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CLASSICAL AND ADELIC AUTOMORPHIC
FORMS. AN INTRODUCTION

I. PIATETSKI-SHAPIRO*

1. Classical Hecke theory. Let H be the upper half-plane {z e C|Im z > 0}, I
a congruence subgroup of SL(2, Z), i.e., I' o I'y for some integer N = 0 (where

Iy = {(‘C’ 3) e SL(2, Z) such that (‘c’ 3) - <(1) ?) (mod N)}).

The group SL(2, R) acts on H by z — (az + b)/(cz + d). We say that a function
fi H — Cis amodular form of weight k (with respect to I") iff

(a) fis holomorphic on H.

(b) f ((az + b)/(cz + d))(cz + d)™* = f(2), for all (¢2}) e I, and k some strictly
positive integer k.

(c) fis holomorphic also at the cusps of H with respect to /.

For example, at co, this means that ' has the Fourier expansion

f(Z) — Z a, e2m’n2z_
nz0

We say that fiis a cusp form if in the Fourier expansion at each cusp, g, = 0.
Let Q(f) be the C-linear span of the set

(G a)e +a
Here G = GL*(2, Q) = {ge GL(2, Q) | det(g) > 0}. Note that GL*(2, R) acts

on H. There is an obvious representation of G on Q(f).
Hecke defined the L-function attached to the modular form f by the formula:

(“ 3) e GL*(2, Q)} .

c

L(fis) = Qb [ fyevridy = 3 a

(the Dirichlet series corresponding to f). Hecke [1] proved the following theorem:

THEOREM. (1) L(f, s) is a “nice” entire function when f'is a cusp form (“‘nice’” means
that L(f, s) has a functional equation).

(2) L(f, s) has an Euler product if Q(f) is algebraically irreducible, i.e., has no
invariant linear subspaces under the action of G.

The second statement is the more interesting; it is equivalent to Hecke’s actual
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statement. He proved that L(f, s) has an Euler product if fis an eigenfunction of the
“Hecke operators”. This is equivalent to Q(f) being irreducible. Already (2) sug-
gests that it might be better to study modular forms from the point of view of
representation theory.

This leads us to the main purpose of this paper, which is to motivate the transi-
tion to the adelic setting and the systematic use of representation theory in the study
of modular forms.

First let us explain the notion of Euler product. L(s) = L(f, s) has an Euler
product means that

Lis)y = II Ly,

2 a prime
where
Lys) = (1 —app)t(1 = B,p)7Y, ap BpeC.

In Hecke’s theorem we have a functional equation of the sort: L(s) = e(s)L(1 — ),
where L(s) (resp. &(s)) can be written as an infinite product J]L,(s) (resp. [Te,(s)).
Now Tate’s theory of L-functions associated to Grossencharakters and Artin
L-functions suggests the problem of finding objects such that the local factors
L,(s) and ¢,(s) are e- and L-functions for these objects. It was the beautiful idea of
Jacquet-Langlands [2] to take as such objects irreducible representations of
GL(2.Q0,). More precisely, let us look at Q(f). Any element ~ € Q(f) is fixed by
a congruence subgroup I'< G. Now we define a topology on G by taking a
basis of neighborhoods of the identity to be the set of congruence subgroups
of G, and let G be the completion of G in this topology. Then G = {ge
[T finite primes GL(2, Q)p)ldet g, = r > 0, re @}, where [] means restricted direct
product, acts on Q(f), via the action of G, and it can be shown that this repre-
sentation # is an infinite tensor product (interpreted in a suitable sense) 7 =
Rsnite primes TTp» Where 7, is a representation of GL(2, @,).

In the author’s interpretation, it is the idea of Jacquet-Langlands to attach
an L-function to the irreducible representation z = Q(f), rather than to f, and then
to interpret L,(s) and ¢,(s) as the L- and e-factors for the representations x, of
GLQ2, Q).

Finally, let us give the following additional motivation for introducing the adelic
framework into the study of modular forms. We wish to study modular forms with
respect to different congruence subgroups simultaneously, and every such form is
stabilized by some congruence subgroup. To each inclusion relation /' = [ cor-
responds a projection H/I' - H/I';. A small computation shows that the projective
limit of this system,

proj lim H/I' = K_\SL(2, A)/SL(2, 0).
I" a congruence subgroup
Hence the study of modular forms has been transformed into the study of a cer-
tain space of functions on this double coset space.

