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DECOMPOSITION OF REPRESENTATIONS
INTO TENSOR PRODUCTS

D. FLATH

1. In this paper some generalizations of the classical theorem which classifies the
irreducible representations of the direct product of two finite groups in terms of
those of the factors will be discussed. The first generalization consists in expanding
the class of groups considered.

THEOREM 1. Let Gy, Gy be locally compact totally disconnected groups and let
G = Gl X Gz.

(1.1) If =, is an admissible irreducible representation of G, i = 1,2, thenw; ® 75
is an admissible irreducible representation of G.

(1.2) If = is an admissible irreducible representation of G, then there exist admis-
sible irreducible representations ©; of G; such that &= ~ w; ® m,. The classes of the
7; are determined by that of 7.

We recall some notation. For a locally compact totally disconnected group G,
the Hecke algebra H(G) of G is the convolution algebra of locally constant complex
valued functions on G with compact support. For a compact open subgroup K of
G, let ey be the function (meas K)~!-chy, where chy is the characteristic function
of K and meas is the Haar measure on G which has been used to define convolution
in H(G). Then ey is an idempotent of H(G). The subalgebra e H(G)eyx of H(G)
will be denoted H(G, K). A smooth G-module W is in a natural way an H(G)-
module, and for every compact open subgroup K = G the space WK = ey W is an
H(G, K)-module.

Before proving Theorem 1 we state an Irreducibility Criterion. A smooth G-
module W is irreducible if and only if WK is an irreducible H(G, K)-module for all
compact open subgroups K of G.

Proor. This follows from the fact that if U is an H(G, K)-submodule of WX,
then (H(G)- U)X = U. O

Remark that in applying the irreducibility criterion it is sufficient to check that
WK is an irreducible H(G, K)-module for a set of K which forms a neighborhood
base of the identity in G.

COROLLARY. Let K be a compact open subgroup of G such that H(G, K) is com-
mutative, and let W be an admissible irreducible G-module. Then dim WK < 1.
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ProOOF OF THEOREM 1. It is straightforward that

(i) H(G, x Gp) = H(Gy) ® H(Gy),

(ll) H(Gl X Gz, Kl X Kz) >~ H(Gl, Kl) ® H(Gz, Kz) and

(i) (W1 ® Wp)Kke ~ W @ Wi
for every pair of compact open subgroups K; of G; and every pair of smooth
G;-modules W,.

Assertion (1.1) follows from (iii) and the irreducibility criterion.

Conversely, let W be an admissible irreducible G-module. Let K = K; x Kj,
where K; is a compact open subgroup of G;, i = 1,2, be such that WX s 0. The
space WX is finite dimensional, so by the corollary on p. 94 of [2] there exist irre-
ducible H(G,, K;)-modules Wki and an H(G, K) isomorphism ayx from WX to
WK ® Wz Similar remarks apply to every open subgroup K’ = Kj x K; of
K. There exist H(G;, K;)-maps b, = b(K, K'): WKi - WX such that the follow-
ing diagram is commutative.

WK . W@ W
incl. l b1&®b2
wk o, W{(l ® Wk

Moreover, the maps b,(K, K’) can be chosen for every pair of compact open sub-
groups K, K’ of this type in such a way as to form an inductive system. Then W ~
W, ® W,, where W; = ind limg, Wki, and W, is an admissible irreducible repre-
sentation of G,, i = 1, 2.

The class of W; is determined by that of W, for the restriction of W to G; is
W-isotypic. [

An analysis of the proof of Theorem 1 reveals that the groups G and G; enter
only through their Hecke algebras. This leads one to define an idempotented
algebra (4, E) to be an algebra 4 with a directed family of idempotents E such that
A= U,_,Eg edAe. An admissible module W for (4, E) is an A-module W which is
nondegenerate in the sense that AW = W and is such that dim eW is finite for all
e € E. The tensor product of two idempotented algebras is naturally idempotented.
The proof of Theorem 1 is readily adapted to establish a similar theorem about
the admissible irreducible modules of the tensor product of two idempotented
algebras.

2. The study of the representations of adelic groups, which are infinite re-
stricted products of groups, requires the notion of restricted tensor product of
vector spaces which was introduced in [4].

