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g-Schur Algebras as Quotients of
Quantized Enveloping Algebras

By R.M. Green

0. Introduction

Quantized enveloping algebras are quantum analogues of the universal enveloping algebras corresponding
to semisimple and reductive Lie algebras over C. They were first discovered, in the simplest case, in 1981,
and they have been used in areas of mathematics as diverse as Lie theory, statistical mechanics, knot theory
and quantum theory.

The g-Schur algebras, S,(n,r), are quantum analogues of the Schur algebras S(n, r) which were invented
by Schur to classify the homogeneous polynomial representations of GL,, of degree r over C. The algebras
S,(n,r) have applications to the representation theory of GL,, over the finite field F, in the nondescribing
characteristic.

Beilinson et al. [1, §5.7] define surjective algebra homomorphisms, 6., from an integral form, U(gl,,),
of the quantized enveloping algebra of the Lie algebra gl,, to certain finite-dimensional associative algebras
which turn out (see [2]) to be isomorphic to the g-Schur algebras, S,(n,r). The main aim of this paper is to
investigate the properties of the surjective algebra homomorphism, § = #,.. In particular, we would like to
be able to find preimages of elements of the ¢g-Schur algebra under this map, and we would like a description
of ker . These problems are solved at the end of this paper.

The paper is divided into three sections. In §1, we make some definitions and describe a certain basis for
Uu(gl,). Tn §2, we study the restriction of § to certain subalgebras of U4(gl,,). Tn §3, we use the properties
of quantized codeterminants associated with g-Schur algebras (which were introduced by the author in [6])

to complete our description of the relationship between U4(gl,,) and Sy(n,r).

1. Quantized enveloping algebras and ¢-Schur algebras

Let A := Z[v,v"!]. We will define the quantized enveloping algebra U(gl,,) over Q(v) (corresponding
to the Lie algebra gl,,) and its associated A-form Ux4(gl,,). We also introduce the ¢-Schur algebra S,(n,r),
which is an associative algebra with 1 with base ring A unless otherwise stated. As in [2], the relationship

between ¢ and v is given hy ¢ = v>

, 8o, strictly speaking, the ¢-Schur algebra we use will be A® S,(n,r),
since S,(n,r) is usually defined to be over the ring Z[g,q ']. For this reason, we will often refer to our

“extended” S,(n,r) as the v-Schur algebra, S,(n, 7).



The two algebras U4(gl,,) and S, (n, r) specialise (when v = 1) to an A-form of the universal enveloping
algebra U(gl,,) and the Schur algebra S(n,r), respectively. After specialisation, the base ring becomes Z.

The symbols n and r shall be reserved for the integers given in the definitions of these three algebras.

1.1 The Quantized Enveloping Algebra U(gl,,)

We now define the algebra U(gl,,) over Q(v) as in [2]. Tt is given by algebra generators
Ei;FiaKﬁK;l:

(where 1 < i <n—1and 1< j <n) subject to the following relations:

KK, = K;K;, (1)
KK 1=1, (2)
KiE; = v D EK;, (3)
KiFj =v" "FK,, (4)

KK\ — K 'K,
EiF; — Fj By = by ——H (5)

v— v~
BIE; — (v+ v BB B+ BB =0 if [i—j| = 1, (8)
FiF, — (40 FFiF; + F;F; =0 if [i —j|=1. (9)
Here,
1 if j =1
et (i, ) :—{1 ifj=1-1;
0 otherwise;
and

1 if j=14—1,
€ (i,7): =9 =1 if j =1
0 otherwise.

We introduce certain elements of Q(v), as follows.

We will define the quantum integer [a],, where a is a nonnegative integer, to be

vt — @

v—ov L,

We also define quantized factorials by

a

[(I,]“! = H[k]m

k=1

and quantized binomial coefficients by



Note that when v is specialised to 1, these become ordinary integers, factorials and binomial coefficients,
respectively.
If X is an element of U(gl,,) and c is a nonnegative integer, then the divided power X () is defined to be

Xe
[c],!

In this paper, we work with an integral form of U(gl,,), which is denoted by Ux4(gl,,), or U for short.

This is an A-algebra which is generated by the elements of U(gl,,) given by

B (1<i<n, ceN) (10)
FY (1<i<n, ceN) (11)
K; (1<j<n) (12)
{K];O} (1<j<n, teN) (13)

Here,
i

|:K7,C:| - H K_ivr:fs-l—l o Kfl,ufc+sfl

7
t V¥ — TS
s=1

The A-algebra U~ is the subalgebra with 1 generated by the elements in (11), subject to relations of
form (7) and (9).

The A-algebra UV is the subalgebra with 1 generated by the elements in (12) and (13), subject to
relations of form (1) and (2).

The A-algebra U™ is the subalgebra with 1 generated by the elements in (10), subject to relations of
form (6) and (8).

It is known (see [10, §3.2]) that U 2 U~ @ U’ ® U+ as .A-modules.

1.2 The ¢-Schur algebra, S,(n,r)
Denote by O,. the set of n x n matrices with nonnegative integer coefficients whose entries sum to r.

