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Abstract.
The fundamentals of  Lukasiewicz-Moisil logic algebras and their applica-

tions to complex genetic network dynamics and highly complex systems are
presented in the context of a categorical ontology theory of levels, Medical
Bioinformatics and self-organizing, highly complex systems. Quantum au-
tomata were broadly defined in refs.[2] and [3] as generalized, probabilistic
automata with quantum state spaces [1]. Their next-state functions operate
through transitions between quantum states defined by the quantum equations
of motions in the Schrödinger representation, with both initial and boundary
conditions in space-time. A new theorem is proven which states that the
category of quantum automata and automata–homomorphisms has both limits
and colimits. Therefore, both categories of quantum automata and classical
automata (sequential machines) are bicomplete. A second new theorem estab-
lishes that the standard automata category is a subcategory of the quantum
automata category. The quantum automata category has a faithful representa-
tion in the category of Generalized (M,R)–Systems which are open, dynamic
biosystem networks [4] with defined biological relations that represent physi-
ological functions of primordial(s), single cells and the simpler organisms. A
new category of quantum computers is also defined in terms of reversible quan-
tum automata with quantum state spaces represented by topological groupoids
that admit a local characterization through unique, quantum Lie algebroids.
On the other hand, the category of n–  Lukasiewicz algebras has a subcategory
of centered n–  Lukasiewicz algebras (as proven in ref. [15]) which can be em-
ployed to design and construct subcategories of quantum automata based on
n– Lukasiewicz diagrams of existing VLSI. Furthermore, as shown in ref.[15]
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the category of centered n– Lukasiewicz algebras and the category of Boolean
algebras are naturally equivalent. A ‘no-go’ conjecture is also proposed which
states that generalized (M,R)–systems complexity prevents their complete
computability (as shown in refs. [5]–[6]) by either standard, or quantum, au-
tomata.
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1. Algebraic Logic, Operational and Lukasiewicz Quantum Logic

As pointed out by Birkhoff and von Neumann as early as 1936, a logical
foundation of quantum mechanics consistent with quantum algebra is essen-
tial for both the completeness and mathematical validity of the theory. The
development of Quantum Mechanics from its very beginnings both inspired
and required the consideration of specialized logics compatible with a new
theory of measurements for microphysical systems. Such a specialized logic
was initially formulated by Birkhoff and von Neumann in 1936, and called
‘Quantum Logic’ (QL). However, in recent QL research several approaches
were developed involving several types of non-distributive lattice, and their
corresponding algebras, for n–valued quantum logics. Thus, modifications of
the  Lukasiewicz logic algebras that were introduced in the context of alge-
braic categories [14] by Georgescu and Popescu [15]– also recently reviewed
and expanded by Georgescu [16]– can provide an appropriate framework for
representing quantum systems, or in their unmodified form, for describing the
activities of complex networks in categories of  Lukasiewicz logic algebras [5].

There is nevertheless a serious problem remaining which is caused by the
logical inconsistency between any quantum algebra and the Heyting logic alge-
bra which has been suggested as a candidate for quantum logic. Furthermore,
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quantum algebra and topological approaches that are ultimately based on set-
theoretical concepts and differentiable spaces (manifolds) also encounter seri-
ous problems of internal inconsistency. Since it has been shown that standard
set theory which is subject to the axiom of choice relies on Boolean logic there
appears to exist a basic logical inconsistency between the quantum logic–which
is not Boolean–and the Boolean logic underlying all differentiable manifold ap-
proaches that rely on continuous spaces of points, or certain specialized sets
of elements. A possible solution to such inconsistencies is the definition of a
generalized Topos concept, and more specifically, of an Extended Quantum
Topos (EQT) concept which is consistent with both QL and Quantum Alge-
braic, Logic, thus being potentially suitable for the developing a framework
that may unify quantum field theories with ultra-complex system modeling
and Complex Systems Biology (CSB).

