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Abstract

The paper develops a study of order convergence in Lukasiewicz-Moisil algebras. An ax-
iomatical notion of distance (covering the pointwise and the Heyting distances) is provided,
together with an associated notion of Cauchy sequence. Under natural hypotheses, it is proven
the existence of Cauchy completions. It is analysed the connection to Boolean algebras along
the canonical adjunction. The special class of proper LM,,-algebras with Lukasiewicz dis-
tance is also investigated. Finally, we provide characterizations for the Cauchy completions
corresponding to some particular class of axiomatic distances.

Keywords: Lukasiewicz-Moisil algebra, order convergence, distance, Cauchy completion, proper
algebra, MV, -algebra.

1 Introduction

Lukasiewicz-Moisil algebras (LM-algebras for short) were introduced by Moisil back in the early
fourties, in [18] (the 3 and 4-valued versions) and in [19] (the general, n-valued version), under
the name ” Lukasiewicz algebras”, as an algebraic counterpart of the corresponding multi-valued
logics of Lukasiewicz. These structures generalize Boolean algebras in the sense of not forcing
elements, regarded as truth values, to satisfy the tertium non datur priciple; but still allowing, for
each element, a total hierarchy of n Boolean (or Chryssippian) nuances, to which it is reducible.
The study of these structures was stimulated both by their logical and technical applications (to
electric circuits). There exists a significant amount of literature dedicated to Lukasiewicz-Moisil
algebras - the monography [2] collects an important part of these results.
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Unlike other structures derived from logic that generalize Boolean algebras (like residuated lat-
tices or Boolean algebras), Lukasiewicz-Moisil algebras share with Boolean algebras (and with MV-
algebras, some other ” Lukasiewicz’s algebras”) the symmetrical structure. Consequently, diverse
”implicative” LM-operators, with their associated ”iff” operators, provide, by dualization, ” metri-
cal” operators, that is binary commutative operators with properties similar to those of classical
distances - hence the virtual topological dimension of LM-algebras, with fundamentally different
agenda then the logical dimension. Metrical and topological study of logic-derived algebras has
important antecedents. Different kinds of convergence in Boolean algebras were treated in [16] and
[25]; also, MV-algebraic convergence made the subject of [13] and [5]. All these were paralleled
by convergence and completion results for traditionally metrical and ”completable” structures, like
distributive lattices [3], or lattice-ordered groups [23], [25], [4].

The present work comes to join the above series of papers, by studying order convergence in LM-
algebras. Due to their mentioned symmetrical structure, LM-algebras provide a ” good colaboration”
between distance and order, which makes that the notion of Cauchy sequence be very natural in
the context of order convergence. The paper is structured as follows:

Section 2 establishes the notations and reminds some basic facts about LM-algebras.

Section 3 initiates a study of LM order convergence and relates it to some axiomatical notion of
distance d, general enough to capture both the pointwise distance (dp) and the Heyting distance
(dg). The Cauchy property of sequneces is defined in terms of the distance d.

Section 4 is dedicated to Cauchy completions. First, we provide some Cauchy completion criteria
for classes of LM-algebras equipped with distances - these criteria show the agreement of different
definitions of order Cauchy completion in the literature. Then, assuming that the discussed class is a
variety (including the cases of polinomially-defined distances), we construct the Cauchy completion
in that class.

Section 5 relates LM-algebras to their Boolean centers w.r.t. order convergence, along the
already established adjunction relation [12] and its axled extension [26].

In Section 6 the class of proper LM,,-algebras is considered. The convergence and the Cauchy
completions w.r.t. Lukasiewicz distance are investigated.

Finally, in Section 7, we provide some characterizations for a special class of Cauchy completions
using a representation of L M,,-algebras as sequences of Boolean ideals.

