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AUTOMORPHIC FORMS AND
AUTOMORPHIC REPRESENTATIONS

A. BOREL AND H. JACQUET

Originally, the theory of automorphic forms was concerned only with holomor-
phic automorphic forms on the upper half-plane or certain bounded symmetric
domains. In the fifties, it was noticed (first by Gelfand and Fomin) that these au-
tomorphic forms could be viewed as smooth vectors in certain representations of
the ambient group G, on spaces of functions on G invariant under the given
discrete group /. This led to the more general notion of automorphic forms on real
semisimple groups, with respect to arithmetic subgroups, on adelic groups, and
finally to the direct consideration of the underlying representations. The main
purpose of this paper is to discuss the notions of automorphic forms on real or
adelic reductive groups, of automorphic representations of adelic groups, and the
relations between the two. We leave out completely the passage from automorphic
forms on bounded symmetric domains to automorphic forms on groups, which has
been discussed in several places (see, e.g., [2], or also[5], [6], [15] for modular forms).

1. Automorphic forms on a real reductive group.

1.1. Let G be a connected reductive group over @, Z the greatest @-split torus
of the center of G and K a maximal compact subgroup of G(R). Let g be the Lie
algebra of G(R), U(g) its universal enveloping algebra over C and Z(g) the center
of U(g). We let # or #(G(R), K) be the convolution algebra of distributions on
G(R) with support in K [4] and A the algebra of finite measures on K. We recall
that s# is isomorphic to U(g) ®y ¢ Ax. An idempotent in s is, by definition, one
of Ag,i.e., a finite sum of measures of the form d(s)7!-y,-dk, where ¢ is an
irreducible finite dimensional representation of K, d(o) its degree, y, its character,
and dk the normalized Haar measure on K. The algebra s is called the Hecke
algebra of G(R) and K.

1.2. Anorm | || on G(R)is a function of the form | g|| = (tr o(g)*-o(g)) /2, where
o: G(R) - GL(E) is a finite dimensional complex representation with finite kernel
and image closed in the space End(E) of endomorphisms of E and * denotes the
adjoint with respect to a Hilbert space structure on E invariant under X. It is easily
seen that if 7z is another such representation, then there exist a constant C > 0 and
a positive integer » such that
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0 Jxo = C- [

n  for all x e G(R).

A function f on G(R) is said to be slowly increasing if there exist a norm | || on
G(R), a constant C and a positive integer  such that

) |f(x) | = C-|x|", forall x e G(R).

In view of (1) this condition does not depend on the norm (but # does).

REMARK. If ¢: G — GL(E) has finite kernel, but does not have a closed image in
End E, then we can either add one coordinate and det ¢(g)~! as a new entry, or
consider the sum of ¢ and ¢*: g — ¢(g~1)*. The associated square norms are then
|det o(g)71 | 2 + tr(a(g)* o(g)) and tr(a(g)* a(g)) + tr(a(gVa(g™1)*).

1.3. Let I be an arithmetic subgroup of G(Q). A smooth complex valued func-
tion fon G(R) is an automorphic form for (I, K), or simply for [, if it satisfies the
following conditions:

@) f(r-x) = f(x) (xe GR); r e T).

(b) There exists an idempotent & € #(cf. 1.1) such that f'+ & = f.

(c) There exists an ideal J of finite codimension of Z(g) which annihilates f:
f+X=0 (XelJ).

(d) fis slowly increasing (1.2).

An automorphic form satisfying those conditions is said to be of type (&, J).
We let o7 ([}, &, J, K) be the space of all automorphic forms for (I, K) of type
& J).

1.4. EXAMPLE. Let G = GL,y, I' = GLyx(Z), K = O(2, R), ¢ = 1, J the ideal of
Z(g) generated by (C — 1), where C is the Casimir operator and 1€ C. Then fis
an eigenfunction of the Casimir operator which is left invariant under 7', right inva-
riant under K, and invariant under the center Z of G(R). The quotient G(R)/Z-K
may be identified with the Poincaré upper half-plane H. The function f may then
be viewed as a [-invariant eigenfunction of the Laplace-Beltrami operator on X.
It is a “wave-form,” in the sense of Maass. See [2], [5], [6] for a similar interpreta-
tion of modular forms.

1.5. REMARKS. (1) Condition 1.3(b) is equivalent to: fis K-finite on the right, i.e.,
the right translates of f by elements of K span a finite dimensional space of func-
tions. These functions clearly satisfy 1.3(a), (c), (d) if f does.

(2) Let r : K - GL(V) be a finite dimensional unitary representation of K. One
can similarly define the notion of a V-valued automorphic form: a smooth func-
tion p: G — V satisfying (a), (c), (d), where | | now refers to the norm in ¥, and

(b)) fGe-k) =r(k)-f(x)  (xe GR); keK).

For semisimple groups, this is Harish-Chandra’s definition (cf. [2], [11]). For
v e V, the functions x — (p(x), v) are then scalar automorphic forms. Conversely,
a finite dimensional space E of scalar automorphic forms stable under K yields an
E-valued automorphic form.