Let V be a vector space of dimension r over a field F', and let F be the set of all n-step flags
icvaCc---CV,=V.
The group G = GL(V) acts naturally on F, and hence diagonally on X = F x F. Choose (f, f') € X. Then
f=VicVvc--cV,), and f'=(V/CV,C---CV)).
Set Vo =V = {0} and define

ai; = dim(Viey + (VN V) — dim(Viey + (VN VI_,)).
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The map from (f, f') to (a;;) induces a bijection between the set of G orbits on X and the set ©, (see [2]).
Define O 4 to be the G-orbit corresponding to A € ©,..
Now suppose F as above is a finite field with ¢ elements. It is shown in [1] that for A, A', A" € O,

there exists a function g4 4/ a4 given by

A A AV g = |{f e F: (fl)f) S OAJ (f: f2) € OA/}| = Co +clg+ et C777/qm’:

where the ¢; are integers that do not depend on the prime power ¢, and (f1, fo) € Oar. The Z[v?]-polynomial
ga.Ar, A is defined by

2m

2
gA,A" A" 1= Cp + v+ Fenv

We now define (following [2] or [1, Proposition 1.2]) the g-Schur algebra, S,(n, ), to be the free Z[g, ¢~ ']-
module with basis {e4 : A € ©,.} and with associative multiplication given by

€Ata = Z GA,AT AMEA.
A€o,

Du [2] remarks that this algebra is canonically isomorphic to the ¢g-Schur algebra defined by Dipper
and James, by exhibiting the following correspondence between basis elements e 4 and basis elements d)‘iu
as defined by Dipper and James. Here, the elements A and g lie in A(n,r), which is the set of compositions
of 7 into n parts, and d € Dy, which is the set of distinguished W,-W, double coset representatives for
the Young subgroups Wy and W, of S,., the symmetric group on r letters. Suppose A = (Aq,...,,,) and

w=(p1,..., ). For each a € n, we define I, to be the subset of n given by
[(y ::{)\1+"'+)\(:v—1+1;>\1+"'+/\a—1+27~~~;>\1+"'+>\(V}~

Similarly, we define J,, to be the analogous subset of n corresponding to u and a. Given a Dipper-James

basis element, ¢? . we define a corresponding matrix A via
Apt g
A(_Vﬁ = ‘(](]/j) ](y‘.

This procedure sets up the required isomorphism by sending ¢¢ .. to eq. It should be noted that A corresponds
to the sums of the rows of A, and u to the sums of the columns of A.
We will also be using certain elements [A] in S, (n,r). These are closely related to the basis elements

eq via

[A} = v*dilIlOA-I-diIIlP’f‘l(OA)eA.
Here, the map pry is the first projection from X to F. Beilinson et al. [1, 2.3] prove that

dim Oy — dimpri(O4) = Z A A,

ikl



where the indices are required to satisfy 1 > k and j < [.
It is convenient to have an alternative description of the basis {e4} of S,(n,r), which we present below.
Let I(n,r) be the set of all ordered r-tuples of elements from the set n := {1,...,n}. The symmetric

group S,. acts on the set T = I(n,r) on the right by place permutation in the obvious way, i.e. via

(ila R 2'7')-71- = (il.w; - -7i':‘.w>-

Tt also acts on the set T x I as (i,j)m = (im, jmw). We write ¢ ~ j if i and j are in the same S,.-orbit of T, and
(4,4) ~ (¢',5") if (4,7) and (¢, 4") are in the same S,-orbit of I x I. We now introduce a set of symbols &;
where 7,5 € I, and we identify &, ; and & j» if and only if (¢,7) ~ (¢',7"). The set of all & ;, as (¢, j) ranges
over a transversal Q of all S,-orbits of I x I can be shown (see e.g. [4]) to index a basis for S(n,r). We will
usually write & as shorthand for & ;.

Let i = (¢1,...,4,) and j = (J1, ..., j») be elements of I. We now identify ¢, ; with e4, where the (z, y)-
entry of the matrix A is given by the number of pairs (i, j,) such that i, = x and j, = y. Tt is easily seen
that this is well-defined and that the matrix A is an n X n matrix with nonnegative integer entries summing
to r. It is also easy to see that the map is surjective, and hence bijective because both bases contain the
same number of elements. From now on, we equate ; ; with the element e4 of S,(n,r) as above.

The following well-known facts about the multiplication in S,(n, ) are important. (Proofs can be found
in [3, §2].)

(i)
(i) &i&ij =i
) &&= i

& i€k = 0 unless 7 ~ k, in which case it is nonzero.

(iii

1.3 The map 6 : Ua(gl,) = Sy(n,r)
It is proved in [2] that there exists an algebra homomorphism 0 : Ux(gl,) — S,(n,r). This makes

Sy(n,r) into a U-module, and shows that it is a quotient of U. This is given, following [2], as follows:

0(F;) = Z [E;iv1 + D],
DED.E;Y;+1+D€(’,‘),<

0(F;) = > [Eiv1.i + D],

DED.E;1,,+D€O,.

DeD.,

9([(;1) = Z v~ [D].

DeD,
Here, D is the set of diagonal matrices, and D, means D N ©,.. The matrix E,; has 1 in the (a, b) position

and zeros elsewhere, and the matrix D is of the form diag(dy, ..., d,).
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1.4 Root systems of type A,

We now state without proof some properties of root systems. The general theory of these can be found
in any good text on Lie algebras.

Associated with the Lie algebra sl,,, or (in our case) gl,,, is a certain collection of vectors in (n — 1)-
dimensional Euclidean space known as a root system of type A, _;. It is well-known that this root system

contains an independent subset (the fundamental roots) {aq, ..., a,_1} such that any other root is of form
a=0o; +041+ 0+ Oy (1<i<j<n)

or of form

a=—a;—aip1— - —a; (1<i<j<n).

In the first case, the root « is called positive, and in the second case, the root « is called negative. Denote
these two sets of roots by @ and @, respectively.

We will also write a(i,j + 1) to denote the positive root a; + ajp1 + - -« + a;.

We define the height, h(a), of @ = a(i, ) to be j — 1.