2 Preliminaries

Given a lattice (L,V,A), < denotes its induced partial order and 0, 1 the least and, respectively,
greatest element (if it exists). Also:
efor a,b € L, [a,b] denotes all the elements placed between a and b in the sense of order;
o if exist, family suprema and infima are denoted using \/ and A; whenever the lattice in which
they are considered is not clear, we use superscripts (for instance, in the lattice L, we write \/L and
A"
oif A C L, Lb(A) denotes the lower bounds of A, while Ub(A) denotes the upper bounds of A.
During this paper, we shall deal with countable sequences (¢, )nem of elements from the under-
lying sets of diverse algebraic structures (enriched lattices), which will be briefly denoted (¢, )n. If
(¢n)n is a sequence from a lattice, we denote by:
o (¢p)n |, the fact that (c,), is decreasing;
o (cp)n T, the fact that (¢,), is increasing;
o (cy)n T 2, the fact that (c,), is increasing and 3V, ¢, = .
o (cy)n | z, the fact that (c,), is decreasing and I\, ¢, = .
Whenever the lattice L is not clear from the context, we use subscripts - for example, (¢,)n 11 2,

(en)n 41 0, Lbr(A) etc.



Definition 2.1 A structure (L, V,A,—,0,1) is called dual Heyting algebra if the following hold:
(1) (L,V,A,0,1) is a bounded lattice;
(2) (the residuation property)  <yVvz iff z —y <z.

Lemma 2.1 If L is a dual Heyting algebra, then the following hold (for each #,y,z,u € L I a set,
and (z;)ier, (i)ier families from L):
(1) — is increasing on the first and decreasing on the second argument;

-y -(r-y<z—z (y—2)-(y—2) <z—u;

f Aicr @i exists, then so does A\;c;(z V #;) and is equal to = V A\, @i;

f Ajer ®i exists, then so does \/;c;(z — #;) and is equal to x — A\;¢; 3;
fVier ®i exists, then so does \/;c;(z; — #) and is equal to (Vz’eI ri) —z;
fVier®i, Vier vi, and ;o (2; — ;) exist, then

Voai=\u<\(@i—u);

i€l i€l i€l

—

(16) If Ajer®i, Niervi, and ;o p (i — i) exist, then

Nzi— Nvi <\ (@i—w);

i€l = i€l
(17) L has the O-sphere property, in that whenever (z,)n | 0 and (yn)n 4 0, we have (2, Vyn)n 4 0.

Proof:
We only prove (17) (for the other points we refer the reader to [27]). Let (2,)n 4 0 and (yn)n 4 0
and let ¢ € L such that, for each n, t < z, V y,; we want to show that ¢ = 0. Let m be a natural
number. Since (y,), is decreasing, we have that A .. v, =0. For each n > m, t —z, < y,, so
t—xy, =t —x, <y, , hence t —z,, S/\yn =0.

n

So, by point (2), t < 2,,; and this happens for each m; thus t < A, ,,, =0, that is ¢ = 0.
g.e.d.

From now one, all throughout the paper, m is a fixed strictly positive number.

Definition 2.2 An m-valued Lukasiewicz-Moisil algebra (with negation), LM, for short, is a struc-
ture of the form (L,V, A, ", (¢i)iefo,..,m—1}) such that:

(1) (L,V,A,7,0,1) is a de Morgan algebra, that is a bounded distributed lattice with a decreasing
involution — satisfying the de Morgan property xVy =Z A Y;

(2) For each i €{0,...,m — 1}, ¢; : L — L is a lattice endomorphism;
(3) For each i € {0,...,m — 1},2 € L, pi(x) is complemented by ~, that is ¢;(z) V ¢;(z) = 1,




or(2) N (@) = O
) For each 4,j € {0,...,m — 1}, p; 0 p; = @;;

) Foreachi<je€{0,...,m—1}, ¢; < ;;

) For each i € {0,...,m —1},2 € X, ¢;(F) = @m_i_1(2).
) (Moisil’s determination principle)

[Vie{0,...,m— 1}, ¢;(2) = ¢i(y)] implies z = y.

(5
(6
(7
(8

For the properties of LM,,s we refer the reader to [2]. For each LM,,, L, we define its Boolean
center,

CL)y={2€L/ypix)==, Yie{0,....m—1}}.

