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Category theory

A category with objects X, Y, Z and morphisms f, g

In mathematics, category theory deals in an abstract way with
mathematical structures and relationships between them: it
abstracts from sets and functions to objects linked in diagrams by
morphisms or arrows.

One of the simplest examples of a category (which is a very
important concept in topology) is that of groupoid, defined as a
category whose arrows or morphisms are all invertible. Categories
now appear in most branches of mathematics, some areas of
theoretical computer science where they correspond to types, and
mathematical physics where they can be used to describe vector
spaces. Category theory provides both with a unifying notion and
terminology. Categories were first introduced by Samuel
Eilenberg and Saunders Mac Lane in 1942–45, in connection with
algebraic topology.

Category theory has several faces known not just to specialists, but to other mathematicians. A term dating from the
1940s, "general abstract nonsense", refers to its high level of abstraction, compared to more classical branches of
mathematics. Homological algebra is category theory in its aspect of organising and suggesting manipulations in
abstract algebra. Diagram chasing is a visual method of arguing with abstract "arrows" joined in diagrams. Note that
arrows between categories are called functors, subject to specific defining commutativity conditions; moreover,
categorical diagrams and sequences can be defined as functors (viz. Mitchell, 1965). An arrow between two functors
is a natural transformation when it is subject to certain naturality or commutativity conditions. Both functors and
natural transformations are key concepts in category theory, or the "real engines" of category theory. To paraphrase a
famous sentence of the mathematicians who founded category theory: 'Categories were introduced to define functors,
and functors were introduced to define natural transformations'. Topos theory is a form of abstract sheaf theory, with
geometric origins, and leads to ideas such as pointless topology. A topos can also be considered as a specific type of
category with two additional topos axioms.

Background
The study of categories is an attempt to axiomatically capture what is commonly found in various classes of related
mathematical structures by relating them to the structure-preserving functions between them. A systematic study of
category theory then allows us to prove general results about any of these types of mathematical structures from the
axioms of a category.
Consider the following example. The class Grp of groups consists of all objects having a "group structure". One can
proceed to prove theorems about groups by making logical deductions from the set of axioms. For example, it is
immediately proved from the axioms that the identity element of a group is unique.
Instead of focusing merely on the individual objects (e.g., groups) possessing a given structure, category theory
emphasizes the morphisms – the structure-preserving mappings – between these objects; by studying these
morphisms, we are able to learn more about the structure of the objects. In the case of groups, the morphisms are the
group homomorphisms. A group homomorphism between two groups "preserves the group structure" in a precise
sense – it is a "process" taking one group to another, in a way that carries along information about the structure of
the first group into the second group. The study of group homomorphisms then provides a tool for studying general
properties of groups and consequences of the group axioms.
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A similar type of investigation occurs in many mathematical theories, such as the study of continuous maps
(morphisms) between topological spaces in topology (the associated category is called Top), and the study of smooth
functions (morphisms) in manifold theory.
If one axiomatizes relations instead of functions, one obtains the theory of allegories.

Functors
Abstracting again, a category is itself a type of mathematical structure, so we can look for "processes" which
preserve this structure in some sense; such a process is called a functor. A functor associates to every object of one
category an object of another category, and to every morphism in the first category a morphism in the second.
In fact, what we have done is define a category of categories and functors – the objects are categories, and the
morphisms (between categories) are functors.
By studying categories and functors, we are not just studying a class of mathematical structures and the morphisms
between them; we are studying the relationships between various classes of mathematical structures. This is a
fundamental idea, which first surfaced in algebraic topology. Difficult topological questions can be translated into
algebraic questions which are often easier to solve. Basic constructions, such as the fundamental group or
fundamental groupoid [1] of a topological space, can be expressed as fundamental functors [1] to the category of
groupoids in this way, and the concept is pervasive in algebra and its applications.

Natural transformation
Abstracting yet again, constructions are often "naturally related" – a vague notion, at first sight. This leads to the
clarifying concept of natural transformation, a way to "map" one functor to another. Many important constructions in
mathematics can be studied in this context. "Naturality" is a principle, like general covariance in physics, that cuts
deeper than is initially apparent.