(3) A similar definition can be given if G(R) is replaced by a finite covering H
of an open subgroup of G(R) and /" by a discrete subgroup of H whose image in
G(R) is arithmetic. For instance, modular forms of rational weight can be viewed
as automorphic forms on finite coverings of SL,(R).
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1.6. Growth condition. (1) Let A be the identity component of a maximal @-split
torus S of G, and @ the system of Q-roots of G with respect to S. Fix an ordering
on @ and let 4 be the set of simple roots. Given ¢ > 0 let

6)) A, ={ae A:|a(@)| = 1, (ac B)}.

Let f be a function satisfying 1.3(a), (b), (c). Then the growth condition (d) is
equivalent to:

(d’) Given a compact set R = G(R), and ¢ > 0, there exist a constant C > 0 and
a positive integer m such that

) |/(x-a)| < C- Ia(a)l’", forallae A4,,ae 4, xe R.

This follows from reduction theory [11, §2]. More precisely, let G’ be the derived

group of G. Then 4 is the direct product of Z(R)° and 4’ = A | G'(R). For a

function satisfying 1.3(a), (b), the growth condition (d’) is equivalent to (d) for

a € Ay; but says nothing for a € Z(R)°. However condition (c) implies that f depends

polynomially on z € Z(R), and this takes care of the growth condition on Z(R).
(2) Assume f satisfies 1.3(a), (b), (c) and

©) fz-%) = @ f(x)  (z€ Z(R), x € G(R))

where y is a character of Z(R)/(Z(R) N I'). Then|f|is a function on Z(R) - I'\G(R).
If | f]e Lo(Z(R)I'\G(R)) for some p = 1, then f'is slowly increasing, hence is an auto-
morphic form. In view of the fact that Z(R)/'\G(R) has finite invariant volume, it
suffices to prove this for p = 1. In that case, it follows from the corollary to Lemma
9in[11], and from the existence of a K-invariant function a € C*(G(R)) such that
f=f+a (a well-known property of K-finite and Z(g)-finite elements in a dif-
ferentiable representation of G(R), which follows from 2.1 below).

1.7. THEOREM [11, THEOREM 1]. The space </(I', &, J, K) is finite dimensional.

This theorem is due to Harish-Chandra. Actually the proof given in [11] is for
semisimple groups, but the extension to reductive groups si easy. In fact, it is im-
plicitly done in the induction argument of [11] to prove the theorem. For another
proof, see [13, Lemma 3.5]. At any rate, it is customary to fix a quasi-character
x of Z(R)/(I' N Z(R)) and consider the space «/(I', &, J, K ), of elements in
(I, &, J, K) which satisfy 1.6(3). For those, the reduction to the semisimple case
is immediate. Note that since the identity component Z(R)° of Z(R) (sometimes
called the split component of G(R)) has finite index in Z(R) and Z(R)° N I" = {1},
it is substantially equivalent to require 1.6(3) for an arbitrary quasi-character
of Z(R)°.

The space (1}, &, J, K) is acted upon by the center C(G(R)) of G(R), by left or
right translations. Since it is finite dimensional, we see that any automorphic form
is C(G(R))-finite.

1.8. Cusp forms. A continuous (resp. measurable) function on G(R) is cuspidal if

M f(n-x)dn =0,

-“(I1 NN@®)H\N(R)

for all (resp. almost all) x in G(R), where N is the unipotent radical of any proper
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parabolic @-subgroup of G. It suffices in fact to require this for any proper maxi-
mal parabolic Q-subgroup [11, Lemma 3].

A cusp form is a cuspidal automorphic form. We let °«7([’, &, J, K) be the space
of cusp forms in /() &, J, K).

Let f be a smooth function on G(R) satisfying the conditions (a), (b), (c) of 1.3.
Assume that f'is cuspidal and that there exists a character y of Z(R) such that 1.6(3)
is satisfied. Then the following conditions are equivalent:

(i) fis slowly increasing, i.e., fis a cusp form;
(ii) fis bounded;

(iii) |f] is square-integrable modulo Z(R)- [’

(cf. [11, §4]). In fact, one has much more:|f|decreases very fast to zero at infinity
on Z(R)I'\G(R), so that if g is any automorphic form satisfying 1.6(3), then|f - g|
is integrable on Z(R) - I'\G(R) (loc. cit.).

The space °«(7, &, J, K), of the functions in °<Z([}, &, J, K) satisfying 1.6(3)
may then be viewed as a closed subspace of bounded functions in the space
L¥I'\G(R)), of functions on /"\G(R) satisfying 1.6(3), whose absolute value is
square-integrable on Z(R)I'\G(R). Since Z(R)I'\G(R) has finite measure, this
space is finite dimensional by a well-known lemma of Godement [11, Lemma
17]. This proves 1.7 for &/([}, §, J, K), when Z(R)I"\G(R) is compact, and is the
first step of the proof of 1.7 in general.