Lemma 2.2 Let L be a LM,,. Then the following hold:

(1) C(L), with pointwise defined Boolean operations, is a Boolean algebra;
(2)zeC(L)ifFie{0,....m—1}, pi(z) =2z if Ji €{0,...,m—1},y €Y, v;(y) = z;

(3) for each ¢ € {0,...,m — 1}, ¢; (VkeK rk) = VkeK @i(zr) whenever \/keK zp exists; and
i (AkeK z) = Aick @i(zr) whenever A, _ .z exists;

4) \/keK T = /\keKﬁ whenever \/keK zp exists; and /\keK T = VkeKﬁ whenever /\keK Tk
exists;

(5) Vi€ {0,...,m— 1}, pi(z) < i(y)] iff z < y.

Lemma 2.3 (1) LM,, is a variety of algebras.
(2) Let L be a LMy,. Define x —y =z A\
dual Heyting algebra.

ie{o,...,m—l}(SOi(I) A¢i(y)). Then (L,V,A,—,0,1)is a

3 Distance and order convergence

We fix a LM, algebra L. If we consider L only as a partially ordered set with the latice order <,
we have a classical notion of order topology:

Definition 3.1 A sequence (), from L is said to order-converge (o-converge) to @ € L, denoted
(zn)n — =, if there exist (sp)n T 2, (tn)n | , such that

(Vne N)s, <z, <t,.

Notice that the above convergence, being preserved to taking subsequences, indeed defines a
topology (the order topology) by chosing the closed sets to be those that contain the limit of a
sequence whenever they include the sequence. The next lemma shows that order convergence is a
natural extension of countable suprema and infima saturation.

Lemma 3.1 Let € L and (z,), | be a sequence from L such that, for each n € IV, z < z,.
Then the following are equivalent:
(1) (zn)n 4 2;

(2) (xn)n — z.

Proof:
”(2) implies (1)” is obvious.
”(1) implies (2)”: (2n)n — * means there exists a sequence (sp), |  and (¢,), 1 @ such that
tha, < spfor each n. But (x,), is such a (sp)n, and the constant sequence (), is such a (t,),.
g.e.d.



In order to be able to talk about order Cauchy sequences; one should have some notion of
distance on L. There are two ”standard” ways to measure distance in a LM,,, by dualizing two
main logical implicative operations:

e The Heyting distance:

du(e,y)=(@—-y)Vy—2)=@r \/  @@re@)VviAr Ve Ae@);

i€{0,....m—1} i€4{0,...,m—1}

e The pointwise distance ([9]):

dp(z,y) =\ (pil@) Aeiy) V (9i(y) A wila)

i€4{0,...,m—1}

Another ”distance” derived from logic using the so called weak implication would be

dw (2,y) = (pn-1(2) AY) V (pr-1(y) A T) .

But this will not fall under our interest in this paper because of two reasons: first, it fails to satisfy
a basic and intuitive distance axiom, namely d(z, z) = 0; and second, if we still force our way into
toplogical aspects of dy, we obtain nothing more than the Boolean topology on C(L), together
with all the other points gathered unseparatedly around their Boolean nuances.

So we have at least two candidates for measuring distance in a LM,, - dg and dp. This
suggests that distance should be rather axiomatized than fixed, leaving the actual operation as free
as possible. Therefore, we define a generic notion of distance in LMy,s

Definition 3.2 A distance on L is a binary operation d : L x L — L with the following four
properties (for all z,y,z,v € L, A C L):

D1. d(z,z) = 0;

D2. d(z,y) = d(y, );

D3. z <yVd(z,y);

D4. d(d(z,2),d(y, z)) < d(z,y);

D5. d(zV z,yVz) <d(z,vy));

D6. d(z,y) < d(z,z)if e <y <z

D7.if (zn)n | 2, then A d(zn, z) = 0;

D8. for each i € {0,...,m — 1}, d(pi(z ),pz(y)) < em-1(d(z,y)).
DI, dE,7) < g1 (d(z,9)).

The axioms D1-D5 have a classical metrical look, if we notice that, in the discussed structures,
”addition of two quantities” is provided by suprema. D6 is stating that the distance is taken ”along
the order”; D7 connects ”closeness by distance” to ”closeness by order”. Finally, D8 and D9 assert
a certain compatibility with the negation and the Chryssipian nuances ;.