Historical notes
In 1942–45, Samuel Eilenberg and Saunders Mac Lane were the first to introduce categories, functors, and natural
transformations as part of their work in topology, especially algebraic topology. Their work was an important part of
the transition from intuitive and geometric homology to axiomatic homology theory. Eilenberg and Mac Lane later
wrote that their goal was to understand natural transformations; in order to do that, functors had to be defined, which
required categories.
Stanislaw Ulam, and some writing on his behalf, have claimed that related ideas were current in the late 1930s in
Poland. Eilenberg was Polish, and studied mathematics in Poland in the 1930s. Category theory is also, in some
sense, a continuation of the work of Emmy Noether (one of Mac Lane's teachers) in formalizing abstract processes;
Noether realized that in order to understand a type of mathematical structure, one needs to understand the processes
preserving that structure. In order to achieve this understanding, Eilenberg and Mac Lane proposed an axiomatic
formalization of the relation between structures and the processes preserving them.
The subsequent development of category theory was powered first by the computational needs of homological
algebra, and later by the axiomatic needs of algebraic geometry, the field most resistant to being grounded in either
axiomatic set theory or the Russell-Whitehead view of united foundations. General category theory, an extension of
universal algebra having many new features allowing for semantic flexibility and higher-order logic, came later; it is
now applied throughout mathematics.
Certain categories called topoi (singular topos) can even serve as an alternative to axiomatic set theory as a 
foundation of mathematics. These foundational applications of category theory have been worked out in fair detail as 
a basis for, and justification of, constructive mathematics. More recent efforts to introduce undergraduates to 
categories as a foundation for mathematics include Lawvere and Rosebrugh (2003) and Lawvere and Schanuel
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(1997).
Categorical logic is now a well-defined field based on type theory for intuitionistic logics, with applications in
functional programming and domain theory, where a cartesian closed category is taken as a non-syntactic description
of a lambda calculus. At the very least, category theoretic language clarifies what exactly these related areas have in
common (in some abstract sense).

Categories, objects and morphisms
A category C consists of the following three mathematical entities:
• A class ob(C), whose elements are called objects;
• A class hom(C), whose elements are called morphisms or maps or arrows. Each morphism f has a unique source

object a and target object b. We write f: a → b, and we say "f is a morphism from a to b". We write hom(a, b) (or
Hom(a, b), or homC(a, b), or Mor(a, b), or C(a, b)) to denote the hom-class of all morphisms from a to b.

• A binary operation , called composition of morphisms, such that for any three objects a, b, and c, we have
hom(a, b) × hom(b, c) → hom(a, c). The composition of f: a → b and g: b → c is written as or gf [2] ,
governed by two axioms:

• Associativity: If f : a → b, g : b → c and h : c → d then , and
• Identity: For every object x, there exists a morphism 1x : x → x called the identity morphism for x, such that for

every morphism f : a → b, we have .
From these axioms, it can be proved that there is exactly one identity morphism for every object. Some authors
deviate from the definition just given by identifying each object with its identity morphism.
Relations among morphisms (such as fg = h) are often depicted using commutative diagrams, with "points" (corners)
representing objects and "arrows" representing morphisms.

Properties of morphisms
Some morphisms have important properties. A morphism f : a → b is:
• a monomorphism (or monic) if fog1 = fog2 implies g1 = g2 for all morphisms g1, g2 : x → a.
• an epimorphism (or epic) if g1of = g2of implies g1 = g2 for all morphisms g1, g2 : b → x.
• an isomorphism if there exists a morphism g : b → a with fog = 1b and gof = 1a.[3]

• an endomorphism if a = b. end(a) denotes the class of endomorphisms of a.
• an automorphism if f is both an endomorphism and an isomorphism. aut(a) denotes the class of automorphisms of

a.