2. Lattices and Von Neumann-Birkhoff (VNB) Quantum Logic:
Definition and Some Logical Properties

We commence here by giving the set-based Definition of a Lattice. An s–
lattice L, or a ‘set-based’ lattice, is defined as a partially ordered set that has
all binary products (defined by the s–lattice operation “

∧
”) and coproducts

(defined by the s–lattice operation “
∨

”), with the ”partial ordering” between
two elements X and Y belonging to the s–lattice being written as “X � Y ”.
The partial order defined by � holds in L as X � Y if and only if X = X

∧
Y

(or equivalently, Y = X
∨
Y Eq.(3.1). A lattice can also be defined as a

category (see, for example, ref. [9]) subject to all ETAC axioms, (but not
subject, in general, to the Axiom of Choice usually encountered with sets
relying on (distributive) Boolean Logic), that has all binary products and all
binary coproducts, as well as partial ordering properties defined as follows:

(i) when unique arrows X → Y exist between objects X and Y in L such
arrows will be labelled by “� ”, as in “ X � Y ”;

(ii) the coproduct of X and Y , written as “X
∨
Y ” will be called the “sup

object, or “the least upper bound”, whereas the product of X and Y will be
written as “X

∧
Y ”, and it will be called an inf object, or “the greatest lower

bound”;
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(iii) the partial order defined by � holds in L, as X � Y if and only if
X = X

∧
Y (or equivalently, Y = X

∨
Y (p. 49 of [23]).

If a lattice L has 0 and 1 as objects, such that 0→ X → 1 (or equivalently,
such that 0 � X � 1 ) for all objects X in the lattice L viewed as a category,
then 0 and 1 are the unique, initial, and respectively, terminal objects of this
concrete category L. Therefore, L has all finite limits and all finite colimits
(p. 49 of ref. [23]), and is said to be finitely complete and co-complete, or
bicomplete. Alternatively, the lattice ’operations’ can be defined via functors
in a 2-category (see, for example, refs. [9], [13] and [22]).

3. Quantum Logic (LQL),  Lukasiewicz-Moisil (LM) and
Operator Algebras

With all truth ‘nuances’ or assertions of the type << system A is excitable
to the i-th level and system B is excitable to the j-th level >> one can define a
special type of lattice that subject to the axioms introduced by Georgescu and
Vraciu [15] becomes a n-valued  Lukasiewicz-Moisil, or LM -Algebra. Further
algebraic and logic details are provided in refs.[16] and [9].

In order to have the n-valued  Lukasiewicz-Moisil logic (LML) algebra repre-
sent correctly the basic behavior of quantum systems [7], [17] –which is usually
observed through measurements that involve a quantum system interactions
with a macroscopic measuring instrument– several of these axioms have to be
significantly changed so that the resulting lattice becomes non-distributive and
also (possibly) non-associative. Several encouraging results in this direction
were recently obtained by Dala Chiara and coworkers. With an appropriately
defined quantum logic of events one can proceed to define Hilbert, or ‘nu-
clear’/Frechet, spaces in order to be able to utilize the ‘standard’ procedures
of quantum theories [17].

On the other hand, for classical systems, modeling with the unmodified
 Lukasiewicz logic algebra can also include both stochastic and fuzzy behav-
iors. For examples of such models the reader is referred to a previous report
[5] where the activities of complex genetic networks are considered from a clas-
sical standpoint. One can also define as in [8] the ‘centers’ of certain types
of  Lukasiewicz n-logic algebras; then one has the following important theo-
rem for such centered  Lukasiewicz n-logic algebras which actually defines an
equivalence relation.
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The Logic Adjointness Theorem (Georgescu and Vraciu [15], Georgescu
[16]): There exists an Adjointness between the Category of Centered  Lukasiewicz
n-Logic Algebras, CLuk–n, and the Category of Boolean Logic Algebras (Bl).

Remarks
(1) The logic adjointness relation between CLuk–n and Bl is naturally

defined by the left- and -right adjoint functors between these two categories of
logic algebras.

(2) The natural equivalence logic classes defined by the adjointness re-
lationships in the above Adjointness Theorem define a fundamental, ‘logical
groupoid’ structure.

(3) In order to adapt the standard  Lukasiewicz-Moisil logic algebra to the
appropriate Quantum  Lukasiewicz-Moisil logic algebra, LQL, a few axioms of
LM-algebra need modifications, such as : N(N(X)) = Y 6= X (instead of the
restrictive identity N(N(X)) = X, whenever the context, ‘reference frame for
the measurements’, or ‘measurement preparation’ interaction conditions for
quantum systems are incompatible with the standard ‘negation’ operation N
of the  Lukasiewicz-Moisil logic algebra; the latter remains however valid for
classical or semi–classical systems, such as various complex networks with n-
states (cf. [5]). Further algebraic and conceptual details were provided in a
rigorous review by George Georgescu [16], and also in the recently published
reports, [5]–[6].