Lemma 3.2 Let d: L x L — L be a distance on L. Then:

(1) d(z,y) = 0 implies z = y;

d(z,y) <d(z,2) Vd(z,y);

d(z,y) <d(u,v), if 2,y € [u,v];

d(z Vy,uVo) <d(z,u)Vdy,v);

a(d(z,v), d(u,2)) < d(z,u) v d(y, v);

d(l Ay, uAv) < omo1(d(z,u) Vd(y,v));
ssume (Z,)n , and, for each n, © < x,; then (x,), | « iff (d
ssume (2, )n T, and, for each n, z, < z; then (z,), 1 z iff (d

(2)
(3)
(4)
(5)
(6)
(7) A
(8) A

—_——
3]
3
&
~— ~—
~—
s
<~
=



Proof:
(1): By D3, we have 2 <y Vd(y,z) = y V0 = y and, similarly, y < ; hence z = y.
(2): By D3 and D4,

d(z,y) <d(z,z)Vd(d(z,z),d(z,y)) <d(z,z)Vd(zy) .
(3): We use point (2), D6, and D2:
d(z,y) <d(z,u)Vd(u,y) < dv,u) Vduv)=du,v).
(4): Apply point (2) and D5:
dzVy,uve) <dxVyzVvo)VdeVeuVve) <d(y,v)Vdu).

(5): Similar to (4), just that we apply D4 instead of D5.
(6): Apply the LM, properties, point (4), and D9:

dz Ay,uAv) =d(EVY,aVT) < pm1(dFVTH,TVT)) <

< pm-1(d(Z,9) V (Y, 7)) < pm-1(pm-1(d(2,u)) V pm-1(d(y, v))) = pm-1(d(z,u) V d(y,v)) .

(7): 7only if” is axiom D7.
”if”: By D3, 2, < & V d(z,z,); it remains to apply Lemma 2.1.(12) to obtain

/\a:n < /\(x\/d(:v,:bn)) =zV (/\d(:v,mn)) =z.

(8): ”only if”: We have that (), | 7, hence, by D7, (d(Z, T))s | 0; furthermore, (¢m-1(d(ZTn,Z)))n 4
0, and it remains to apply D9.
7if”: By D3, « < 2, V d(z,z,), so, by residuation, z, <« — d(z,z,); apply now Lemma 2.1.(13):

\/a:n < \/(:L‘—d(r,l‘n)) —r— (/\d(r,mn)) =z.

g.e.d.
Proposition 3.1 dg and dp are distances on M.

Proof:

Let us first check the axioms D1-D9 for dg (remember that dg(z,y) = (¢ —y) V (y—z) - denote,
for the moment, d = dg):
Dl: 2 —2 =0,s0 d(z,z) = 0;
D2 follows at once from the commutativity of V;
D3: We know that  — y < d(z, y); it suffices to apply residuation .
D4: By Lemma 2.1.(11), (x —2) — (y —2) < (z —y) and (z — z) — (z — y) < (y — z); we now apply
Lemma 2.1.(15), to obtain:

d(@,z) —d(y,z) = [(z = 2)V(z —2)] = [(y = 2) V(z = y)] <

Slle=2)-(y=2VIe-2) ==yl < (@-y V(y—2) =d(z,y).
Similarly, d(y, z) — d(z, z) < d(y, ). Hence the desired inequality.
D5: By Lemma 2.1.(11), (z —2) V(¢ —y) < (z —y) and (# — ) V (y — 2) < (y — 2); furthermore,
by Lemma 2.1.(15), we obtain:

(zVvz)—(yVz)<(z—y)V(z—2z)=z—y;



(yvz)—(evz)<(y—x)V(z—2)<y—=z.