2. Automorphic forms for adelic groups. Assume G is a connected reductive
algebraic group over a global field k. For such a G we can define the group G,
(cf. Springer’s paper for the construction), and G, = G, as a discrete subgroup.
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We need some basic facts from reduction theory. First let G = (\{ker[y|, y a
rational character of G}. Then G,\GY is compact iff there are no additive unipotent
elements. (This is due to Borel-Harish-Chandra-Mostow-Tamagawa-Harder.)

Let G, = NAK be the global Iwasawa decomposition (which follows directly
from the local Iwasawa decompositions), where K is a standard maximal compact
subgroup of G,, A4 the set of adelic points of a maximal split torus, and N is a
maximal unipotent subgroup.

ExAMPLE. G = GL(2, k). Then

K, =0() if p is real,
U2 if p is complex,
GL(2, @,) for a finite place;

v={o D 4= {5 W)

Note that 4 > C = Z(G,), and that we can write 4 = CA° for some subgroup
A%s.t. C ) AVis finite.

We say that a set S = A9 is semibounded iff for any relatively compact subset
Ny < N, the set | ;s sNps~!is relatively compact.

EXAMPLE. G = GL(2). Then 4% = {(§9)}, S = {(§0) € A |a,l, = c, for all places
p,and ¢, = 1for almost all p}. Then S is semibounded.

We now give the important definition of a Siegel set ©.1

& = NySK, when N, is an open compact subset of N, S is semibounded, and
K as above. Then the main result of reduction theory says:

THEOREM. There exists a Siegel set © s.t. G, = G,SC. Hence there exists a funda-
mental domain for G, contained in SC.

We now come to the definition of a cusp form (the definition of an automorphic
form is given elsewhere in these PROCEEDINGS): A function f: G,\G4 — C is said
to be a cusp form iff

(1) fisan eigenfunction with respect to C: f(cg) = w(c)f(g).

(2) fis smooth (i.e., fis C= at archimedean places and locally constant at the
finite places).

(3) feepea | f(8)I12 dg < oo (here we suppose that o is unitary).

(4) [z,2./(28) dz = 0, where Z is the unipotent radical of any parabolic sub-
group P.

ExampLE. For GL, it is sufficient to consider the standard unipotent group
(3%).

For GL one has the following conjugacy classes of unipotent radicals:

1 % 10 = 1 %%
<010>, <01*>, <01*>.
001 001 001

In general, for GL,, one associates to each partition n; + ... + n,, = n, a con-
jugacy class of unipotent radicals

For simplicity we give the definition only for split groups. There is a similar definition in general.
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We shall write L(w) for the space of cusp forms with respect to w.
The first main result is the following.

THEOREM (GELFAND, PIATETSKI-SHAPIRO, HARDER). L3(w) is a countable sum of
irreducible admissible representations of G 4, each occurring with finite multiplicity.

We now describe a naive form of Langlands’ philosophy. Let 7 be a representa-
tion of G4 occurring in Lj(w). Then one can attach to z a function L(z, s) which is a
product []L(z,, 5), and furthermore L(x, s) is “‘nice” (i.e., it is meromorphic, with a
finite set of poles, and satisfies a functional equation), and the e-factor e(z, s) =
[Te(zy, 5).

A precise exposition of Langlands’ philosophy will be given by Borel in his
article [5].

3. The case of GL,. Now we shall explain what follows from Langlands’ conjec-
ture for GL,.

Let 7 be an irreducible cuspidal automorphic representation of GL3(4). Then
T = @all primes 7p> and for almost all primes 7z, = Indp(y; @ wp), Where y, u, are
unramified characters of k5. Such 1, y, are described by 14(p), p2( p), where p is the
generator of the prime ideal p. Let n be an integer n = 1. We can define local factors
of the form

Ly, 8) = (1 — @] p|)71(1 — 8 pee| Bl ... — g BN

Here we are writing u;, pp for w(p), we(p).

Conjecture. For =, n as above we can attach to every prime p a local factor
LA(z,, 5), agreeing with the definition above at the unramified primes, such that the
function L*(z, s) = [[L*(x,, s) exists, and is “nice”.

For n = 1 this conjecture is proved in the book by Jacquet-Langlands. For n =
2, it has been proved by Gelbart-Jacquet and Shimura. For n = 3, 4 it can be
proved that L#(x, s) exists and has a meromorphic continuation. Beyond these
cases, the situation is unresolved.

Notes of this talk were made by Lawrence Morris (I. H. E. S.) and Ben Seifert
(U. C. Berkeley).
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