1.9. Let a € G(Q). Then ¢['= g-["-a7! is an arithmetic subgroup of G(Q),
and the left translation /, by a induces an isomorphism of /(I &, J, K) onto
(el &, J, K). Let Y be afamily of arithmetic subgroups of G(Q), closed under
finite intersection, whose intersection is reduced to {1}. The union (2, &, J, K)
of the spaces /() &, J, K) (I"e ) may be identified to the inductive limit of those
spaces:

(1) ‘d(zy S’ Ja K) = lnd limeZ' 'd([" &’ J’ K)’
where the inductive limit is taken with respect to the inclusions
@ Jrr (6T K) » LU 6 0,K) (I e T7)

associated to the projections /""\G(R) — I"'\G(R).

Assume 2 to be stable under conjugation by G(@). Then G(Q) operates on
(2, &, J, K) by left translations. Let us topologize G(Q) by taking the elements of
% as a basis of open neighborhoods of 1. Then this representation is admissible
(every element is fixed under an open subgroup, and the fixed point set of every
open subgroup is finite dimensional). By continuity, it extends to a continuous ad-
missible representation of the completion G(Q)y of G(Q) for the topology just de-
fined. For suitable 5, the passage to «7(2, &, J, K) amounts essentially to considering
all adelic automorphic forms whose type at infinity is prescribed by &, J, K; the
group G(Q); may be identified to the closure of G(Q) in G(4,) and its action comes
from one of G(A4y). See 4.7.

1.10. Finally, we may let & and J vary and consider the space «7(Z2, J, K) spanned
by the (2, &, J, K) and the space «/(2, K) spanned by the «/(Z, J, K). They are
G(Q)s-modules and (g, K)-modules, and these actions commute. Again, this has a
natural adelic interpretation (4.8).

1.11. Hecke operators. Let s#(G(Q), I') be the Hecke algebra, over C, of G(Q)
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mod [ It is the space of complex valued functions on G(Q) which are bi-invariant
under /" and have support in a finite union of double cosets mod /. The product
may be defined directly in terms of double cosets (see, e.g., [17]) or of convolution
(see below). This algebra operates on ([, £, J, K). The effect of 'al” (a € G(Q)) is
given by f — Yse rparr I f+ More generally, let #(G(Q), 2) be the Hecke algebra
spanned by the characteristic functions of the double cosets /"al™ (I, I € 2,
a € G(Q)) [17, Chapter 3]. It may be identified with the Hecke algebra s#(G(Q)y)
of locally constant compactly supported functions on G(Q)s. This identification
carries #(G(Q), I') onto #(G(Q);, I'), where I is the closure of I"in G(Q); [12].
The product here is ordinary convolution (which amounts to finite sums in this
case). Since &Z(2, &, J, K) is an admissible module for G(Q);, the action of G(Q)x
extends in the standard way to one of #°(G(Q);). The space (I, &, J, K) is the
fixed point set of I, and the previous operation of s#(G(Q), I') on this space may
be viewed as that of #(G(Q);, I'). For an adelic interpretation, see 4.8.

2. Automorphic forms and representations of G(R). The notion of automorphic
form has a simple interpretation in terms of representations (which in fact sug-
gested its present form). To give it, we need the following known lemma (cf. [18]
for the terminology).

2.1. LeMMA. Let (&, V) be a differentiable representation of G(R). Let v € V be K-
finite and Z(g)-finite. Then the smallest (g, K)-submodule of V containing v is admis-
sible.

Indeed, s - v is a finite sum of spaces #° - w, where #° is the Hecke algebra of
the identity component G(R)° of G(R) and K°=K | G(R)°, and w is K °-finite and
Z(g)-finite. It suffices therefore to show that »#°° - v is an admissible (g, K °)-module.
By assumption, there exist an ideal R of finite codimension of the enveloping
algebra U(f) of the Lie algebra  of K and an ideal J of finite codimension of Z(g)
which annihilate v and moreover U(£)/R is a semisimple t-module. Then #° - v
may be identified with U(g)/U(g) - R - J. By a theorem of Harish-Chandra (see [19,
2.2.1.1]), U(g)/U(g) - R is t-semisimple and its f-isotypic submodules are finitely
generated Z(g)-modules. Hence their quotients by J are finite dimensional.

2.2. We apply this to C=(I"'\G(R)), acted upon by G(R) via right translations.
Therefore, if f is automorphic form, then f* # is an admissible #- or (g, K)-
module. This module consists of automorphic forms. In fact, 1.3(a) is clear, and
1.3(b) follows from 2.1; its elements are annihilated by the same ideal of Z(g) as v,
whence (d). Finally, there exists o € C<(G) such that f* ¢ = f so that f'* X satis-
fies 1.2(c) (with the same exponent as f) for all X' e U(g) [11, Lemma 14]. Thus the
spaces

are (g, K)-modules and unions of admissible (g, K)-modules.