Hence the desired inequality.
D6 follows from the fact that — is decreasing on the second argument;
D7: Assume (2,)n § 2. Then

dlz,zn) = —¢ = \/ [ A gi(@n) Api(w)] .
i€4{0,....m—1}

Furthermore, for each i € {0,...,m — 1}, (pi(2n))n 4 @i(2), and hence [x A @;(2n) A @i(2)]n 4 0;
we now apply the O-sphere property m — 1 times.
D8: We have that ¢;(z) — ¢i(y) = (i (2) A i(y)). On the other hand,

em@—v)=  \/  (emaa@ei@)Aei@) =\ (pil@) Aei) -

i€{0,....m—1} i€{0,....m—1}

So ¢;(2) — ¢i(y) < em—1(x — y); we finally apply the fact that ¢,,_; commutes with suprema.
D9:

dz.y) =\  TAe@Ae@) =
i1€4{0,...,m—1}
= V zreni@Avnai@= TAei@)Aei(y) <emoi(y—2) .
i1€{0,....m—1} i1€{0,....m—1}

As at the precedent point, we conclude using commutation of ¢,,_; with V.

We now check the axioms for dp. Just until the end of the proof, we denote dw by d; notice
that d measures distance using only values from the Boolean center of L; so ¢;(d(z,y)) = d(z,y),
for each i € {0,...,m — 1}.

D1 and D2 follow immediately from the Boolean properties;

D3: We need to check that, for each i € {0,...,m — 1}, ¢i(2) < @i(y) V @i(d(z,y)), that is
pi(x) < @i(y) Vd(x,y), that is pi(2) A pi(y) < d(z,y), which is true;

D4: Because d(z, z) and d(y, z) are Boolean elements, we have that

d(d(l‘, Z)} d(y, Z)) = (d(m¢ Z) A d(y, Z)) v (d(y, Z) A d($: Z)) )

so, by symmetry, it suffices to prove d(z, z)Ad(y, z) < d(z,y), which means d(z, z) < d(z, y)Vd(y, 2);

the last follows immediately from the fact that, for each i € {0,...,m —1}, pi(2), ¢i(y), and ¢;(z)
are Booleans, so

pi(z) Api(z) < (pi(x) Api(y)) V (wi(y) Awi(z)) .

D5 follows in a similar fashion to D4, using

pilzVz)ANpi(yVz) = [pi(z) Vei(2)] Alpi(y) A pi(2)] < pilz) Apily)

D6 is obvious.
D7: Assume (z,)n § 2. Then




Furthermore, for each i € {0,...,m—1}, (wi(2,))n | @i(2), and hence [@;(2,) Api(z)], | 0; finally,
apply the 0-sphere property m — 1 times.
D8: d(pi(x), vi(y)) < d(z,y) is an immediate equality;
D9: d(z,7) = d(x,y).
g.e.d.

Remark 3.1 dp is the smallest distance (in the sense of <) on L.

Indeed, by D3, any distance d has the property that @ < yV d(z,y); hence, by residuation,

z—y < d(z,y);s0 du(z,y) < d(z,y).
Notice that, if a distance is provided to L, then the order convergence can be expressed in terms
of it.

Proposition 3.2 Let d be a distance on L, (z,), be a sequence from L and & € L. Then (z,), —
z iff there exists (s, ), | 0 a sequence from L such that, for each n € IV, d(zy, ) < sp.

Proof:
”if”: Define, for each n € IV, a, = ¢ — s, and b, = 2V s,. Obviously, a, < z < by, (@n)n T,
and (bp), 1; also, by Lemma 2.1.(13 and 12), (an), T @ and (b,)n 4 . Finally, using D3 and the
residuation, we get
zp <z Vd(z,z,) <a Vs, =by;
r< e, Vd(z,zy) <nVsy 80 =2 —8, < 2y .

“only if”: Assume (z,), — z, so there exist (an)n 1 2, (bn)n 4 @ such that, for each n, a, <
zn < by. By D7 and Lemma 3.2.(8), (d(bn,2))r 4 0 and (d(an,z))s | 0. Define, for each n,
$p = d(an, ) V d(bn,x); by the 0-sphere property, (sp), 4 0. Also, by Lemma 3.2.(3), since
T, x € [an, by], we get

d(zp,z) < d(an, by) < d(an,z) Vd(by, ) = s, .
g.e.d.
Corollary 3.1 The order topology is 73-separated on L.

Proof:

Let d = dir. We need to prove unicity of the limit for each sequence (2,),. Assume that z and y
are two limits. Applying Proposition 3.2, we have (¢, ), | 0 such that, for all n € IV, d(zp, 2) < ¢p;
and also (d, ) | 0 such that, for all n € IV, d(z,,y) < dn; hence

d(z,y) <d(z,z,) Vd(zn,y) <c, Vdy .