Functors
Functors are structure-preserving maps between categories. They can be thought of as morphisms in the category of
all (small) categories.
A (covariant) functor F from a category C to a category D, written F:C → D, consists of:
• for each object x in C, an object F(x) in D; and
• for each morphism f : x → y in C, a morphism F(f) : F(x) → F(y),
such that the following two properties hold:
• For every object x in C, F(1x) = 1F(x);
• For all morphisms f : x → y and g : y → z, 
A contravariant functor F: C → D, is like a covariant functor, except that it "turns morphisms around" ("reverses all
the arrows"). More specifically, every morphism f : x → y in C must be assigned to a morphism F(f) : F(y) → F(x) in
D. In other words, a contravariant functor is a covariant functor from the opposite category Cop to D.
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Natural transformations and isomorphisms
A natural transformation is a relation between two functors. Functors often describe "natural constructions" and
natural transformations then describe "natural homomorphisms" between two such constructions. Sometimes two
quite different constructions yield "the same" result; this is expressed by a natural isomorphism between the two
functors.
If F and G are (covariant) functors between the categories C and D, then a natural transformation from F to G
associates to every object x in C a morphism ηx : F(x) → G(x) in D such that for every morphism f : x → y in C, we
have ηy o F(f) = G(f) o ηx; this means that the following diagram is commutative:

The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such
that ηx is an isomorphism for every object x in C.

Universal constructions, limits, and colimits
Using the language of category theory, many areas of mathematical study can be cast into appropriate categories,
such as the categories of all sets, groups, topologies, and so on. These categories surely have some objects that are
"special" in a certain way, such as the empty set or the product of two topologies, yet in the definition of a category,
objects are considered to be atomic, i.e., we do not know whether an object A is a set, a topology, or any other
abstract concept – hence, the challenge is to define special objects without referring to the internal structure of those
objects. But how can we define the empty set without referring to elements, or the product topology without
referring to open sets?
The solution is to characterize these objects in terms of their relations to other objects, as given by the morphisms of
the respective categories. Thus, the task is to find universal properties that uniquely determine the objects of interest.
Indeed, it turns out that numerous important constructions can be described in a purely categorical way. The central
concept which is needed for this purpose is called categorical limit, and can be dualized to yield the notion of a
colimit.
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Equivalent categories
It is a natural question to ask: under which conditions can two categories be considered to be "essentially the same",
in the sense that theorems about one category can readily be transformed into theorems about the other category?
The major tool one employs to describe such a situation is called equivalence of categories, which is given by
appropriate functors between two categories. Categorical equivalence has found numerous applications in
mathematics.

Further concepts and results
The definitions of categories and functors provide only the very basics of categorical algebra; additional important
topics are listed below. Although there are strong interrelations between all of these topics, the given order can be
considered as a guideline for further reading.
• The functor category DC has as objects the functors from C to D and as morphisms the natural transformations of

such functors. The Yoneda lemma is one of the most famous basic results of category theory; it describes
representable functors in functor categories.

• Duality: Every statement, theorem, or definition in category theory has a dual which is essentially obtained by
"reversing all the arrows". If one statement is true in a category C then its dual will be true in the dual category
Cop. This duality, which is transparent at the level of category theory, is often obscured in applications and can
lead to surprising relationships.

• Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction.
Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be
seen as a more abstract and powerful view on universal properties.

Higher-dimensional categories
Many of the above concepts, especially equivalence of categories, adjoint functor pairs, and functor categories, can
be situated into the context of higher-dimensional categories. Briefly, if we consider a morphism between two
objects as a "process taking us from one object to another", then higher-dimensional categories allow us to profitably
generalize this by considering "higher-dimensional processes".
For example, a (strict) 2-category is a category together with "morphisms between morphisms", i.e., processes which
allow us to transform one morphism into another. We can then "compose" these "bimorphisms" both horizontally
and vertically, and we require a 2-dimensional "exchange law" to hold, relating the two composition laws. In this
context, the standard example is Cat, the 2-category of all (small) categories, and in this example, bimorphisms of
morphisms are simply natural transformations of morphisms in the usual sense. Another basic example is to consider
a 2-category with a single object; these are essentially monoidal categories. Bicategories are a weaker notion of
2-dimensional categories in which the composition of morphisms is not strictly associative, but only associative "up
to" an isomorphism.
This process can be extended for all natural numbers n, and these are called n-categories. There is even a notion of
ω-category corresponding to the ordinal number ω.
Higher-dimensional categories are part of the broader mathematical field of higher-dimensional algebra,a concept
introduced by Ronald Brown. For a conversational introduction to these ideas, see John Baez, 'A Tale of
n-categories' (1996). [4]
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