4. Quantum Automata and Quantum Computation

Quantum computation and quantum ‘machines’ (or nanobots) were much pub-
licized in the early 1980’ s by Richard Feynman (Nobel laureate in Physics for
Quantum Electrodynamics (QED)), and subsequently a very large number of
papers- too many to cite all of them here- were published on this topic by a
rapidly growing number of quantum theoreticians and some applied mathe-
maticians.

Two such specific definitions are briefly considered next. Quantum au-
tomata were defined in refs. [2] and [3] as generalized, probabilistic automata
with quantum state spaces. Their next-state functions operate through tran-
sitions between quantum states defined by the quantum equations of motions
in the Schrödinger representation, with both initial and boundary conditions
in space-time.
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A new theorem was proven which states that the category of quantum
automata and automata homomorphisms has both limits and colimits.

Therefore, both categories of quantum automata and classical automata
(sequential machines) are bicomplete. A second new theorem established that
the standard automata category is a subcategory of the quantum automata
category.

Definition 1. One obtains a simple definition of quantum automaton by
considering instead of the transition function of a classical sequential machine,
the (quantum) transitions in a finite quantum system with definite probabilities
determined by quantum dynamics. The quantum state space of a quantum
automaton is thus defined as a quantum groupoid over a bundle of Hilbert
spaces, or over rigged Hilbert spaces.

Formally, whereas a sequential machine A, or state machine with state
space S, input set I and output set O, is defined as a quintuple: (S, I, O, δ :
S × S → S, λ : S × I → O), a quantum automaton is defined by a triple
(H,∆ : H→ H, µ), where H is either a Hilbert space or a rigged Hilbert space
of quantum states and operators acting on H, and µ is a measure related to the
quantum logic, LM, and (quantum) transition probabilities of this quantum
system.

Remark.
Quantum computation becomes possible only when macroscopic blocks of

quantum states can be controlled via quantum preparation and subsequent,
classical observation. Obstructions to actually building, or constructing quan-
tum computers are known to exist in dimensions greater than 2 as a result
of the standard K-S theorem. Subsequent definitions of quantum comput-
ers reflect attempts to either avoid or surmount such difficulties often without
seeking solutions through quantum operator algebras and their representations
related to extended quantum symmetries which define fundamental invariants
that are key to actual constructions of this type of quantum computers.

Definition 2. Alternatively, aquantum automaton is defined as a quantum
algebraic topology object– the triplet (Gd, H − RGd

, Aut(G)), where Gd is a
locally compact quantum groupoid, H−RGd

are the unitary representations of
Gd on rigged Hilbert spaces RGd

of quantum states and quantum operators on
H, and Aut(Gd) is the transformation, or automorphism, groupoid of quantum
transitions.

Remark. Other definitions of quantum automata and quantum computa-
tions have also been reported that are closely related to recent experimental
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attempts at constructing quantum computing devices.

5. Applications of Quantum Automata to Modeling Complex
Systems

The quantum automata category has a faithful representation in the cat-
egory of generalized (M,R) -systems which are open, dynamic bio-networks
[6] with defined biological relations that represent physiological functions of
primordial(s), single cells and the simpler organisms. A new category of quan-
tum computers is also defined in terms of reversible quantum automata with
quantum state spaces represented by topological groupoids that admit a lo-
cal characterization through unique ‘quantum’ Lie algebroids. On the other
hand, the category of n- Lukasiewicz algebras has a subcategory of centered
n-  Lukasiewicz algebras [15] (which can be employed to design and construct
subcategories of quantum automata based on n- Lukasiewicz diagrams of ex-
isting VLSI. Furthermore, as shown in ref. [15] the category of centered
n- Lukasiewicz algebras and the category of Boolean algebras are naturally
equivalent.

Variable machines with a varying transition function were previously dis-
cussed informally by Norbert Wiener as a possible model for complex biological
systems although how this might be achieved in Biocybernetics has not been
specifcally, or mathematically presented by Wiener.

A ‘no-go’ conjecture was also proposed which states that generalized (M,R)–
systems complexity prevents their complete computability by either standard
or quantum automata. Note however that simple (M,R)-systems [19],[20] are
representable as standard automata [21].

