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N–VALUED LOGICS AND  LUKASIEWICZ–MOISIL ALGEBRAS

G. GEORGESCU

Abstract. Fundamental properties of N–valued logics are compared and eleven theorems

are presented for their Logic Algebras, including  Lukasiewicz–Moisil Logic Algebras repre-

sented in terms of categories and functors. For example, the Fundamental Logic Adjunction

Theorem allows one to transfer certain universal, or global, properties of the Category

of Boolean Algebras, B, (which are well-understood) to the more general category LMn

of  Lukasiewicz–Moisil Algebras. Furthermore, the relationships of LMn–algebras to other

many-valued logical structures, such as the n–valued Post, MV and Heyting logic algebras,

are investigated and several pertinent theorems are derived. Applications of  Lukasiewicz–

Moisil Algebras to biological problems, such as nonlinear dynamics of genetic networks–that

were previously reported–are also briefly noted here, and finally, probabilities are precisely

defined over LMn–algebras with an eye to immediate, possible applications in biostatistics.

1. Introduction

Many–valued logics are non–classical logics. They differ significantly from classical logic

by not restricting the number of truth values to only two, thus allowing for a larger class of

‘degrees of truth’. However, they share with classical logic the acceptance of the principle of

truth-functionality, i.e. the ‘truth’ value of a compound sentence is determined by the ‘truth’

values of its component sentences. An overview of n–valued logics, and especially logic alge-

bras, will be here presented. The relationships of LMn–algebras to other many-valued logical
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structures are here investigated in the context of logic algebras, such as the n–valued Post,

MV and Heyting logic algebras. Several pertinent theorems are also presented in this article

and their proofs are briefly outlined. Functorial semantics of algebraic theories (Lawvere,

1963) are relevant in this context even though their pertinent axioms differ substantially from

those defining the logic algebras considered here. Further developments may also include for

example higher order categorical logic (Lambek and Scott, 1986) algebras.

The applications of many–valued logics to other areas of science such as biology, proba-

bility theory and statistics will also be considered here briefly. Since the original paper by

Baianu (1977) on genetic network nonlinear dynamics, the first report of the ‘non–standard’

logic required by complete self-reproduction (Löfgren, 1968), and the earliest seminal papers

on Category Theory applications in Relational Biology by Rosen (1958a,b), n–valued logics

have attracted the increasing interest of mathematical biologists because of their important

applications in theoretical genetics and neurosciences (see for example the contribution by

Baianu et al, 2005 presented in this volume, as well as the very popular books by Rosen, 1991,

1999 aimed at defining the special logic entailed by life itself ). On the other hand, Boolean

logic has already had a long history of applications to modeling of neuronal networks, begin-

ning with the early paper of McCulloch and Pitts (1943); its applications to automata and

computer science are well–established and also quite numerous. Finally, we shall here con-

sider the definition of probabilities over LMn–algebras with an eye to immediate applications

to ‘fuzzy’ systems, Biostatistics, and perhaps also other areas of Logical–Mathematical, or

Relational, Biology.

2. N-valued Logics and  Lukasiewicz–Moisil algebras

Definition 1. (Moisil, 1941, cited in Moisil, 1972) An n–valued  Lukasiewicz–Moisil algebra,

(LMn–algebra) is a structure of the form (L,∨,∧, N, (ϕi)i∈{1,...,n−1}, 0, 1) such that:

(L1) (L,∨,∧, N, 0, 1) is a de Morgan algebra, that is, a bounded distributed lattice with a

decreasing involution N satisfying the de Morgan property N(x ∨ y) = Nx ∧Ny;

(L2) For each i ∈ {1, . . . , n− 1}, ϕi : L−→L is a lattice endomorphism;∗

∗The ϕi’s are called the Chrysippian endomorphisms of L.
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(L3) For each i ∈ {1, . . . , n− 1}, x ∈ L, ϕi(x) ∨Nϕi(x) = 1 and ϕi(x) ∧Nϕi(x) = 0;

(L4) For each i, j ∈ {1, . . . , n− 1}, ϕi ◦ ϕj = ϕk iff (i+ j) = k;

(L5) For each i, j ∈ {1, . . . , n− 1}, i 6 j implies ϕi 6 ϕj;

(L6) For each i ∈ {1, . . . , n− 1} and x ∈ L, ϕi(Nx) = Nϕn−i(x).