Following [9, §2.2], we define the function g(a(i,j)) = j — 1. (The function g finds the index of the
highest fundamental root occurring with nonzero coefficient in its argument.)

The bilinear map (, ) : ®+ x ®T — Z is defined to satisfy

2 ifi=y;
(iyo) =49 =1 if|i—j|=1;

0 otherwise.

1.5 Tableaux and Codeterminants

Following [6, §1.9], we define a g-codeterminant, or “codeterminant” for short (when the context is
clear), to be a nonzero product esear of two basis elements of S,(n,r). (Note that a codeterminant is more
than just a product of two basis elements; the given factorisation is also important.)

We introduce the set
A=An,r)={A=0,..., ) A, eNgforall v e mZ)\V =r}
and
AT =At(n,r)={deA: N> >N}

Here, N denotes the set of nonnegative integers.
An element of A is called a weight, and is dominant if X € A*. There is an obvious correspondence

between elements of AT and partitions of r into not more than n parts.
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The weight wt(7) of an element ¢ € I(n,r) is the element o € A given by o, = |[{p € r : i, = v}| for all
ven. Ifi 5T, itis clear that 7 ~ 7 if and only if wt(7) = wt(7).

For each A € AT we define a basic \-tableau T* by writing the integers 1,...,r into a Young diagram
in some arbitrary (but henceforth fixed) order. (In practice, the order we pick will always be row by row,
starting with the top row, and filling each row from left to right.) To each i € I we now associate the

A-tableau T = iT*. For example, let n =4, 7 =7, A = (4, 2, 1, 0). Using our choice of basic A-tableau,

then
1[2]3]4]
™=1[56 :
L7
and
iy g | ds | 4 |
T = s | i
i7

If A\ € AT and i € I, the A-tableau T} is said to be standard if the elements in each row increase weakly

from left to right, and the elements in each column increase strictly from top to bottom. We define

I :=1I\(n,r)={i € I: T} is standard}.

?

We say a A-tableau T is row-semistandard if the elements in each row increase weakly from left to right,
and define the set

I, :=1\(n,r) ={i € I : T} is row-semistandard}.

2

It is clear that in a standard tableau, all the entries equal to s must appear in the first s rows, by an
easy induction on s. There is exactly one element of T, denoted by £ = {()\), for which T} is standard and
wt(¢) = A. (The entries in the s-th row of the tableau T}} are all equal to s.)

We find from the correspondence between the elements e4 and the elements §; ; that any codeterminant
can be written as §; »£ j, where { = {()\) for some A € A(n,r). Following [6], we shall usually express this as
Vi

With any ordered pair (T, T") of standard tableaux of the same shape, each consisting of r boxes and
having entries in n, we associate a certain codeterminant e e 4 in S,(n,r) as follows.

The entry A;; of A is defined to be the number of occurrences of 7 in the j-th row of the tableau 7', or
zero if there is no such entry.

The entry Af[;j of A is defined to be the number of occurrences of 7 in the i-th row of the tableau 7", or
zero if there is no such entry.

The fact that the tableaux are of the same shape forces the product e4e4: to be nonzero, because it is

of form &; ¢&s ;, and by using the product rule for S,(n,r), we find that this is nonzero, and hence ege 4 is

9



a codeterminant. We call such a codeterminant a standard codeterminant. This definition agrees with that
in [6].
It should be noted that, because the tableaux T' and 71" are standard, the matrix A must be lower

triangular, and the matrix A’ must be upper triangular.

Example

Suppose n =3, r =6,

11213
T=12]3 ;
| 3]
and
1112
T=1[2]2
3]
Then the matrices A and A’ are given by
1 0 0
A=1|1 1
1 1 1
and
2 1 0
AA=10 2 0
0 0 1

1.6 Bases for U~ and U™
We now describe Poincaré-Birkhoff-Witt type bases for U~ and for Ut which are compatible with the
properties of 6.
We define certain elements F,, and F), for each positive root « corresponding to gl,, as follows.
Let o = a; + aj41 + -+ a5 be a (typical) positive root in type A,,_1, where the a; are, as usual, the
fundamental roots. Let v = o — a; in the case where 7 # j. Then define, by induction on j — ¢,
B, = | ByBj = v BB, i
E; ifi=3j.
Let o = o; + ;41 + -+ ; and B = o — o, if i # j. We define, by induction on j — ¢,
Foo— FMF,‘, — ’l)ilF;f?ﬁ if 1 7& j,
” F; if 1 =7.
We also order the elements F,, and the elements F,, as follows.

The element F,,(; j) precedes (or appears to the left of) the element ;) if i > k or (i = k and j > ).

i

The element F,(; ;) precedes (or appears to the left of) the element F, ;) if j <l or (j = and i < k).

10



Note that this definition is essentially the same as that given by Jimbo [8].

Example

Let n = 4. In this case, the positive roots are
ayp, 01 + a9, a1 + o + a3, qa, s+ 3, Q3.
The ordering on the elements F,, corresponds to the ordering
a(3,4) < a(2,4) < a(2,3) < a(1,4) < a(1,3) < a(1,2)
on the positive roots, and the ordering on the elements F,, corresponds to the ordering
a(1,2) < a(1,3) < a(2,3) < a(1,4) < a(2,4) < «(3,4)

on the positive roots.

Lemma 1.1

Define " : Ut — U™* by ¥ (E;) := E,_;. Then 9" extends naturally to an .4-algebra isomorphism
ot Ut o Ut

Define ¢~ : U~ — U~ by ¢ (F;) := F,,_;. Then t~ extends naturally to an 4-algebra isomorphism
b U U
Proof

The map 9T is sell-inverse, and preserves the relations (6) and (8).