If fis a cusp form, then f* s consists of cusp forms. Thus the subspace
°Z(I', K) of cusp forms is also an s#-module. If y is a quasi-character of Z, then
the space *«/(l, K), of eigenfunctions for Z with character y is a direct sum of
irreducible admissible (g, K)-modules, with finite multiplicities. In fact, after a twist
by [xI~!, we may assume y to be unitary, and we are reduced to the Gelfand-
Piatetski-Shapiro theorem ([7], see also [11, Theorem 2], [13, pp. 41-42]) once
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we identify °/([, K), to the space of K-finite and Z(g)-finite elements in the space
°LYI'\G(R)), of cuspidal functions in L2(/"\G(R)), (see 1.8 for the latter).

3. Some notation. We fix some notation and conventions for the rest of this paper.

3.1. Fis a global field, O the ring of integers of F, V or Vi (resp. V., resp. V)
the set of places (resp. archimedean places, resp. nonarchimedean places) of F, F,
the completion of Fat ve V, O, the ring of integers of F, if ve V. As usual, 4 or
Ap (resp. ;) is the ring of adéles (resp. finite adéles) of F.

3.2. G is a connected reductive group over F, Z the greatest F-split torus of the
center of G, #, the Hecke algebra of G, = G(F,) (ve V) [4]. Thus s#, is of the type
considered in §1 if v e V_, and is the convolution algebra of locally constant com-
pactly supported functions on G(F,) if ve V', We set

¢y H o =U@V¢%"w Hy =0§f9fw H=H.Q Ky,

where the second tensor product is the restricted tensor product with respect to a
suitable family of idempotents [4]. Thus # is the global Hecke algebra of G(A)
[4]. If Fis a function field, then V, is empty and 5# = #.

If L is a compact open subgroup of G(4,), we denote by & the associated idem-
potent, i.e., the characteristic function of L divided by the volume of L (relative to
the Haar measure underlying the definition of J# ;). Thus f* £, = f'if and only if f
is right invariant under L.

The right translation by x € G(4) on G(4), or on functions on G(A4), is denoted
r, or r(x).

3.3. A continuous (resp. measurable) function on G(A) is cuspidal if

I Sf(nx) dn = 0,
N(F)\N(4)

for all (resp. almost all) x € G(4), where N is the unipotent radical of any proper
parabolic F-subgroup P of G. It suffices to chcek this condition when P runs
through a set of representatives of the conjugacy classes of proper maximal par-
abolic F-subgroups.

4. Groups over number fields.
4.1. In this section, F is a number field. An element & € 2# is said to be simple
if it is of the form

¢)) E=¢(.Q¢&, &€y é, idempotent in .

Welet G, = [],cy., G, and g, be the Lie algebra of G, viewed as a real Lie group.
We recall that G, may be viewed canonically as the group of real points H(R) of
a connected reductive group H, namely the group H = Ry, G obtained from G by
restriction of scalars from F to Q. This identification is understood when we apply
the results and definitions of §§1,2to G._...

The group G(4) is the direct product of G,, by G(A4;). A complex valued function
on G(A) is smooth if it is continuous and, if viewed as a function of two arguments
xe G, ye G(4y),itis C~in x (resp. locally constant in ) for fixed y (resp. x).

4.2. Automorphic forms. Fix a maximal compact subgroup K, of G,,. A smooth
function f on G(4) is a K_-automorphic form on G(4) if it satisfies the following
conditions:
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@) f(r-x) = () (7 € G(F), x € G(A)).

(b) There is a simple element & € # such that /' & = f.

(c) There is an ideal J of finite codimension of Z(g,.) which annihilates f.

(d) For each y € G(4/), the function x — f(x-y) on G is slowly increasing.

We shall sometimes say that fis then of type (&, J, K,.). We let «/(§, J, K. be the
space of automorphic forms of type (&, J, K.,).

There exists a compact open subgroup L of G(4,) such that &, * &, = &;. Then
& T, K) e (€, €, J, K.). We could therefore assume &; = &, for some L
without any real loss of generality.

4.3. We want now to relate these automorphic forms to automorphic forms on
G,,. For this we may (and do) assume & = &, ® &, for some compact open sub-
group L of G(A4). There exists a finite set C = G(4) such that G(4) = G(F)-C-G..-
L [1]. We assume that C is a set of representatives of such cosets and is contained
in G(A;). Then the sets G(F)-c-G.,- L form a partition of G(A) into open sets. For
ce(C, let

1) I=GF)N (G, x c-L-c™1).

It is an arithmetic subgroup of G...

Given a function f on G(4) and c € C, let £, be the function x — f(c-x) on G...
Suppose fis right invariant under L. Then it is immediately checked that f'is left
invariant under G(F) if and only if £, is left invariant under I, for every ¢ € C. More
precisely, the map f — (f,).c yields a bijection between the spaces of functions on
G(F)\G(A)/L and on [[ (I"\G..). It then follows from the definitions that it also
induces an isomorphism

(2) M(&m ® ‘SL’ ‘,, Kco) —:”CE@C ‘Q{([,c’ sw’ J9 Koo),

so that the results mentioned in §1 transcribe immediately to properties of adelic
automorphic forms. In particular, 1.6, 1.7 imply:

(i) The space (&, J, K.,) is finite dimensional.