(L7) (Moisil’s determination principle)

[∀i ∈ {1, . . . , n− 1}, ϕi(x) = ϕi(y)] implies x = y.

Example 2.1. . Let Ln = {0, 1/(n− 1), . . . , (n− 2)/(n− 1), 1}. This set can be naturally

endowed with an LMn –algebra structure as follows:

- the bounded lattice operations are those induced by the usual order on rational numbers;

- for each j ∈ {0, . . . , n− 1}, N(j/(n− 1)) = (n− j)/(n− 1);

- for each i ∈ {1, . . . , n − 1} and j ∈ {0, . . . , n − 1}, ϕi(j/(n − 1)) = 0 if j < i and = 1

otherwise.

Note that, for n = 2, Ln = {0, 1}, and there is only one Chrysippian endomorphism of

Ln is ϕ1, which is necessarily restricted by the determination principle to a bijection, thus

making Ln a Boolean algebra (if we were also to disregard the redundant bijection ϕ1).

Hence, the ‘overloaded’ notation L2, which is used for both the classical Boolean algebra

and the two–element LM2–algebra, remains consistent.

Example 2.2. Consider a Boolean algebra (B,∨,∧, −, 0, 1). Let T (B) = {(x1, . . . , xn) ∈

Bn−1 | x1 6 . . . 6 xn−1}. On the set T (B), we define an LMn-algebra structure as follows:

- the lattice operations, as well as 0 and 1, are defined component–wise from L2;

- for each (x1, . . . , xn−1) ∈ T (B) and i ∈ {1, . . . , n− 1} one has:

N(x1, . . . xn−1) = (xn−1, . . . , x1) and ϕi(x1, . . . , xn) = (xi, . . . , xi).

The following result establishes the relationship between the structures L2 and Ln.

Proposition 1. The LMn-algebras Ln and T (L2) are isomorphic.

Remark 1.  Lukasiewicz utilized two principal logical connectives, the implication → and

the negation ¬, defined by x→ y = min(1, 1− x + y) and ¬x = 1− x. Based on these two
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connectives, one can also introduce all the other connectives needed to define the  Lukasiewicz

logics: x ∨ y = (x→ y)→ y = (y → x)→ x, and x ∧ y = N(Nx ∨Ny).

Alan Rose (1956, 1962) noticed that for n > 5, L′n = {0, 1/(n − 1), (n − 2)/(n − 1), 1} –

which is an LMn–subalgebra of Ln, is no longer closed under the  Lukasiewicz’s implication:

(n−2)/(n−1)→ 1/(n−1) = 2/(n−1) 6∈ L′n. This fact shows that for n > 5 the LMn–algebras

are no longer suitable algebraic models for  Lukasiewicz’s logics, although, as we shall soon

discuss, they are suitable for n ∈ {3, 4}. Related studies were also carried out previously by

Rose and Rosser (1958), and earlier still by Rosser and Turquette (1952). Subsequently, the

logics represented by the LMn–structures were called Moisil logics and were studied for their

own sake, as an alternative many–valued extension of classical logic. Further formalisations

of the N0–valued  Lukasiewicz logics were also carried out subsequently by Rose (1978) for

the development of a suitable propositional calculus.

Proposition 2. The LMn–algebras form a variety, the determination principle being re-

placeable by the following conditions:

- x ∧Nϕi(x) ∧ ϕi+1(y) 6 y, for each i ∈ {1, . . . , n− 1};

- ϕ1(x) 6 x 6 ϕn−1(x);

- x ∧
∧
i∈{1,...,n}Nϕi(x) ∨ ϕi(y) 6 y.