The map %~ is self-inverse, and preserves the relations (7) and (9). 1

Lemma 1.2
There is an A-algebra isomorphism w™ : U~ — U™ given by w™ (F;) = E;.
There is an A-algebra isomorphism w™ : Ut — U~ given by w™(E;) = F;.
Proof  Since w™ and w™ are mutual inverses, and they are clearly surjective, it suffices to check that each

one preserves the relations. This is immediate from the nature of the relations (6), (7), (8) and (9). 1

Lemma 1.3

(i) ¢+(w_(Fa(i,j))) = Eo(nt1—jnti—i)-
(ii) F, precedes Fj; in the ordering on the elements F, if and only if ¢t (w™(F,)) precedes ¢t (w ™ (Fp)) in

the ordering on the F.,.
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Proof

We first prove (i), using induction on h = h(a). The case h = 1 follows from the definition of w™

For the general case, Fi(; j) = Fo(it1,)Fugiit) — v_lFLY(,,;7,,;+1)FC!(,;+17]‘), by definition. By induction, we
have

1/)+(w7(F(y(1]))) = E(.v(n,—j+1,77,—17)E(.v(77,—'i.17,—i+1] - ’UilErv(n—i.ﬂ—i,+1)E(:v(n—7‘,.,77,—j+1)7

because ¥ Tw™ is an algebra isomorphism. The result now follows from the defintion of Eotn—jt1m—iv1)-

The proof of (ii) is immediate from the claim of (i) and the definitions of the two orders. I

Definition

Define V™~ to be the A-algebra given by generators {Fy” : @ € ®F, ¢ € Z>q} (where F\”) = 1) and

relations
FORD — [c + b} Fleth) (1)
83 c X ?
ﬁfy‘:)ﬁfvb) = FWE if (o, ;) =0 and i < g(a), (2)
PR = Z A OV N (3)
>01i<eii<b

(bFa Fa+a - F(H»a F((x’ ’ (4)

Lb}?r(t+a F(L) F(L)Fa—lza (5)

The relations (3), (4) and (5) are each subject to the restrictions that (a, a’) = —1 and either (o' = o;

and ¢ < g(a)) or (h(e) = h(a) + 1 and g(a') = g(a)).

Proposition 1.4 (Lusztig)

There is an A-algebra isomorphism ¢ : V= — U~ satisfying ¢(F,,) = F;, and the set

{ H ﬁ((y"“) tCy € ZZU} ,
acdt

is an A-basis for V', where the order taken for the product is the same as the order on our elements F,,.
Proof

The required isomorphism is exhibited in [9, Theorem 4.5]. This theorem also shows that with a certain
fixed order, the products as shown above form an A-basis for V~. Fortunately, this fixed order (which is the
reverse of the order shown in [9, 2.9 (a)]) is exactly the same as the order we imposed on the elements F,,!

From [9, Corollary 4.3] and [9, Proposition 1.8 (d)], we see that ¢(F,,) = F;. This completes the proof.

|
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Proposition 1.5
(i) The set

B~ ::{ H F(EIC“') P Cq € Z>()}J

aedt+

where the product is taken in the order corresponding to that on the elements F,,, is an A-basis for
U-.
(ii) The set

B+ = { H E((yc”) I Cy € ZZU}’

aEdt

where the product is taken in the order corresponding to that on the elements F,, is an A-basis for
U+.

Proof
The result (ii) will follow from Lemma 1.3 and (i), so it is enough to prove (i).

To prove (i), notice that the relation (3) before Proposition 1.4 shows that

17 7 75 15 7
v o) = Fatir1, ) Fatiivt) = 07 FagiryFaiit1,))
Since we know that F(; ;11) = ﬁ(y(i’i_Fl), we now see by an induction on h{a) that F,, = v_h("]Hﬁu.
Since the claim of (i) is true if we replace F' by F whenever it appears in the statement, and the element F,

differs from Fl, by a unit in A, we see that (i) holds. This completes the proof. ]

2. The restriction of § to U~, U" and U+
The next aim is to obtain precise and general descriptions for U/ T Nker # and for U~ Nker @, concentrating

on the first case, because the second case is essentially similar.

Definition Let X be the matrix

0 c1 € Cs Cn—1

0 0 Cn Cn+1 Con—3

0 0 O 0 cN

0 0 O 0 0
We define

Yx ., = > (X, A1, .., \)],
Ao A | X | =7

summed over all sets of nonnegative integers A1,...,\,, where the matrix (X, A1,...,\,) is given by X +

diag(A1,...,A), and | X| denotes the sum of the entries in X.
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It is known that, for 1 <7 <n —1, E; maps under ¢ to yx_,, where X is the matrix F;;,, having 1 in
(¢,7 + 1) place and zeros elsewhere.

In order to prove the main result of this section, we will rely on the the following lemma, which is a
simple corollary of a lemma by Beilinson, Lusztig and MacPherson.

Lemma 2.1 Let X be a strictly upper triangular n x n matrix, with |X| < r. Then:

9(Eh,)><yX.,r = (175\X\.r)71/}(h+1)[Xh.h+1+1L)?JX+Eh,;,+1.,r‘" Z U/}(p)[Xh-,p+1]”yX+Eh:p_E”+1:P’T
pElh+2,n]; X 41,21

where, as usual, F; ; is the matrix with 1 in the (7, j) place, and 0 everywhere else.