By the 0-sphere property, (¢, V dy)n | 0, so d(z,y) = 0; hence z = y.
g.e.d.

In the light of Proposition 3.2, which says that order convergence is the same as ”distance
convergence” | the definition of Cauchy sequence comes naturally:

Definition 3.3 Let d be a distance on L. A sequence (,), from L is said to be a d-Cauchy
sequence (or Cauchy sequence if d is understood) if there exists (sp), | 0 a sequence from L such
that, for each n,p € IV, d(zn, Znyp) < 5n.

As one should expect, convergence implies the Cauchy property:



Proposition 3.3 Let d be a distance on L, z € L and (z,), C L, such that (z,), — ®. Then
(2n)n is a d-Cauchy sequence.

Proof:
By Proposition 3.2, there exists (), | 0 such that, for each n, d(z,,2) < s,. Let n,p € IN.
Then
d(zn, Znyp) < d(Tn, ) Vd(2, 2np) < Sn V Spyp = S -

g.e.d.

4 Cauchy completion

We want to study d-Cauchy completions w.r.t. the order convergence, for an arbitrary distance d.
For this, we consider enriched LM,;s:

Definition 4.1 A metrical Lukasiewicz-Moisil algebra (M LM, for short) is a pair (L, d), where
L is a LM, and d is a distance on L. If (L,d) and (L',d') are two metrical LM,y,s, then a
M LM, morphism between them is a L M,, morphism h : L — L’ such that, for each z,y € L,

d'(h(z), h(y)) = h(d(z,y)).

The next Lemma characterizes the continuous M LM,, morphisms, showing that, even in this
case of a generic distance, like in all classical cases of fixed distances, continuity comes to commu-
tance with countable infima or suprema.

Lemma 4.1 Let h: (L,d) — (L', d’') be a M LM,;, morphism. Then the following are equivalent:
(1) A is continuous;
(2) for each sequence from L (sp)n |, A, sn = 0 implies A, h(sn) = 0.
(3) same as (2), just that we do not ask that (s,), be decreasing.
(4) h commutes with the countable infima;
(5) h commutes with the countable suprema;
In addition, any continuous M LM,, morphism preserves Cauchy sequences.

Proof:
”(3) implies (2)” and ”(4) implies (3)” are obvious, and ”(4) iff (5)” is well-known and follows from
Lemma 2.2.(4).

”(1) implies (2)”: Let (sn)n 4 0. Then (s,)n, — 0, and so, by continuity, (h(s,))n, — 0; on the
other hand, (h(s,))n }; apply now Lemma 3.1 to get (h(s )) 4 0.

”(2) implies (3)”: Let (sn), such that A, s, = 0. Define (an), by a, = /\ie{l,...,n} s;. Obviously,
(an)n 4 0,80 (h(an))n | 0. But, for each n, h(a,) = /\ze{l,...,n} h(s;), hence A, h(sn) = A\, h(an) =
0.

”(2) implies (4)”: First, let (z,), C L and & € L such that(z,), | z; by Lemma 3.2.(7
twice) and (2), we get, consecutively: (d(zn,z))n | 0, (h(d(zn,2)))n 4 0, (d'(h(zn),h
(h(2n))n 4 h(x). So we proved the property (4) for decreasing sequences. Now, if (an)n
that A\, a, = , define (2,), by z, = /\Z»E{lqu} a;, and the desired property follows
”(2) implies (1)”: Notice first that, for the order topology discussed here, ”h continuous” not only
implies, but is actually equivalent to:

"(xp)n — x implies (h(xn))n — h(z), for each z € L, (zp)p C L.”

Indeed, if the last holds, then let 7' C L’ be a closed set w.r.t. the order topology. Let us prove
that h=1(T) is also closed; for this, let (z,), € A~Y(T") and z € L such that (z,), — =z; then
(h(zp))n — h(z), so h(z) € T, which means € h=1(T).