We now turn to a detailed consideration of the relationship between LMn– and Boolean

algebras. For each LMn–algebra, L, we define its Boolean center C(L) as the set of all

complemented elements of L: C(L) = {x ∈ L / x ∨ Nx = 1}. One can easily see that, for

each x ∈ L, the following equivalencies hold:

x ∈ C(L) iff x∧Nx = 0 iff ∃i ∈ {1, . . . , n−1}, ϕi(x) = x iff ∀i ∈ {1, . . . , n−1}, ϕi(x) = x

iff ∃i ∈ {1, . . . , n− 1}, ∃y ∈ L, ϕi(y) = x.

Definition 2. An LMn-algebra is called centered if there exist d2, . . . , dn−1 ∈ L such that:

(1) ϕi(dj) =

 1 , if j 6 i

0 , if j > i
, for each i, j ∈ {1, . . . , n− 1}.
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(Note that, provided d2, . . . , dn−1 exist, by the determination principle, it follows that

dn−1 6 dn−2 6 . . . 6 d2.)

Let LMn, CLMn, B denote the categories of LMn–, centered LMn–, and Boolean algebras

respectively, with usual algebra homomorphisms as arrows. The following result establishes

an important link between the categories LMn and B, and points to the “categorical image”

CLMn of the extension from the Boolean to the  Lukasiewicz–Moisil algebras.

Theorem 2.1. (The Fundamental Logic Adjunction Theorem)

Let C : LMn−→B and T : B−→LMn be the two functors defined by:

- for each LMn–algebra L, C(L) is the Boolean center of L (which is a Boolean algebra);

- for each LMn–morphism f : L−→L′, C(f) : C(L)−→C(L′) is the restriction and co–

restriction of f to C(L) and C(L′);

- for each Boolean algebra B, T (B) is the already defined LMn–algebra;

- for each Boolean morphism g : B−→B′, T (g) : T (B)−→T (B′) is defined by T (g)(u) = g◦u

for all u ∈ T (B).

Then, the following statements are valid:

(1) C is faithful and T is full and faithful ;

(2) C is a left adjoint (Kan, 1958) of T , where the unit η and the counit ε are given by: for

each LM algebra L and Boolean algebra B,

- ηL : L−→TC(L), ηL(x)(i) = ϕi(x), for all x ∈ L and i ∈ {1, . . . , n− 1}.

- εB : CT (B)−→B, εB(u) = u(1) for all u ∈ CT (B).

(3) ηL is always a LM embedding and εB a Boolean isomorphism;

(4) For every Boolean algebra B, T (B) is a centered LM algebra and

(CLMn
C−→ B,B T−→ CLMn)

is an equivalence of categories.
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This fundamental theorem allows one to transfer certain universal, or global, properties

of B (which are well-understood) to the more general category LMn. The following result

will illustrate the transfer procedure:

Theorem 2.2. (Moisil’s Representation Theorem) For each LMn–algebra L there exists a

non–empty set X and an LMn–monomorphism L−→LnX .

Sketch of proof: The first step is to consider the Boolean center C(A) of A, to which one

can apply the Stone Representation Theorem in order to find both a non–empty set X and a

Boolean monomorphism d : C(L)−→L2
X . The second step consists in applying the functor

T to obtain the following natural sequence of monomorphisms and isomorphisms in LMn:

L
ηL−→ T (C(L))

T (d)−→ T (L2
X) ' T (L2)

X ' Ln
X ; this gives by composition an effective

construction based on d of an LMn–monomorphism between L and LXn .

Moisil’s Representation Theorem plays an important role in the theory of LMn–algebras,

similar to that of Stone’s Representation Theorem for the case of Boolean algebras. Namely,

it reduces the problem of LMn– algebraic calculus to the computation in Ln, which is readily

programmable.