Let {W,|ve V} be a family of vector spaces. Let ¥, be a finite subset of V. For
each v € V'\V, let x, be a nonzero vector in W,. For each finite subset S of ¥ con-
taining Vy, let Vg = Q,es W,; and if S = &', let fg: Wg — W, be defined by
Ries Wo = Rues Wy Qpesns X,» Then W = @, W,, the restricted tensor product
of the W, with respect to the x,, is defined by W = ind limg W. The space W
is spanned by elements written in the form w = @) w,, where w, = x, for almost
allve V.

The ordinary constructions with finite tensor products extend easily to restricted
tensor products.
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(1) Given linear maps B,: W, - W, such that B,x, = x, for almost all ve V,
then one can define B = QB,: W — W by B(@w,) = QBwW,.

(2) Given a family of algebras {4, | ve V} and given nonzero idempotents e, € 4,
for almost all v, then 4 = ),,4, is an algebra in the obvious way.

(3) If W, is an A,-module for each v € ¥ such that e, - x, = x, for almost all v,
then ®, W, is an 4-module. The isomorphism class of W depends on {x,}. How-
ever, if {x,} is another collection of nonzero vectors such that x, and x; lic on the
same line in W, for almost all v, then the 4-modules &), W, and &),; W, are iso-
morphic.

ExampPLE 1. The polynomial ring in an infinite number of variables
C[X;, Xa,...]is isomorphic to Q),, C[X], where e is the identity element of C[X}].

ExAMPLE 2. Let G = [[,G,be the restricted product of locally compact totally
disconnected groups G,, restricted with respect to the compact open subgroups
K,. Then G itself is locally compact and totally disconnected, and H(G) is isomor-
phic to ®., H(G,).

For each ve V let W, be an admissible G,-module. Assume that dimW%» = 1
for almost all v. Choosing for almost all v a nonzero vector x, € WX, we may form
the G-module W = ), W,. The isomorphism class of W is in fact independent of
the choice of x, e WX» and will be called the tensor product of the representations
W,. One sees that W is admissible, and that it is irreducible if and only if each W,
is. The admissible irreducible representations of G isomorphic to ones constructed
in this way are said to be factorizable.

THEOREM 2. Suppose that H(G,, K,) is commutative for almost all v. Then every
admissible irreducible representation W of G is factorizable, W ~ QW,. The iso-
morphism classes of the factors W, are determined by that of W. For almost all v,
dim Wk = 1.

ProOF. One first factorizes the finite dimensional spaces WX’ for compact open
subgroups K’ = [] K, of G, then continues as in the proof of Theorem 1. [

3. Let G be a connected reductive algebraic group over a global field F. Let 4
be the adele ring of F, and let ¥ be the set of places of F. The adelic group G(A)
is isomorphic to a restricted product [] x,G(F,), where the subgroups K, are defined
for all finite v and are certain maximal compact subgroups of G(F,). For almost all
finite v € ¥, G(F,) is a quasi-split group over F,, and K, is a special maximal com-
pact subgroup. For these places v, H(G(F,), K,) is commutative. See [5]. So the
function field case of the following theorem, whose meaning has yet to be explained
in the number field case, is a special case of Theorem 2.

THEOREM 3. Every admissible irreducible representation of G(A) is factorizable.
The factors are unique up to equivalence.

Let F be a number field. Then the class of admissible representations of G(A4)
has yet to be defined. For each archimedean place v € V, let K, be a maximal com-
pact subgroup of G(F,), and let g, be the real Lie algebra of G(F,). Let K, =
Mareh » Ky K = Tan» K,y and G, = [1.,0,G(F,). Let g, be the real Lie algebra of
G... Let A, be the ring of finite adeles of F.
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DEFINITION. An admissible G(A)-module W is a vector space W which is both a
(g K..)-module and a smooth G(4y)-module such that

(1) the action of G(4;) commutes with the action of g,, and K_,, and

(2) for each isomorphism class y of continuous irreducible representations of X,
the y-isotypic component of ¥ has finite dimension.

In Theorem 3, the factors at the archimedean places v are to be admissible
(g»» K,)-modules. The proof when F is a number field is the same as that when it
is a function field once an idempotented algebra is found for each archimedean
place v whose admissible modules are the same as admissible (g,, X,)-modules.