Here,

Bp) =Y (Xnj — Xnt1,)-

Ji>p

Let X be a strictly lower triangular n x n matrix. Then:

Q(F’h)XyX-,r = (] *5\X|~,7*)Uﬂl(h)[Xh+l-,h+”’va+Eh+1,h-,"‘+ Z Uﬁ’(p][X]7/+1-I‘+]]”yX*E"-1’+E’r+1.1"""
p€[1,h—1]; X, p>1
Here,
B'(p) == (Xny1;— Xnj)-
J<p
Proof  This follows from [1, Lemma 3.2], using the formula for 8(E;). ]
Definition

Let X be an n X n matrix with entries in Z. We say X has the property P(4,5) (where 7 and j are
integers satisfying 1 < i < j < n) if it satisfies one of two conditions. If row j + 1 of X consists entirely of
zeros, then X has the property P(7,7). Otherwise, let p be minimal such that X ;44 , is nonzero. If for each
integer s such that ¢ < s < j+ 1, X,; =0fort > s+ p — j, then X has the property P(i,j). If neither

condition holds, then X does not have the property P(i, j).

Example

Suppose

— o o O Ot Ww

4
1
0
0
0
4

W O O =N Ot
oo oo WwH
N OO O OO
>N O O W W

Then X has the properties P(k, k) for all 1 <k < 6, and also P(1,3), P(2,3), P(2,4) and P(3,4).
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Lemma 2.2 Let o = a; + @41 + - - - + «; be a positive root.
Assume X is a strictly upper triangular matrix such that if D is a diagonal n by n matrix with

nonnegative integer entries, then X + D has the property P(i, s) for all ¢ < s < j. The action of F,, on yx,,

is given by
9(E(.v) XyX.,r = (176\X|.r)1)m(j+1)[Xi.j+1+1]UyX+E,-,J+1,1’+ Z Um(p)[Xi.p_"1}1)yX+E,-'P—Ej+1.p.r~
PE[J+2.n]1 X 41,21
Here,

z(p) = Z (Xi.m — Xjt1.m)-

m>p

Proof The proof is by induction on n' = j — 7. The case n’ = 0 is done by Lemma 2.1. It now suffices
to check that, when ¢ < j and § = o — a;, if the hypothesis works for Ejs and for E; (by induction), then it
works for F, := FgF; — vt E;Eg.
Using the inductive hypothesis applied to £ (since we know the matrix X has the property P(i, s) for
all i < s < j—1), we can assume that
H(Eﬂ) XYx,r = (1 5|X\-,7")”w,m[Xi~,j + H"yX+Ei‘,j-T + Z 2 (@) [X,;_yp =+ 1}7)yX+Ei‘p—Ej:p~,"7
pE[j+1.n]:X; p>1

where

z'(p) = Z (X — Xjm)-

m>p

Rephrasing this informally, and concentrating on one particular term, [Y], of yx ., we find that a typical
term in the action of E on [Y] is to decrease an entry in the (j, p)-place of Y by 1, for some suitable p, to

increase the entry in the (4, p) place by 1 (resulting in a new matrix ¥') and to multiply by
v/ Py 1,

where

y'(0) =Y Vi~ Yim).

m>p

Similarly, considering the action of E; on [Z] we find that we find that the action of a typical term is,
for some suitable p’, to decrease an entry in the (j+1,p')-place of Y by 1, to increase the entry in the (4, p’)

place by 1 (resulting in a new matrix Z’) and to multiply by

vz'(p')[Z', ]”7

7,p'

where

Zl(pl) = Z (Z;‘.m, - 4;‘—0—1.777,)‘

m>p’
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The crucial issue is the extent to which these two actions fail to commute if p # p'. Let us suppose that
p # p'. We claim that the property P (as above) forces p < p’. Suppose to the contrary that p > p’. This
implies that the matrix ¥ has nonzero entries in the (j + 1,p’) place and in the (j, p) place. However, the
matrix Y is assumed to have property P(i,j), and we are also assuming that row j + 1 is not empty. Let p”
be minimal such that Yji; , is nonzero. Then we must have p” < p’ < p. Putting s = j in the definition
of the property P (which is valid since n' = j —4 > 0), we see that Y;;, = 0 for ¢ > p”, so in particular,
Y;,, = 0. This is a contradiction.

Next, consider a typical term, [A], of yx,. Of course, A is an upper triangular matrix. Acting EgF);
on this matrix, on the left, we obtain the new matrix [A'] (with entries (7,p) and (5 + 1,p’) decreased by 1,

and entries (7, p) and (4, p') increased by 1) with coefficient
[Ai.p =+ 1]“ [AJZ,IJ/ + 1}'177)1::

where

L= Z (A.ig"fb - AJ"FLN!') + Z (A;,m, - A_’j,777,)7

m>p' m>p

> (Ajun = Ajpran) + > (Aj — Ajn) = 1.

m>p' m>p

Similarly, computing the action of F;Eg, we find that matrix [A'] occurs with coefficient
[A‘i-]f + 1]'17[14)'-,11’ + 1]'UUT >

where

z = Z (Ajnn - Aj—H.m,) + Z (A7m - Aj.,m,)a

m>p’ m>p

which is exactly v times the coefficient with the elements acting the other way round. Thus, in the action of
Egb; — v_lEjEﬁ, the above terms cancel out.
The only remaining terms correspond to the situation p = p’. Using similar methods to the above, we

find that the coefficient of [A] in the action of EgE; — v™'E;Eg on [A] is
[Ai.p + 1}11 [A_]p + 1]‘”2)17”7

where

ZEH = Z (A1m - Aj+1,m,)~

m>p

In fact, A;,, is equal to zero, because the matrix [A] has the property P(i,j) and A, ;1 , is nonzero. Hence
[A]‘"p + 1},; =1.
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Notice that this argument is essentially independent of the entries on the diagonal of A. It therefore
applies equally well to the action of F, on yx ,, thus establishing the inductive hypothesis for F,.