Remark 2. Ln is meant to represent the set of truth values for an n–valued logic. There-

fore one can think of an LMn–algebra as the “set of propositions considered up to logical

equivalence”, or more precisely, as the Lindenbaum algebra for such a logic. The algebraic

operations are simply “translations” of the logical ones, and the corresponding logical no-

tations are therefore also preserved. Whereas in the  Lukasiewicz logic everything centers

around implication, in the Moisil logic, the lattice structure serves as the site for the actions

of the Chrysippian endomorphisms. Thus, to a single proposition p in the n–valued Moisil

logic, there correspond (n− 1) propositions in Boolean logic, ϕ1(p), . . . , ϕn−1(p), called the

nuances (shades of meaning) of p. The principle of determination described in axiom (L7)

shows that two propositions are equivalent if and only if their nuances are equivalent in the

Boolean logic. Hence an n–valued proposition is perfectly determined by all its nuances.

Notably, the nuances appear at two distinct levels:
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(i) that of truth values;

(ii) that of logical inference (or, equivalently, that of algebraic calculus).

Moisil’s Representation Theorem ensures the possibility of formulating axioms for a Moisil

logic that is complete in the sense of representing Ln.

3. Relationships of LMn–algebras to other many–valued logical

structures

In this section we shall consider in some detail the relationships of LMn–algebras to

n–valued Post algebras, Heyting algebras (of intuitionistic, Brouwerian logic), and MV–

algebras.

N–valued Post algebras. N–valued Post algebras were introduced by Rosenbloom (1962)

as algebraic counterparts of n–valued Post logic. In a seminal 1941 publication (cited in

Moisil, 1972), Moisil introduced the definition of trivalent centered algebras for  Lukasiewicz

logic, and these were extended by Georgescu and Vraciu (1970) to the already mentioned

centered LMn–algebras. Subsequently, it was shown by Cignoli (1977) that the latter are

equivalent to the n–valued Post algebras.

Definition 3. An n–valued Post algebra is a structure of the form (L,∨,∧, N, 0, 1, c1, . . . , cn−2),

where c1, . . . , cn−2 are constants, such that:

(1) (L,∨,∧, N, 0, 1) is a de Morgan algebra;

(2) 0 6 c1 6 . . . 6 cn−2 6 1;

(3) every x ∈ L can be uniquely represented in the form x = (b1∧c1)∨. . .∨(bn−2∧cn−2)∨bn−1 ,

with b1, . . . , bn−1 ∈ C(L) , bn−1 6 . . . 6 b1 (where C(L) is defined as for LM algebras, being

in fact the Boolean center of the de Morgan algebra L).†

Let Postn, denote the category of n–valued Post algebras with the usual algebra homo-

morphisms as arrows.

†Of course, the coefficients bi depend on x.
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Proposition 3. (1) Any centered LMn-algebra becomes an n–valued Post algebra with the

same underlying set if we define, for each i ∈ {1, . . . , n − 2}, ci = dn−i. (Then, for each

element x and i ∈ {1, . . . , n− 1}, the coefficient bi is ϕn−i(x).)

(2) Any n–valued Post algebra becomes a centered LMn–algebra with the same underlying

set if we define, for each i ∈ {2, . . . , n− 2}, di = cn−i.

(3) The above two mappings, taken together with the identity morphisms, yield an iso-

morphism of categories between Postn and CLMn.

Theorem 3.1. (1) Postn is a subcategory of LMn, and the inclusion functor Postn−→LMn

has a left adjoint;

(2) Postn and B are equivalent categories.

Remark 3. The process of modeling a logical system algebraically occurs at two distinct

levels:

(i) a local level, based on the assumption that one can use the internal structure of the

corresponding logic algebras that are employed to derive logical inferences;

(ii) a global level, which is developed by taking into account the higher dimensional algebra

represented by the category of all the initially defined logic algebras.

