. �

Example 4.7 (Are the Hopf maps (3.5) nullhomotopic?). In Example 2.7 we claimed that the squaring map
2: S1 → S1 is not homotopic to the constant map 0: S1 → S1. To prove this it suffices to show that the
mapping cones C2 = S1 ∪2 D

2 = RP 2 and C0 = S1 ∪0 D
2 = S1 ∨ S2 are not homotopy equivalent.

The complex projective plane CP 2 = S2 ∪ϕ D4 is obtained by attaching a 4-cell to the 2-sphere along
the Hopf map S3 → S2 (3.5). If the attaching map is nullhomotopic then CP 2 is homotopy equivalent to
S2 ∪∗ D4 = S2 ∨ S4. We shall later develop methods to show that CP 2 and S2 ∨ S4 are not homotopy
equivalent.

Example 4.8 (A closed subspace that does not have the HEP). Let C be the quasi-circle [5, Ex 1.3.7].
Collapsing the interval A = [−1, 1] ⊂ C lying on the vertical axis gives a quotient map C → S1 [6, §28] which
is not a homotopy equivalence (since π1(S1) = Z and π1(C) is trivial) even though A is contractible. Thus
(C,A) does not have the HEP.

Proposition 4.9. The HEP property is preserved under some constructions.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf


HOMOTOPY THEORY FOR BEGINNERS 11

(1) (Transitivity) If X0 ⊂ X1 ⊂ X2 and both pairs (X2, X1) and (X1, X0) have the HEP, then (X2, X0)
has the HEP. More generally, if X =

⋃
Xk has the coherent topology with respect to its subspaces

X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk ⊂ · · · where each pair of consecutive subspaces has the HEP, then
(X,X0) has the HEP.

(2) If (X,A) has the HEP then Y × (X,A) = (Y ×X,Y ×A) has the HEP for all spaces Y .
(3) If (X,A) has the HEP then (X,A)× (I, ∂I) = (X × I,X × ∂I ∪A× I) has the HEP.
(4) If (X,A) has the HEP then (Y ∪ϕX,Y ∪ϕ A) has the HEP for all spaces Y and all maps ϕ : B → Y

defined on a subspace B of A. In particular, (Y ∪ϕ X,Y ) has the HEP for any attaching map
ϕ : A→ Y . (See Figure 2)

(5) The n-cellular extension (Y ∪ϕ
∐
Dn, Y ) of any space Y has the HEP for any attaching map

ϕ :
∐
Sn−1 → Y . More generally, the pair (Cf , Y ) has the HEP for any map f : X → Y .

Proof. (1) In the first case, there are retractions r2 : X2×I → X1×I ∪X2×{0} and r1 : X1×I ∪X2×{0} →
X0 × I ∪X2 × {0}. Then r1r2 is a retraction of X2 × I onto X0 × I ∪X2 × {0}.

In the general case, there are retractions rk : Xk×I∪X×{0} → Xk−1×I∪X×{0}. There is a well-defined
retraction X × I → X0 × I ∪X × {0} that on Xk × I ∪X × {0} is

Xk × I ∪X × {0}
rk //Xk−1 × I ∪X × {0}

rk−1 // · · · r2 //X1 × I ∪X × {0}
r1 //X0 × I ∪X × {0}

This retraction X × I → X0 × I ∪X × {0} is continuous because the product topology on X × I is coherent
with the filtration Xk × I, k = 0, 1, . . .. (Verify this claim!)
(2) We use 4.2. Let r : X × I → X × I be a retraction onto X × {0} ∪A× I. Then the product map 1Y × r
is a retraction of (Y ×X)× I onto (Y ×X)× {0} ∪ (Y ×A)× I.
(3) [2, 7.5 p. 330]
(4) We use 4.2 again. Let r : X × I → X × I be a retraction onto X × {0} ∪ A× I. The universal property
of quotient maps provides a factorization, 1Y×I q r, of 1Y×I q r

(Y qX)× I

q×1I

��

1Y×Iqr // (Y qX)× I

q×1I

��
(Y ∪ϕ X)× I

1Y×Iqr
// (Y ∪ϕ X)× I

that is a retraction of Y ∪ϕ X × I onto Y ∪ϕ X × {0} ∪ Y ∪ϕ A × I. To prove continuity, note that the
left vertical map is a quotient map since I is locally compact Hausdorff (General Topology, 2.87). This
shows that (Y ∪ϕ X,Y ∪ϕ A) has the HEP. If the attaching map ϕ is defined on all of A, we have that
(Y ∪ϕ X,Y ∪ϕ A) = (Y ∪ϕ X,Y ) so this pair has the HEP.
(5) This is a special case of (4) since (

∐
Dn,

∐
Sn−1) has the HEP (4.3). �

Corollary 4.10. Any relative CW-complex (X,A) (Definition 3.7) has the HEP. In particular, any CW-pair
(X,A) has the HEP.