(ii) A smooth function f on G(4) satisfying 4.2(a), (b), (c), and

3 fz-x) = y(2)-f(x)  (z€ Z(4), x e G(4)),

for some character y of Z(A)/Z(F), such that | f| e L*(Z(A)G(F)\G(4)) for some
p = 1, is slowly increasing.

(iii) For a smooth function satisfying 4.2(a), (b), (c), the growth condition 4.2(d)
is equivalent to 1.6(d’), where R is now a compact subset of G(4).

(iv) Any automorphic form is C(G(A4))-finite, where C(G(4)) is the center of
G(A).

We note also that one can also define directly slowly increasing functions on
G(A), as in 1.2, using adelic norms: given an F-morphism G — GL, with finite
kernel define, for x € G(A),

(4) ”JCH = 32‘9 n}jax(lo-(g)ijlw Io'(g_l)ijlv)

(or simply max |a(g;;)l, if a(G) is closed as a subset of the space of n x n matrices).
For continuous functions satisfying 4.2(a), (b), this is equivalent to 4.2(d).
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4.4. A cusp form is a cuspidal automorphic form. We let °o/(&, J, K_.) be the space
of cusp forms of type (&, J, K.,).

The group N is unipotent, hence satisfies strong approximation, i.e., we have for
any compact open subgroup Q of N(A4,)

(2)  N(4) = N(F)-N-Q; hence N(F)\N(4) = (N(F) N (N x Q)\N,,

[1]. Let now f be a continuous function on G(A) which is left invariant under G(F)
and right invariant under L. From (2) it follows by elementary computations that
fis cuspidal if and only if the f.’s (notation of 4.3) are cuspidal on G,,. Hence, the
isomorphism of 4.3(2) induces an isomorphism

(3) Od(ew ® EL, J’ Koo) ;’CE@CO"Q{(E, Eoo) Js Koo)9

so that the results of 1.8 extend to adelic cusp forms. In particular, assume that f°
satisfies 4.2(a), (b), (c), and also 4.3(3) for a character y of Z(4)/Z(F). Then the
following conditions are equivalent:

(i) f'is slowly increasing, i.e., fis a cusp form;

(ii) f is bounded;

(iii) | f| is square-integrable modulo Z(A4) - G(F).

REMARK. In 4.3, 4.4, we have reduced statements on adelic automorphic forms
to the corresponding ones for automorphic forms on G(R), chiefly for the conven-
ience of references. However, it is also possible to prove them directly in the adelic
framework, and then deduce the results at infinity as corollaries via 4.3(2), 4.4(3).
In particular, as in 1.8, one proves using (ii) above and Godement’s lemma that
°A(&, J, K.) is finite dimensional.

4.5. PROPOSITION. Let f be a smooth function on G(A) satisfying 4.2(a), (b), (d).
Then the following conditions are equivalent:

(1) f is an automorphic form.

(2) For each infinite place v, the space f * 3, is an admissible # -module.

(3) For each place v € V, the space [ * #, is an admissible # ,module.

(4) The space f x A is an admissible #-module.

Proor. The implications (4) = (3) = (2) = (1) are obvious; (1) = (4) follows
from 4.3(i).

4.6. Automorphic representations. An irreducible representation of s# is automor-
phic (resp. cuspidal) if it is isomorphic to a subquotient of a representation of #
in the space of automorphic (resp. cusp) forms on G(A4). It follows from 4.5 that
such a representation is always admissible. It will also be called an automorphic
representation of G or G(A), although, strictly speaking, it is not a G(4)-module.
However, it is always a G(A4;)-module. More generally, a topological G(4)-module
E will be said to be automorphic if the subspace of admissible vectors in E is an
automorphic representation of s#. In particular, if y is a character of Z(A)/Z(F),
any G-invariant irreducible closed subspace of

LAG(F)\G(4)),
= {fe LYG(F) - ZA\G(A)|, flz-X) = 3(2)-f(x), z& Z(4), x € G(4))}

is automorphic in this sense, in view of [4, Theorem 4]. By a theorem of Gelfand and
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Piatetski-Shapiro [7] (see also [8]), the subspace °L%G(F)\G(4)), of cuspidal func-
tions of L(G(F)\G(4A)), is a discrete sum with finite multiplicities of closed irreduci-
ble invariant subspaces. Those give then, up to isomorphisms, all cuspidal auto-
morphic representations in which Z(A4) has character y. The admissible vectors in
those subspaces are all the cusp forms satisfying 4.3(3).

4.7. Let L o L' be compact open subgroups of G(d4;). Then &, * &, = &;
hence #(§.. ® &5 J, K,,) = (€, ® &L, J, K.)). The space o/(€.., J, K..) spanned
by all automorphic forms of types (§. ® &;, J, K..), with &, arbitrary in s#,
may then be identified to the inductive limit

(1) ‘Q[(&ooa J, Koo) = ind hLm "Q[(Em ® €L’ J, Koo)a

where L runs through the compact open subgroups of G(4;), the inductive limit
being taken with respect to the above inclusions. The group G(4;) operates on #;
by inner automorphisms. Let us denote by *¢ the transform of & € #, by Int x.
We have in particular

)] &) = Eap (x € G(4y), & as in 4.1);
if fis a continuous (or measurable) function on G(4), then
3 (r )*E=r(f+*8 (xeG(4)), &exy).