Theorem 3.1 shows that the behavior of a logical system is not completely determined by

its properties at the global level, even though B and Postn are equivalent in the categorical

sense. The actual behavior of n–valued Post logic is clearly distinct to, and richer than, that

of Boolean logic. Therefore, one concludes that a complete study of logical systems must

include both a global and a local analysis of their properties.

MV–algebras. MV–algebras were introduced by Chang in 1958 as algebraic models for the

 Lukasiewicz–Tarski infinitely–valued logic.

Definition 4. An MV–algebra is a structure (A,⊕, −, 0), where ⊕ is a binary operation, −

is unitary, and 0, 1 are constants, satisfying the following axioms:

(M1) (A,⊕, 0) is a commutative monoid ;

(M2) x = x ;
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(M3) x⊕ 0 = 0 ;

(M4) x⊕ y ⊕ y = y ⊕ x⊕ x .

We let 1 denote 0 and x � y denote x⊕ y. Then the axioms (M3) and (M4) can be

rewritten as x ⊕ 1 = 1 and (x � y) ⊕ y = (y � x) ⊕ x. Moreover, if we further denote

x ∨ y = (x� y)⊕ y and x ∧ y = (x⊕ y)� y, we obtain the following:

Proposition 4. The structure (A,∨,∧, 0, 1) is a bounded distributive lattice.

Example 3.1. The standard MV–algebra is L∞ = ([0, 1],⊕, −, 0), where ⊕ and − are defined

by: x⊕ y = min(x+ y, 1) and x = 1− x for all x, y ∈ [0, 1].

Theorem 3.2. (Chang’s Representation Theorem, 1958) Any MV–algebra is isomorphic to

a subdirect product of MV–chains (i.e., totally–ordered MV–algebras).

The above result reduces the algebraic calculus of MV–algebras to the much simpler one

of MV–chains. In fact, one can prove that the class of MV–algebras is generated both as

a variety and as a quasi–variety by L∞; hence, the computation reduction is even more

substantial in the algebraic calculus of L∞.

Theorem 3.3. (Mundici, 1986) The category of MV–algebras is equivalent to the category

of lattice–ordered Abelian groups with a strong unit.

Definition 5. (Grigolia, 1978). An MVn–algebra is an MV–algebra A subject to the follow-

ing additional requirements:

(M5) (n− 1)x = nx;

(M6) (jxj−1)n = nxj for each j ∈ {2, . . . , (n− 2)} such that j does not divide (n− 1).

It was shown that MVn–algebras are equivalent – in the categorical sense – to a subclass

of LMn–algebras which was introduced by R. Cignoli in 1977, the subclass of proper LMn–

algebras.

One also has the following important result:
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Theorem 3.4. For n ∈ {3, 4}, the category LMn is isomorphic to the category of MVn–

algebras.

This categorical result shows the fact that, for the “multi–value degrees” 3 and 4, the

Moisil logic actually coincides with the corresponding  Lukasiewicz logic. A very interesting,

and rather unexpected, result is that the class of n–valued Post algebras can be seen as an

infinitely axiomatizable subvariety of the class of MV–algebras.

Theorem 3.5. The n–valued Post algebras are polynomially equivalent to the MVn–algebras.

Heyting algebras. We already noted that the  Lukasiewicz implication cannot be defined

in an LMn–algebra when n > 5. On the other hand, one can always define on a LMn–

algebra L the following implication operator, called the Heyting implication: x ⇒ y =

y ∨
∧(n−1)
i=1 Nϕi(x) ∨ ϕi(y).

Theorem 3.6. The structure (L,∨,∧,⇒, 0, 1) is a Heyting algebra (for Brouwerian intu-

tionistic logic).

In the light of the above result, and from a purely logical standpoint, the Moisil logics

could also be developed within the framework of Brower’s intuitionistic logic.