This completes the proof. ]

Recall from §1 the ordering defined on ®* associated with the elements £,. Denote the last root in

this list by 81, the second from last by s, etc.

Proposition 2.3 The element

(en) (c1)
byl By

maps under 6 to yx .. If | X| > r, then the given basis element maps to zero.
Proof  The proof will be by induction on n' = ZLV:] ¢- The case n’ = 1 is done by Lemma 2.2. For the

general case, we will prove the equivalent statement that

N
OB - E) = (HW )U}m

k=1
Let p be maximal such that ¢, is nonzero, and let X' be the matrix obtained by decreasing the entry in
the position corresponding to ¢, in X by 1. We now need to check that g, acts on yx . to give [¢p]o¥x
as expected. If n’ > r + 1 then there is nothing to prove, because yx', = 0, by the inductive hypothesis.
Otherwise, express 3, in the form a; + a;41 4+ - -+ ;. The ordering chosen for the positive roots guarantees
that if D is a diagonal n by n matrix with nonnegative integer entries, then the matrix X’ + D has no
nonzero entries between rows ¢ + 1 and j 4+ 1 inclusive, except possibly on the diagonal. This means that
X'+ D has the properties P(i, s) for i < s < j, so we can apply Lemma 2.2. Since X1, =0for¢ > j+1,
we find that only the first term occuring in Lemma 2.2 can appear. If n’ = r, then we find that this term
too is zero, making our element map under 6 to zero, as expected. Further scrutiny of the matrices X’ and
X reveals that X;,,, = 0 for m > j + 1; again this is by properties of the ordering chosen on the positive

roots. This means that the quantity z(j + 1) occurring in Lemma 2.2 is equal to 0, and the inductive step

immediately follows. ]
Corollary 2.4 U+ Nkerf is generated by those basis elements which map to zero under 8, i.e.
N
+ _ (en) ((
Ut Nkerf = ({E;Y - B Z >r+1}).

Proof  The basis elements which do not map to zero all map to elements with different associated matrices

X, and hence their images are linearly independent. The corollary now follows. ]
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Corollary 2.5  6(U™) is the subalgebra of S,(n,r) generated by yx ,. for all possible X of zero triangular
form.
Proof Clearly #(U™) is the subspace generated by the images of the PBW-type basis elements of U™.

These elements either map to zero, or to a multiple of one of the above elements yx ... 1

Corollary 2.6  The dimension of §(U™) is given by

()

Proof Firstly, observe that by elementary properties of Pascal’s triangle,
Z G)+i-1y _ () +r
=0 ¢ " .

Secondly, recall that the number of compositions of r into m pieces is known to be

)

To count the dimension of §(U™), it suffices to enumerate the possible matrices X, because the corresponding
yx., are linearly independent. The possibilities for X correspond to compositions of integers between 0 and

r into n(n — 1)/2 pieces. The result now follows. 1

Remarks on the behaviour of U~  The corresponding results for U~ are similar in spirit, and correspond
to “rotating the basis matrices by a half turn”.

Recall the ordering on ®* associated with the elements F,,. Denote the last root in this list by ~y;, the
second from last by s, etc. We have the following result.
Proposition 2.7

Let X be the matrix

0 0 0 0 0
cN 0 0 0 0
Con—3 e Cn+1 Cn 0 0
Cpn—1 e Cs Co C1 0
We define
Zx = > (X, A1, 0],
A+ A, 4| X =
summed over all sets of nonnegative integers A1,...,\,, where the matrix (X, A1, ..., \;) is given by X +

diag(A1,...,A), and | X| denotes the sum of the entries in X.

18



Then the element

cn (e

Pl i)

maps under 0 to zx ,.. If | X| > r, then the given basis element maps to zero.
The intersection of U~ with the kernel of § is given by

N
U™ Nkerf = ({Fle¥) - Flo) 2N "a; > r 4 1)),
=1

Proof This is the same as the proof of the corresponding result for U, with trivial changes.

We now investigate the case of U’ Nkerd. To do this, we require the following result.
Proposition 2.8

A basis for UV is given by the set

s s s [ Kq1;0] [ K9:0 K,;0
KI’IK§2"'K.377|: tll’ }{ i)’ :||: ) :|7

where §; € {0,1} and ¢; € N, and where

|:K1; C:| ﬁ Kivcfs+1 _ K;1v7¢+371

t s — v *

s=1

Proof This follows from [9, Proposition 2.14, Theorem 4.5].

We wish to investigate the images under 6 of these basis elements. We know that

oK)= Y vt [D],

DeD,

where D = diag(dy,...,d,), D, is the set of n X n diagonal matrices with nonnegative integer entries

summing to r, and as usual

[D] — U—dim Op+dim prl(OD)ED,

but since D is diagonal, it is not hard to see that [D] = ep. Since ep corresponds to ¢}, in the notation

of Dipper and James [3], we see that the ep form a set of mutually orthogonal idempotents. Armed with

this information, it is easy to work out the images of products of the K;, because the multiplication in the

v-Schur algebra is componentwise.
Lemma 2.9
f KflK‘(;Q K:z” Kl,o K20 o Kn,;o _ Z ,U(sldrl'f‘“"“(sn,dn dl d2 d” [D]
- ’ tl t2 tn DeD tl t? tn

19



Proof  This was proved in [2, 3.4 (a)]. ]

Corollary 2.10

a) If 320 t; =, then

Ki;0| | K5;0 K,;0 5
6 (KflK§2 co KO0 [ 1; } { t2a } [ . }) = piitit +6”’f’"[T},
2 )

where T' € D,. and the diagonal entries of T" are t1,...,¢,.