The concepts of quantum automata and quantum computation were ini-
tially studied and are also currently further investigated in the contexts of
quantum genetics, genetic networks with nonlinear dynamics, and bioinfor-
matics. In a previous publication [2]– after introducing the formal concept
of quantum automaton–the possible implications of this concept for correctly
modeling genetic and metabolic activities in living cells and organisms were
also considered. This was followed by a formal report on quantum and ab-
stract, symbolic computation based on the theory of categories, functors and
natural transformations [3]. The notions of topological semigroup, quantum
automaton,or quantum computer, were then suggested with a view to their
potential applications to the analogous simulation of biological systems, and
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especially genetic activities and nonlinear dynamics in genetic networks. Fur-
ther, detailed studies of nonlinear dynamics in genetic networks were carried
out in categories of n-valued,  Lukasiewicz Logic Algebras that showed signif-
icant dissimilarities [6] from the widespread Boolean models of human neural
networks that may have begun with the early publication of [18]. Molecu-
lar models in terms of categories, functors and natural transformations were
then formulated for uni-molecular chemical transformations, multi-molecular
chemical and biochemical transformations [7]. Previous applications of com-
puter modeling, classical automata theory, and relational biology to molecular
biology, oncogenesis and medicine were extensively reviewed and several impor-
tant conclusions were reached regarding both the potential and limitations of
the computation-assisted modeling of biological systems, and especially com-
plex organisms such as Homo sapiens sapiens [8], [9], [10]. Novel approaches
to solving the realization problems of Relational Biology models in Complex
System Biology are introduced in terms of natural transformations between
functors of such molecular categories. Several applications of such natural
transformations of functors were then presented to protein biosynthesis, em-
bryogenesis and nuclear transplant experiments. Other possible realizations in
Molecular Biology and Relational Biology of organisms were then suggested in
terms of quantum automata models of Quantum Genetics and Interactomics.
Future developments of this novel approach are likely to also include: fuzzy
relations in Biology and Epigenomics, Relational Biology modeling of Complex
Immunological and Hormonal regulatory systems, n-categories and generalized
LM–Topoi of  Lukasiewicz Logic Algebras and intuitionistic logic (Heyting) al-
gebras for modeling nonlinear dynamics and cognitive processes in complex
neural networks that are present in the human brain, as well as stochastic
modeling of genetic networks in  Lukasiewicz Logic Algebras (LLA).

Remark. Previous applications of computer modeling, classical automata
theory, and relational biology to molecular biology, neural networks, oncoge-
nesis and medicine were extensively reviewed in a previous monograph and
several important conclusions were reached regarding both the potential and
the severe limitations of the algorithm driven, recursive computation-assisted
modeling of complex biological systems [6].

6. Conclusions

Non-distributive varieties of many-valued, LM-logic algebras that are also non-
commutative open new possibilities for formal treatments of both complex
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quantum systems and highly complex biological networks, such as genetic
nets, metabolic-replication systems (see for example refs. [19]–[21]), the in-
teractome and neural networks [6]. This novel approach that involves both
Algebraic Logic and Category Theory, provides an important framework for
understanding the complexity inherent in intelligent systems and their flexible,
adaptive behaviors. A consequence of the Logical Adjointness Theorem– which
defines categorically the natural equivalence between the category of centered
LM-logic algebras and that of Boolean logic algebras– is that one may be able
to define Artificial Intelligence analogs of neural networks based on centered
LM-logic algebras. In this process, higher dimensional algebra (HDA; [12]-[13])
and categorical models of human brain dynamics (refs. [8]–[11]) were predicted
to play a central role. These new approaches are also relevant for resolving the
tug-of-war between nature-vs.-nurture theories of human development and the
‘natural’ emergence through co-evolution of intelligence in the first H. sapiens
sapiens societies.
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Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).

[2] I.C. Baianu.1971a. Organismic Supercategories and Qualitative Dy-
namics of Systems. Bull. Math.Biophysics., 33, 339-353.

[3] I.C. Baianu. 1971b. “Categories, Functors and Quantum Algebraic
Computations”, Proceed. Fourth Intl. Congress LMPS, September 1-4, 1971,
University of Bucharest.

[4] I.C. Baianu. 1973. Some Algebraic Properties of (M,R)-Systems in
Categories. Bull. Math. Biophys, 35: 213-218.

[5] I.C. Baianu. 1977. A Logical Model of Genetic Activities in  Lukasiewicz
Algebras: The Non-linear Theory.” Bulletin of Mathematical Biology, 39:249-
258 (1977).