Therefore, G(4y) operates on (£, J, K,,) by right translations. It follows from
4.3(i) that this representation is admissible.

In view of 4.3(3), «/(&.,, J, K,,) is the adelic analogue of the space &/(J, .., J, K.)
of 1.9, where 2 is the family of arithmetic subgroups of G(F) of the form [} =
G(F) N (G, x L), where L is a compact open subgroup of G(4;). These are the
congruence arithmetic subgroups of G(F), i.e., those subgroups which, for an embed-
ding G o GL, over F, contain a congruence subgroup of G | GL,(Op). This
analogy can be made more precise when G satisfies strong approximation, which is
the case in particular when G is semisimple, simply connected, almost simple over
F, and G, is noncompact [16]. In that case, as recalled in 4.4(2), we have G(4) =
G(F)-G.,- L for any compact open subgroup of G(4,), so that we may take C = {1}
in 4.3. Then 4.3(2) provides an isomorphism

(4) ‘M(Eoo ® SLv J, Koo) o d(]-'L, Eoo’ J) Koo)’
for any L, whence
(5) ‘M(&D@, J’ KDO) ':—_’ ‘d(z? &OO’ J’ KOD)’

where 2 is the set of congruence arithmetic subgroups of G(F). Moreover, the
projection of G(F) in G(4y) is dense in G(4;) and G(A4;) may be identified to the
completion G(F)y of G(F) with respect to the topology defined by the subgroups
I;. It is easily seen that the isomorphism (5) commutes with G(Q), where, on the
left-hand side x € G(Q) acts as in 1.9, via left translations, and, on the right-hand
side, x acts as an element of G(A,) by right translations. It follows that the isomor-
phism (5) commutes with the actions of G(F); = G(A4,) defined here and in 1.9.
Also, the isomorphism G(F); = G(4,) induces one of the Hecke algebra #°(G(F);)
(see 1.10) onto s#; and, again, (5) is compatible with the actions defined here and
in 1.10. Note also that [ is dense in L, by strong approximation, so that this
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isomorphism of Hecke algebras induces one of #(G(F)y, '), which is equal to
H(G(F), I), onto #(G(A,), L). [Strictly speaking, this applies at first for F = Q,
but we can reduce the general case to that one, if we replace G by Rp/,G (4.1).]

In the general case, the isomorphisms 4.3(2) for various &, are compatible with
the action of G(F) defined here and in 1.9 respectively, and this extends by continu-
ity to the closure in G(4/) of the projection of G(F).

4.8. Let &/(J, K.,) be the span of the spaces «/(&.,, J, K,,) and «/(K_,) the span of
the «/(J, K.). These spaces are s#-modules, and union of admissible s#-submo-
dules. When 4.6(5) holds, they are isomorphic to the spaces «/(2, J, K,,) and
(2, K.,) of automorphic forms on G(R) defined in 1.10. Otherwise, the relation-
ship is more complex, and would have to be expressed by means of the isomor-
phisms 4.3(2).

5. Groups over function fields. In this section, Fis a function field of one variable
over a finite field. A function on G(4) is said to be smooth if it is locally constant.

5.1. Let y be a quasi-character of Z(4)/Z(F) and K an open subgroup of G(A4).
We let °#"(y, K) be the space of complex valued functions on G(A4) which are right
invariant under K, left invariant under G(F), satisfy

(M fx) =22 f(x) (2 Z(4), xe G(4)),

and are cuspidal (3.3). [These functions are cusp forms, in a sense to be defined
below (5.7), but the latter notion is slightly more general.] We need the following:

5.2. PROPOSITION (G. HARDER). Let K and y be given. Then there exists a compact
subset C of G(A) such that every element of ¥ (y, K) has support in Z(A)-G(F)-C.
In particular, °¥"(y, K) is finite dimensional.

This follows from Corollary 1.2.3 in [10] when G is split over F and semisimple
(the latter restriction because (1) is not the condition imposed in [10] with respect
to the center). However, since G(A) can be covered by finitely many Siegel sets, the
argument is general (see [9, p. 142] for GL,).

5.3. COROLLARY. Let X be a finite set of quasi-characters of Z(A)|Z(F) and m a
positive integer. Then the space °¥ (X, m, K) of cuspidal functions which are right
invariant under K and satisfy the condition
4 T1¢@ - y@)yr=0
is finite dimensional.

PROOF. The space °¥"(X, m, K) is the direct sum of the spaces ¥ ({)}, m, K);
hence we may assume that X consists of one quasi-character y. By 5.3, °#°(X, 1, K)
is finite dimensional. We then proceed by induction and assume that °¥°(X, s, K)
is finite dimensional for some s = 1.