; K1;0] [K2;0 K0

b) If >0, t; > r, then

Proof Note that if d; < ¢; then

It now follows, in case a), that there is only one term in the sum given in Lemma 2.9, namely the one given.

By a similar argument, we find that in case b) there are no surviving terms in the sum of Lemma 2.9. 1

Corollary 2.10 provides us with a large part of U'Nker#. The rest comes from considering basis elements
H of UY satisfying Y., t; < r, and subtracting off other elements corresponding, via Corollary 2.10, to the
terms appearing in 6(H), yielding:
Corollary 2.11
0 Kfl K:zn K170 Kn;o _ Z ,U(;ld'l+"'+(;ndn dl dn Kl’o Kn;o :0
) tl tn tl tn dl dn
DeD,

Proof Use Lemma 2.9 and Corollary 2.10. 1

Using the basis of U" described earlier, it is now possible to describe U? Nker § exactly.

Proposition 2.12 Let &y, be the function on the basis of U' given in Proposition 2.8 sending
5 Ki;0| | K930 K,;0
K{,IKSQKS" 1, 2 3
' t1 to tn
to

K{;l K:f” Kl’o K’I70 — Z /Ufsldl"l"""r(;ndn d1 dn Kl’o K"’O .
) tl t'n, DeD. tl tn dl dn

Then a basis for U’ N ker 6 is given by {x,_.(H)} as H runs through basis elements of the form

S N g KO KO Kn,;o
Kflng,.AK;;n[ 15117 }{ ;2’ }{ . }
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except those where all the §; are equal to zero and 221:1 t;=r.
Proof By Corollary 2.11, 6(k,,,.(H)) = 0 for all basis elements H. By Corollary 2.10, if Y1, ¢; # r,
or Y i, t; = r and not all the §; are zero, then H occurs as a “lowest term” (since d; > ¢;) of coefficient 1
in k,,,.(H). In this case, &, ,.(H) is nonzero. This proves that the elements given in the statement of the
Proposition are linearly independent in U°.

Also by Corollary 2.10, if Y1, ¢; = r, and all the §; are zero, then k,, ,.(H) = 0. In this case, §(H) is
some diagonal basis element [D], and all such basis elements turn up as the image of exactly one such H.
This proves that that the elements {&,,,.(H)} as given in the statement of the proposition span Uy Nker 6,

as required. 1

Definition Take as a basis B° of U° the elements

N N N KO KO Kn;(]
KfK’K{ B H t2 }{ , }

where t; € Ny, and Z?:l t; > r or both 2?21 t; = r and all the §; are equal to zero, together with the
elements

Kfl"'K,‘Z” KIO Knyo _ Z v(sl(]1+...+5”d” dl dn K],U K,—,,O ,
) tl tn DeD tl tﬂ, dl dn

where #; € Ny, and >, ¢; <7 or both Y. ¢, = 7 and at least one §; is nonzero.
This basis will be useful in §3.
Note that we now know that B = B~ ® B” ® Bt is a basis for U. This provides a very convenient

context in which to study 6.

3. Codeterminants, explicit surjectivity and ker (9)

We now study some of the properties of UZ", the subalgebra of U generated by U® and U, and U<V,
the subalgebra of U generated by U% and U~. We concentrate on UZ".
Proposition 3.1 Let A be an upper triangular matrix corresponding to a basis element of S,(n,r). Let
t; be the sum of the entries in row i of A. Then the element of U2" given by

K30 K»;0 Kn; 0 E(“N)“.E(ﬂl]
t ta th BN B1

maps under 6 to [A], where the ¢; correspond to the entries above the diagonal in A according to the order

on the positive roots associated with the elements F.,.
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Proof This follows from Proposition 2.3, Corollary 2.10 and the following fact. In the g-Schur algebra

as presented by Dipper and James [3, §2], they show that that

d 1 — 51}(* d

ab¥ecc acH

and that

1 ] d
¢u,a, ¢;}C = 5(lb ¢(M: :

Recalling the discussion before Lemma 2.9, and the correspondence between [A]-basis and ¢y ,-basis, it
becomes clear that [D].[A] = [A] if the diagonal entries of [D] are the row sums of [A], and [D][A] = 0
otherwise. Therefore, the effect of the U” part of the element given in the Proposition is to pick out one
term of the yx . expression corresponding to the UT-part of the element in the Proposition. The matrix C
corresponding to the term [C] picked out in this way has the same row sums as A, and is the same above
the diagonal, so it must actually be A.

These remarks suffice to prove the Proposition. 1

Corollary 3.2 The image of UZY under # is precisely the subspace of S,(n,r) spanned by the upper
triangular basis elements.

Proof  All basis elements in the basis B ® B¥ of U2 map under # to sums of upper triangular basis
elements. We know from Proposition 3.1 that we can find an element of /2" mapping to any desired upper

triangular basis element. This completes the proof. 1

Remark  The image of UZ2" under # is, in the classical case, precisely the so-called Borel subalgebra of
the Schur algebra, often denoted by S*. Similarly, the image of U<V is the subalgebra denoted by S~ in the

literature, and (U=<") is the subalgebra spanned by lower triangular basis elements.

The situation for U<0 is extremely similar. For example, Proposition 3.1 becomes:
Let A be a lower triangular matrix corresponding to a basis element of S,(n,r). Let ¢; be the sum of

the entries in column i of A. Then the element of U2 given by

Kyi;0] [ Ks;0 K,;0
F(('x]F(vl) 1 2 3
TN Y1 tl t? tn

maps under 6 to [A], where the ¢; correspond to the entries below the diagonal in A according to the usual

order on the positive roots associated with the elements F,.
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We are now in a position to describe the relationship between U(gl,,) and S,(n,r). Recall from §1.1

that

U2~ U'gUT.