[6] I.C. Baianu. 1987. Computer Models and Automata Theory in Biology
and Medicine(A Review). In: Mathematical Models in Medicine.,vol.7., M.
Witten, Ed., Pergamon Press: New York, pp.1513-1577.

[7] I.C. Baianu. 2004. Quantum Nano-Automata (QNA): Microphysical
Measurements with Microphysical QNA Instruments, CERN Preprint EXT-
2004-125.

9



Baianu et al. LM Many-Valued Logic Algebras

[8] I. C. Baianu, R. Brown and J. F. Glazebrook. 2007a. Categorical
ontology of complex spacetime structures: the emergence of life and human
consciousness, Axiomathes 17: 223-352.

[9] R. Brown, I. C. Baianu, and J. F. Glazebrook. 2007b. A concep-
tual construction of complexity levels theory in spacetime categorical ontology:
non-abelian algebraic topology, many-valued logics and dynamic systems, Ax-
iomathes 17: 409-493.

[10] I. C. Baianu, R. Brown and J. F. Glazebrook. 2009. Categorical On-
tology of Complex Systems, Meta-levels and levels: The Emergence of life,
Human Consciousness and Society’. In: “Theory and Applications of Ontol-
ogy.” vol.1, R. Poli, et al., eds., Springer, Berlin (in press).

[11] R. Brown, and T. Porter. 2003. Category theory and higher dimen-
sional algebra: potential descriptive tools in neuroscience, Proceedings of the
International Conference on Theoretical Neurobiology, Delhi, February 2003,
edited by Nandini Singh, National Brain Research Centre, Conference Pro-
ceedings, vol 1, 80-92.

[12] R. Brown. 2004. Crossed complexes and homotopy groupoids as non
commutative tools for higher dimensional local-to-global problems, Proceedings
of the Fields Institute Workshop on Categorical Structures for Descent and
Galois Theory, Hopf Algebras and Semiabelian Categories, September 23-28,
Fields Institute Communications 43: 101-130.

[13] R. Brown, K.A. Hardie, K.H. Kamps and T. Porter. 2002. A homotopy
double groupoid of a Hausdorff space, Theory and Applications of Categories
10 (2002) 71-93.

[14] G. Georgescu and D. Popescu. 1968. On Algebraic Categories, Revue
Roumaine de Mathematiques Pures et Appliquées 13: 337-342.

[15] G. Georgescu and C. Vraciu. 1970. On the Characterization of
 Lukasiewicz Algebras. J. Algebra, 16 (4), 486-495.

[16] G. Georgescu. 2006. N-valued Logics and  Lukasiewicz–Moisil Alge-
bras, Axiomathes 16 (1–2): 123–136.

[17] N. P. Landsman : Mathematical topics between classical and quantum
mechanics. Springer Verlag, New York, 1998.

[18] McCullough, E. and M. Pitts.1945. Bull. Math. Biophys. 7, 112-145.
[19] R. Rosen. 1958. “The Representation of Biological Systems from the

Standpoint of the Theory of Categories.”, Bull. Math. Biophys., 20, 317-341.
[20] R. Rosen. 1973. On the Dynamical realization of (M,R)-Systems.

Bull. Math. Biology., 35:1-10.

10



Baianu et al. LM Many-Valued Logic Algebras

[21] M. Warner. 1982. Representations of (M,R)-Systems by Categories of
Automata., Bull. Math. Biol., 44: 661-668.

[22] Mac Lane, S. 2000. Categories for the Working Mathematician. Springer:
New York, Berlin and Heidelberg.

[23] Mac Lane, S. and I. Moerdijk. 1992. Sheaves in Geometry and Logic.
A first introduction in topos theory. New York: Springer-Verlag.

I. C. Baianu, PhD, Professor, ACES College and NPRE Department, Univer-
sity of Illinois at Urbana-Champaign, Urbana IL 61801, USA

email:ibaianu@illinois.edu

James. F. Glazebrook, PhD, Professor, Department of Mathematics and Com-
puter Science, Eastern Illinois University, Charleston IL 61920, USA.
email: jfglazebrook@eiu.edu

Ronald Brown, PhD., Professor School of Informatics, University of Wales,
Dean St. Bangor, Gwynedd LL57 1UT UK.

email: r.brown@bangor.ac.uk

George Georgescu, PhD, Professor Department of Mathematics, Bucharest
University, Romania email: ggeorgescu@ubuc.edu

11