Proposition 5. The “forgetful” functor between the categories of LMn–algebras and of

Heyting algebras, given by: (L,∨,∧, N, (ϕi)i∈{1,...,n−1}, 0, 1) 7→(L,∨,∧,⇒, 0, 1), is full and

faithful, and it also has a left adjoint.

4. Defining probabilities over LMn–algebras

The classical theory of probabilities began by developing two fundamental concepts:

(i) the field of events associated to random experiments;

(ii) the definition of probability based on Kolmogorov axiomatics.

The set of events is classically assumed to have the structure of a Boolean algebra when

the random experiments follow the laws of classical logic, as this is the case for classical

statistical mechanics or relativistic theories of classical stochastic processes. On the other
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hand, we can consider situations, as encountered in quantum theories, when the random

experiments seem to be governed by many–valued logics. In such situations, the set of

events could be structured by an associated  Lukasiewicz–Moisil algebra. The natural next

step in many–valued probability theory is then to provide an axiomatic basis, by defining

the notion of probability on a  Lukasiewicz–Moisil algebra.

Definition 6. A probability over a LMn–algebra L (the latter representing the “set of

events”) is a function s : L−→[0, 1] such that the following properties are valid:

(P1) s(x ∨ y) + s(x ∧ y) = s(x) + s(y) for all x, y ∈ L;

(P2) s(x) = 1/(n− 1)[s(ϕ1x) + . . .+ s(ϕn−1x)] for all x ∈ L;

(P3) s(0) = 0 and s(1) = 1.

Remark 4. s | C(L)– the restriction of s to the Boolean center of L– is a classical probability

over C(L).

Theorem 4.1. Any classical probability m : C(L)−→[0, 1] over the Boolean center of an

LMn–algebra L has a unique extension to a probability s : L−→[0, 1] defined over L.

The above theorem shows that any probability defined over an LMn–algebra is determined

by the restriction to its Boolean center.

Let s be a probability over an LMn–algebra L and a ∈ L such that s(a) > 0. Then we

define the functions s(· |a) : L−→[0, 1] by setting:

s(x |a) =
1

(n− 1)s(a)

(n−1)∑
i=1

s(x ∧ ϕia) = 1/[(n− 1)s(a)]
n−1∑
i=1

s(ϕix ∧ a) .

The function s(· |a) thus defined is called a conditional probability.

Remark 5. If a ∈ C(L), then s(x | a) = s(x ∧ a)/s(a) for all x ∈ C(L), thus one recovers

the conditional probability defined classically over a Boolean algebra.

Proposition 6. If s is a probability over L and a ∈ L such that s(a) > 0, then s(· | a) is

also a probability over L.
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Definition 7. An LMn–algebra L is said to be σ–complete if it is so as a lattice, i.e., all

countable sequences in L have suprema and infima in L. For each subset L′ of L, we let

S(L′) denote the σ–complete sub–LMn-algebra of L generated by L′.

Definition 8. A probability s over a σ–complete LMn–algebra L is called:

- a σ-probability, if s(
∨∞
k=1 xk) =

∑∞
k=1 s(xk) for each sequence (xk)k ⊆ L such that

xk ∧ xl = 0 whenever k 6= l;

- continuous, if
∨∞
k=1 xk = x implies limk→∞ s(xk) = s(x) for each increasing sequence

(xk)k ⊆ L and each x ∈ L.

Theorem 4.2. Let L be a σ–complete LMn–algebra and L′ a sub-LMn-algebra of L. Then

any continuous state on L′ can be uniquely extended to a σ-state on S(L′).

Theorem 4.3. Let s be a probability (σ–probability) over an LMn–algebra L. Then there is

a unique probability (σ–probability) s∼ over T (C(L)) such that s(x) = s∼(ϕ1x, . . . , ϕn−1x)

for all x ∈ L.

∼=≡ w̃
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