Proof. There is a filtration of X

A ⊂ A ∪X0 ⊂ A ∪X1 ⊂ · · · ⊂ A ∪Xn−1 ⊂ A ∪Xn ⊂ · · · ⊂ X

where A ∪Xn is obtained from A ∪Xn−1 by attaching the n-cells of X that are not in A. Since a cellular
extension has the HEP, transitivity implies that also (X,A) has the HEP. �

Y B

X

A

Figure 2. The pair (Y ∪ϕ X,Y ∪ϕ A)

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf


12 J.M. MØLLER

Example 4.11 (S∞ is contractible). Choose ∗ = 1 as the base-point of R ⊃ S0 ⊂ S∞. The inclusion map
S0 ↪→ S1 is homotopic rel ∗ to the constant map ∗ : S0 → S1 because it factors through S1

+ = D1 which
contains ∗ as a deformation retract. Let S0× I → S1 be a homotopy rel ∗ from the inclusion to the constant
map. Use the HEP to extend to a homotopy S1×I → S1 from the identity map of S1 to some self-map of S1

that is constant on S0. This map S1 → S1 composed with the inclusion S1 ↪→ S2 is homotopic rel S0 to the
constant map S1 → S2 because it factors through S2

+ = D2 which contains ∗ as a deformation retract. Let
S1× I → S2 be a homotopy rel S0 to the constant map. Use the HEP to extend to a homotopy S2× I → S2

from the identity map of S2 to some self-map of S2 that is constant on S1. Continue in this way. Figure 3

∗

1/2

2/3

3/4

S0 S1 S2

S0 → S1 HEP

S1 → S2

HEP

S2 → S3

∗

∗

∗

∗

∗ ∗

∗ ∗
∗

∗ ∗

Figure 3. S∞ is contractible

shows the beginning of a homotopy S∞ × I → S∞ rel ∗ between the identity map and the constant map. It
is continuous because the area where it is constant (indicated by the dotted lines) gets larger and larger as
we approach S∞ × {1}.

Exercise 4.12. The Dunce cap [3] is the quotient of the of the 2-simplex by the identifications indicated in
Fig 4. Show that the Dunce cap is contractible, in fact, homotopy equivalent to D2.

Example 4.13. The unreduced suspension SX and the reduced suspension ΣX = SX/{x0}×I are homotopy
equivalent for all CW-complexes X based at a 0-cell {x0}.

Example 4.14. [4, 21.21] (Homotopic maps have homotopy equivalent mapping cones). The pair (CX,X)
has the HEP (4.3) and therefore the homotopy type of the mapping cone Cf only depends on the homotopy
class of f : X → Y .

Example 4.15 (The pair (X ∪ CA,CA)). If (X,A) has the HEP so does the pair (X ∩ CA,CA) obtained
by attaching X to CA (Proposition 4.9.(4). Since the cone on A is contractible,

X ∪ CA→ X ∪ CA/CA = X/A

is a homotopy equivalence by Proposition 4.6.(3): The cone on the inclusion and the quotient space are
homotopy equivalent and we may replace the quotient space X/A be X ∪ CA.

@
@

@
@

@

@
@
@I
a

�
�
�
�
�

�
�
��
a

-
a

Figure 4. The dunce cap

http://en.wikipedia.org/wiki/Dunce_cap
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Example 4.16 (The homotopy type of X/A when A contractible in X). Suppose that (X,A) has the HEP
and that the inclusion map A ↪→ X is homotopic to the constant map 0: A→ X, ie. A is contractible in X.
Then there are homotopy equivalences

X/A = X ∪ CA/CA 4.6← X ∪ CA = Ci
4.14' C0 = X ∨ SA

For instance, Sn/Si ' Sn ∨ Si+1 for all i ≤ 0 < n. (The inclusion Si → Sn, 0 < i < n, is nullhomotopic
since it factors through the contractible space Sn − ∗ = Rn.) See [5, Exmp 0.8] for an illustration of
S2/S0 ' S2 ∪ CS0 ' S2 ∨ S1.

Example 4.17. (HEP for mapping cylinders.) Let f : X → Y be a map. We apply 4.9 in connection with
the mapping cylinder Mf = Y ∪f (X × I).

(I, ∂I) has the HEP
4.9.(2)
=⇒ (X × I,X × ∂I) has the HEP

4.9.(4)
=⇒ (Mf , X ∪ Y ) has the HEP

(I, {0}) has the HEP
4.9.(2)
=⇒ (X × I,X × {0}) has the HEP

4.9.(4)
=⇒ (Mf , Y ) has the HEP

The fact that (Mf , X ∪ Y ) has the HEP implies that also (Mf , X) has the HEP (simply take a constant
homotopy on Y ). See 4.18 below for another application.

The proof of [5, Proposition 0.19] uses the homotopy commutative mapping cylinder diagram

Mf

X

i
>>||||||||

f
// Y
?�

j'

OO

which shows that any map is an inclusion (satisfying the HEP), up to a homotopy equivalence.

Example 4.18. (HEP for subspaces with mapping cylinder neighborhoods [5, Example 0.15]) For another
application of 4.9, suppose that the subspace A ⊆ X has a mapping cylinder neighborhood. This means that
A has a closed neighborhood N containing a subspace B (thought of as the boundary of N) such that N −B
is an open neighborhood of A and (N,A ∪ B) is homeomorphic to (Mf , A ∪ B) for some map f : B → A.
Then (X,A) has the HEP. To see this, let h : X × {0} ∪A× I → Y by a partial homotopy of a map X → Y .
Extend it to a partial homotopy on X × {0} ∪ (A ∪B)× I by using the constant homotopy on B × I. Since
(N,A ∪B) has the HEP, we can extend further to a partial homotopy defined on X × {0} ∪N × I. Finally,
extend to X × I by using a constant homotopy on X − (N −B)× I. In this way we get extensions

X × {0} ∪A× I h //
� _

��

Y

X × {0} ∪ (A ∪B)× I

55jjjjjjjjjjjjjjjjjj

� _

��
X × {0} ∪N × I� _

��

>>

X × I

CC

The final map is continuous since it restricts to continuous maps on the closed subspaces X − (N − B) × I
and N × I with union X × I.

For instance, the subspace ABC ⊆ R2 consisting of the three thin letters in the figure on [5, p. 1] is a
subspace with a mapping cylinder neighborhood, namely the three thick letters. Thus (R2,ABC) has the
HEP.
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