The group Z(A)/Z(F)-K', where K’ = Z(A) () K, is finitely generated. Let
(z,) 1=/=, be a generating set. Set 4 ;; o = ¥ (X, s + 1, K)and, fort =1, ..., q:

Ay = {f € Auro|(r(z) — x@))-f =0( = 1,..., D}
Then
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Asi1,0 2 Agi11 2 oo D A1 2 - 2 Aspg = V(X 5, K).

Fix 1 (0 = t < g). Then f — (r(a.y1) — x(a11)) -f maps Ay, into A,y,,4; and its
kernel is contained in A;;,,41. It follows, by descending induction on ¢, that 4., ¢
is finite dimensional.

5.4. REMARK. If H is a commutative group, let C[H] be its group algebra over C.
Every complex representation (z, W) of H extends canonically to one of C[H].
Anelement w e W is H-finite if and only if it is annihilated by some ideal I of finite
codimension of C[H]. If I is such an ideal, there exist a finite set X of quasi-charac-
ters of H and a positive integer m such that

(€)) xH (z(h) — y(B)m-w = 0, for all e H and all w annihilated by I.
ex

If H is finitely generated, then, conversely, all elements w € W satisfying (1) for
all he H are H-finite, and annihilated by some ideal of finite codimension of
C[H]. Therefore, 5.3 implies that the space °¥"(I, K) of cuspidal functions on
G(F)\G(A4)/K which are annihilated by some ideal I of finite codimension of
C[Z(A)/Z(F)] is finite dimensional. In fact, since Z(4)/Z(F)- (K () Z(A)) is finitely
generated, these two statements are equivalent.

5.5. Let E be a local field, R a connected reductive group over E, 25 the Hecke
algebra of R(E). A left ideal J of s is said to be admissible if the natural repre-
sentation of J# on J#x/J is admissible.

LeMMA. Let J be an admissible ideal of #y and K a compact open subgroup of
R(E). Let P be a parabolic E-subgroup of H, N the unipotent radical of P and M
a Levi E-subgroup of P. There is an admissible ideal J y; in the Hecke algebra 3y
of M(E) with the following property: if © is a smooth representation of R(E) on a
space W, and w € W is K-fixed, annihilated by J, then the image W of w in the space
Wy (cf. [3]) is annihilated by J 4.

PrOOF. Let ¢ € #» be the characteristic function of K, v, its image in s#5/J
and 7y the image of vy in (##z/J ) y. The representation of R(E) on s#5/J is admissible
by assumption; therefore the representation of M(E) on (#5/J)y is admissible [3],
and the annihilator Jy, of 7 in ), is admissible. We claim that it has the required
properties. In fact, if # and w are as in the lemma, then there is a unique R(E)-
morphism #°p — W taking ¢, to w. It maps & € #; onto a scalar multiple of
(&) -w. Therefore, it factors through an R(E)-morphism s#/J — W, mapping v,
onto w, whence an M (E)-morphism (#°5/J)y — W)y mapping 7, onto w. It follows
that w is annihilated by J ;.

5.6. THEOREM. Let K be a compact open subgroup of G(A). Let ve V and J an
admissible ideal of #,. Then the space ¥ (G, v, J, K) of complex valued functions f
on G(A) which are left invariant under G(F), right invariant under K and annihilated
by J is finite dimensional.

ProoOF. Since the representation of G, on s#,/J is admissible (and finitely gen-
erated), there exists an ideal I, of finite codimension of C[Z(F,)] which annihilates
.
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Let fe v(G, v, J, K). Then h— f «h h— i being the canonical involution of
#,) gives a G,-morphism #,/J — f* #,. Therefore ¥ (G, v, J, K) is annihilated by
I,. Let Z' = Z(A) N K and regard Z(F,) as a subgroup of Z(A). Then Z(F)-Z(F,) -
Z' has finite index in Z(A). As a consequence, there exists an ideal I of finite codi-
mension of Z(A4)/Z(F) which annihilates ¥*(G, v, J, K). The space °¥" of cuspidal
elements in ¥°(G, v, J, K) is then contained in °¥"(I, K) (notation of 5.4), hence is
finite dimensional.

We now prove the theorem by induction on the F-rank rkzG’ of the derived
group G’ of G. If tkyG’ = 0, then ¥7(G, v, J, K) = °¥", and our assertion is already
proved. So assume rkzG’ = 1 and the theorem proved for groups of strictly smaller
semisimple F-rank. Let now P= M - N vary through a set 2 of representatives of the
conjugacy classes of proper parabolic F-subgroups of G, where M is a Levi F-sub-
group and N the unipotent radical of P. For each such P, let Cp be a set of repre-
sentatives of P(4)\G(A)/K. It is finite. The intersection of the kernels of the maps
foP.c, WherefP,c(m) = ,"N(F)\N(A) f(n-m-c) dn (C € CP’ Pe '@) (fe V(G9 Y, J’ K))
is then °¥”, hence is finite dimensional. It suffices therefore to show that, for given
Pe 2, ce Cp, the functions fp, vary in a fixed finite dimensional space. After
having replaced J and K by conjugates, we may assume that ¢ = 1. We write fp
for fp,1- Let now Uy (resp. Uy) be the space of functions on G(F)\G(A) (resp.
M(F)\M(A)) which are right invariant under some compact open subgroup (de-
pending on the function). The representation r of G(A) by right translations on Uy
is smooth. If x € N(A) thenfp = (r.f)p; hence up: f— fp factors through (Ug)y(r,)-
It follows then from 5.5 that the elements fp (f€ (G, v, J, K)) are all annihilated
by some admissible ideal J’ of the Hecke algebra of M(F,). Since these elements are
right invariant under K’ = K (1 M(4), it follows that yp maps (G, v, J, K) into
v (M, v, J', K’). Since this last space is finite dimensional by our induction assump-
tion, the proof is now complete.