We will work with the basis B = B~ ® B’ ® B* for the algebra U.

We find from earlier results that all but finitely many elements of B map to zero under §. We will show
that the elements of B which do not map to zero map to elements of S, (n,r) which are closely related to

codeterminants.

Definitions If Yl>‘j is a typical g-codeterminant given by the factorisation e4e4:, then denote by ?f‘j
the element of S,(n,r) given by [A][A']. We will call the elements }A/,A} v-codeterminants. Recall that the
triple (A, 4, j) is related to the product [A][A'] as follows. The entry A, ; of A is defined to be the number of
occurrences of a in the b-th row of the tableau of shape A corresponding to 7. The entry A ; of A" is defined

to be the number of occurrences of b in the a-th row of the tableau of shape A corresponding to j.

We now recall the straightening formula for g-codeterminants.
Proposition 3.3
Let Yf‘l be any ¢-codeterminant.

Then Y7)‘J is a Z[q, ¢~ ']-linear combination of standard g-codeterminants. The coefficients arising in this

expression are unique.

Proof  This is done in [6, Corollary 3.7], where it was shown that the standard ¢-codeterminants form a

free basis for Sy(n,r). 1

We immediately have the following Corollary:
Corollary 3.4
Let EA/,)‘/ be any v-codeterminant.

Then Y,)‘] is a Z[v, v !]-linear combination of standard v-codeterminants. The coefficients arising in this

expression are unique.

Proof This follows because the element ff,/\] is a power of v times Yf], and g = v?. ]
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Definitions

Ai,g
e, aLb

€ A to be such that

y)\’l}
E :Cpnb nb’

w.ab

Define the elements C

where the sum is taken over all triples (u, a,b) such that Y, is a standard codeterminant.
Let Yi"\j be a codeterminant, equal to eqe /. If A is lower triangular and A’ is upper triangular, then

we say Y,A/ and ?,AJ are distinguished.

Note that any standard codeterminant is distinguished. This follows from the correspondence between
the & ; and the ey, and the fact that in a standard tableau, all entries in the 4-th row are greater than or

equal to 7. (Refer to §1.5 for more details.)

Theorem 3.5 Any element of the basis B of U which does not map to zero maps to a distinguished
v-codeterminant. Every distinguished v-codeterminant is the image of one element of B in a natural way.
Proof From our earlier analysis of ker# N U, we find that the only elements of B which do not map to

zero under @ are of form

- 1] F()ﬂ{KO} IT &0,

agdt aedt

where Y ¢, <7, > b, <7 and ) .t; =r. We know that the element []_, [tho} maps under 4 to [D],

where D = diag(t,...,t,), and that [D][D] = [D]. Thus 6(b) = (b~ )8(b*), where b~ is given by
“ K0
(¢a) 3]
1T 7 T1 ")
aed+ =1

and b is given by

1 {K,,O} I &,

=1 acdt
so in particular 8(b~) # 0 # 6(b*). We know from our study of US" and U=>° that if §(b~) # 0 then

6(b~) = [L] for some lower triangular matrix L. Similarly §(b%) = [U] for some upper triangular matrix U.
The number ¢; is thus the sum of the entries in row ¢ of U, and also the sum of the entries in column ¢ of
L. This means that in this case erey = &; ;&; 1 for suitable 4, 5,k € I(n,r), and we see that this quantity is
nonzero because Schur’s product rule shows that it is nonzero in the classical case. Therefore 8(b) = [L][U]
is a distinguished v-codeterminant.

Conversely, any distinguished v-codeterminant [L][U] such that [L][U] # 0 has a unique element of B
which maps to it, by reversing the previous argument. (The integers in the expression of b determine the

coefficients of the matrices L and U, and vice versa.) ]
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Definition  For each distinguished v-codeterminant f/f] = [L][U], we define the element Y to be that

element of B (as above) which maps under 6 to [L][U].

Corollary 3.6 (kernel of )  The kernel of 8 : U(gl,,) — S,(n,r) has as a basis all elements of B which

map to zero under # together with all elements of form

v, Y el

.ab —ab’
RN

where Y7’\] is a distinguished but non-standard codeterminant and Y, is a standard codeterminant.
Proof  This follows from the straightening formula for v-codeterminants applied to the set of distinguished

v-codeterminants and the the fact that each element of B maps to zero or to a distinguished v-codeterminant.

Corollary 3.7 (explicit surjectivity) Let [A] be a basis element of S, (n,r), where e4 corresponds to

&i.j. (We assume, as we may, that j, < j, whenever a < b.) Then the element of U given by

2: wt ()45
C/l,,(l,,i) Ta.b’

poah

where the sum is taken over all (41, a,b) such that Y, is standard, maps under 6 to [A].

Proof  The element [A] is equal to the codeterminant yre)

i, because eq = & ; = ¢&; ;& and j = L(wt(j)).

This is equal, by the straightening formula for v-codeterminants, to

} : wt(7).0.5 1
O//,,('t,.,lx Y{z.b'

p.ab

The claim now follows from the definition of the elements T. ]

Applications

An important application of Theorem 3.5 is that it gives an easy proof of the semistandard basis theorem,

which is one of the main results in [3]. This application is explained in detail in [5, §5].

Another application of the theorem is that it helps a great deal in proving that the structure constants

for Du’s canonical basis for S,(n, ) lie in N[v,v~']. This is carried out in full in [7].
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