Let G be a Lie group, and let K be a compact subgroup. Let g and f be the real
Lie algebras of G and K. Let U(gc) and U(f;) be the universal enveloping algebras
of the complexified Lie algebras. Define the Hecke algebra H(g, K) of (g, K) to be
the algebra of left and right K-finite distributions on G with support in K. It con-
tains the algebra Ay of K-finite measures on K viewed as distributions on G. The
map (X, p) » X ufrom U(ge) x Ag to the space of distributions on G induces a
vector space isomorphism of U(ge) ®p ¢y Ax With H(g, K). With the set E of
central idempotents of Ay, H(g, K) is an idempotented algebra.

Let (z, W) be a (g, K)-module. By means of the formula X ® x - w = a(X)z()w
for X € U(ge), u € Ak, and w € W, the space W becomes a nondegenerate H(g, K)-
module. Moreover, it is not difficult to verify that this construction establishes an
isomorphism between the categories of admissible (g, K)-modules and of admissible
(H(g, K), E)-modules.

4. In practice, a more analytic theory than that described above is needed as well.

Let {H,|ve V} be a family of Hilbert spaces. For almost all ve V, let x, be a
unit vector in H,. The Hilbert restricted product H = @x” H,is a Hilbert space
which can be conveniently described by giving an orthonormal basis. Let P, be an
orthonormal basis for H, for each v € ¥ which extends {x,} for almost all v. The
set of symbols @h,, such that 4, e P, for all v and 4, = x, for almost all v is an
orthonormal basis for H. Constructions analogous to those described above with
reference to the ordinary restricted tensor product are available in the Hilbert space
context.

For the following theorem see [3] and [1].

THEOREM 4. Let G(A) be as in Theorem 3. Let © be a continuous irreducible unitary
Hilbert space representation of G(A). Then

(1) There exist continuous irreducible unitary Hilbert space representations w, of
G(F,), almost all of which are unramified, such that 7 ~ @7:,,. The factors =, are
unique up to isomorphism.

(2) For each isomorphism class y of continuous irreducible representations of K,
the y-isotypic component of © has finite dimension.

(3) The space of K-finite vectors of = is in a natural way an admissible irreducible
G(A)-module n¥. Let n& ~ Qnk be the factorization of n¥ given by Theorem 3.
Then X is isomorphic as an admissible G(F,)-module to the space of K ,-finite vectors

of @,



DECOMPOSITION OF REPRESENTATIONS 183
REFERENCES

1. I. N. Bernshtein, A/ reductive p-adic groups are tame, Functional Anal. Appl. 8 (1974), 91-93.

2. N. Bourbaki, Modules et anneaux semi-simples, Hermann, Paris, 1958.

3. 1. M. Gelfand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation theory and automorphic
functions, W. B. Saunders Co., Philadelphia, 1969.

4. H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol.
114, Springer-Verlag, Berlin and New York, 1970.

5. J. Tits, Reductive groups over local fields, these PROCEEDINGS, part 1, pp. 29-69.

DuUKE UNIVERSITY



	Frontmatter
	Reductive groups by T.A. Springer
	Reductive groups over local fields by J. Tits
	Representations of reductive Lie groups by N.R. Wallach
	Representations of $GL_{2}(R) and GL_{2}(C)$ by A.W. Knapp
	Normalizing factors, tempered...by A.W. Knapp and G. Zuckerman
	Orbital integrals for $GL_{2}(R)$ by D. Shelstad
	Representations of {german p}-adic groups: A survey by P. Cartier
	Cuspidal unramified series....by P. Gerardin
	Some remarks on the supercuspidal....by G. Lusztig
	Decomposition of representations into tensor products by D. Flath
	Classical and adelic automorphic forms.... by I. Piatetski-Shapiro
	Automorphic forms and automorphic....by A. Borel and H. Jacquet
	On the notion of an automorphic representation.... by R.P. Langlands
	Multiplicity one theorems by I. Piatetski-Shapiro
	Forms of $GL(2)$ from the analytic...by S. Gelbart and  H. Jacquet
	Eisenstein series and the trace formula by J. Arthur
	{Theta}-series and invariant theory by R. Howe
	Examples of dual reductive pairs by S. Gelbart
	On a relation between...cusp forms...by S. Rallis
	A counterexample to the "generalized ...by R. Howe and I.I. Piatetski-Shapiro