5.7. COROLLARY. Let f be a function on G(A) which is left invariant under G(F)
and right invariant under some compact open subgroup of G(A). Then the following
conditions are equivalent:

(1) There is a place v of F such that the representation of G, on the G(F ,)-invariant
subspace generated by r(G,)-f is admissible.

(2) For each placevof F, the representation of G, on the space generated by r(G,) - f
is admissible.

(3) The representation of G(A) on the space spanned by r(G(A)) - f is admissible.

Proor. Clearly (3) = (2) = (1). Assume (1). Let v be as in (1). Then f is annihi-
lated by an admissible ideal J of s#,. Let U = f * s#. We have to prove that UX is
finite dimensional for any compact open subgroup K of G(A). There is no harm in
replacing K by a smaller group, so we may assume that K fixes f. We may also
assume that K = K, x K», where K, is compact open in G, and K is compact
open in the subgroup G* of elements in G(A) with v-component equal to 1. We also
have # = #, ® s where # is the Hecke algebra of Gv. Let &, (resp. &?) be the
idempotents associated to K, (resp. K?) (3.3). Then &, ® & = & is the idempotent
associated to K. Any element g in U is a finite linear combination of elements of the
form f* a * B (« € 5#7, B € 5#,). If such an element is fixed under X, then g* & =
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g; hence we may assume that each summand is fixed under X, and that ¢ * & = q,
B * &, = G. Since fis fixed under X, it follows that f* « is fixed under K. The ele-
ments f* ¢ then belong to the space ¥~ (G, v, J, K), which is finite dimensional by
the theorem. For each such element /% « * § is contained in the space of K,-fixed
vectors in the admissible s#,-module f* o * 3, = f* #, * a, whence our asser-
tion.

5.8. DEFINITIONS. An automorphic form on G(A) is a function which is left in-
variant under G(F), right invariant under some compact open subgroup, and satis-
fies the equivalent conditions of 5.7. A cusp form is a cuspidal automorphic form.
Any automorphic form is Z(4)-finite (as follows from 5.7(3)).
quotient of the G(4)-module .« of all automorphic forms on G(F)\G(4A). It follows
from 5.7 that it is always admissible.

More generally, a topologically irreducible continuous representation of G(4) in
a topological vector space is automorphic if the submodule of smooth vectors is
automorphic.

As in 4.6, it follows from [4, Theorem 4] that if y is a character of Z(4)/Z(F),
then any G-invariant closed irreducible subspace of LY G(F)\G(4)), is automorphic.

5.9. PROPOSITION. Let f be a function on G(F)\G(A). Then the following conditions
are equivalent:

(1) fis a cusp form.

(2) f is Z(A)-finite, cuspidal (3.3), and right invariant under some compact open
subgroup of G(A).

Proor. That (1) = (2) is clear. Assume (2). Then f'is annihilated by an ideal I of
finite codimension of C[Z(4)/Z(F)]. Let U be the space of functions spanned by
r(G(A)) - f.Everyelementof U is cuspidal, annihilated by 7and right invariant under
some compact open subgroup. If L is any compact open subgroup, then U~ is con-
tained in the space °¥°(Z, L) (notation of 5.4), hence is finite dimensional. Therefore
U is an admissible G(A4)-module and (1) holds.

5.10. It also follows in the same way that the space °</(I) (resp. °/(X, m))
of all cusp forms which are annihilated by an ideal I of finite codimension of
C[Z(A)/Z(F)] (resp. which satisfy 5.3(1)) is an admissible G(4)-module. Moreover,
if X consists of one element y, and if m = 1, in which case we put (X, m) = °«,,
then this space is a direct sum of irreducible admissible G(A4)-modules, with finite
multiplicities. To see this we may, after twisting with |y|~1, assume that y is unitary.
Then, since °«7, consists of elements with compact support modulo Z(4),

o= 168 dx
Z(A)G(F\G(4)

defines a nondegenerate positive invariant hermitian form on °</,. Our assertion

follows from this and admissibility. This is the counterpart over function fields of

the Gelfand-Piatetski-Shapiro theorem (4.6).

We note that, by [14], every automorphic representation transforming according
to y is a constituent of a representation induced from a cuspidal automorphic
representation of a Levi subgroup of some parabolic F-subgroup, for any global
field F.
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