) (applied
z

()))n

CcL such



We now come back to the needed implication. Take (2,), — 2. Then, by Proposition 3.2, there
exists (sp)n 4 0 such that, for each n, d(z,z,) < sp. Then d'(h(z,),h(2)) = h(d(z, 2,)) < h(sy),
while (h(sn))n 4 0; thus (h(2,))s — h(z) and we are done.

For the last part of the proposition, let (z,), C L be a Cauchy sequence. Then, from
d(zn, Znyp) < sn, we get d'(h(zn), h(2n4p)) < h(sn), and, since (h(sn))n | 0, we are done.

g.e.d.

Lemma 4.2 All the M LM,, operations are continuous w.r.t. the order topology. Also, for each
M LM,, operation o of arity k (with k& € {1,2}) and each (27)n, ..., (2})n Cauchy sequences,
(o(xh,...,2}))n is also a Cauchy sequence.

Proof:

Let L be a MLM,, and let &,y € L, (2n)n, (Yn)n € L such that (z,), — 2 and (yn)n — ¥.
then there exist (sp)n 4+ 0, (¢n)n 4 0, such that, for all n, d(z,2) < s, and d(yn,y) < t,. Then
(sn Vitn)n 4 0 and (om—1(sn V15))n | 0. Moreover,

e By Lemma 3.2.(4), d(zn Vyn, 2 Vy) < sp Vi, ;

e By Lemma 3.2.(6), d(2n AYn, 2 AY) < em—1(sn Vtn) ;

e By Lemma 3.2.(5), d(d(xn, yn), d(z,y)) < sp Vi ;

«By DS, d(gi(2), $1(2)) < Frm1(50)

eBy D9, d(7,T) < @m—1(8n) -
A very similar argument proves the second part of this lemma.
g.e.d.

Following the traditional algebraic practice, we shall often (in this section) denote by L the
MLM,, (L,d); also, the distance in each M LM,,, be it called L, L', or other, shall be denoted
by the same letter, d, the context making clear what algebra is involved. One can easily see that,
because of axiom D7, the class of all M L M,,s is not a variety (one can actually see this by examples).
Also, one may want to consider not all the possible distances in the sense of Definition 3.2, but only
a certain kind of distances, like dgf and dp. Therefore all the below discussion will be held using
another parameter: a fixed class of M LM,,s, K.

Definition 4.2 Let L = (L,d) be a LM,,. L is said to be Cauchy complete if, within it, all Cauchy
sequneces are order convergent. A M LM,, embedding h : L — L’ between two elements from K
is said to be a Cauchy completion of L in K if the following hold:

C1. L' is Cauchy complete;

C2. h is continuous (w.r.t. the order topology);

C3. for each L” from K which is Cauchy complete and each continuous M LM,, embedding g :
L — L7, there exists a unique continuous M LM, embedding f : L’ — L” such that foh = g.

The class K is said to have the Cauchy completion property if each element from K has a Cauchy
completion in K.

Remark 4.1 If one considers two M LM,, embeddings h : L — L' and g : L — L” to be
isomorphic provided there exists a M LM, isomorphism f : L — L’ such that f o h = g, then
one can easily see that the Cauchy completion of an element L in K, if exists, is unique up to an
isomorphism.

4.1 Some Cauchy completion criteria

For this subsection, we fix two M LM,,s L and L', such that L C L’ and the inclusion is a continuous
M LM,, embedding. We shall need a slightly more general notion of order convergence.
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Definition 4.3 Let (z,), € L' and z € L'. Then (z,), is said to L-converge to z, denoted
(zn)n —L %, if there exists a sequence (s,), C L, with (s,)n Jz 0, such that, for each n,
d(zn,z) < sp. (2n)n is said to be an L-Cauchy sequence if there exists (sp)n C L, ($n)n 4z 0, such
that, for each n,p € IV, d(2n, 2n+p) < Sn.

Notice that, because of continuity, in the above definition, (s,)n, {r 0 is the same thing as
($2)n $r+ 0.1 In a perfectly similar fashion to Proposition 3.3, one can prove that L-convergence
implies L-Cauchy property.

Lemma 4.3 Let (z,), C L be an L-Cauchy sequence. Then there exists (z,,), C L such that:
o (2n)n

e for each n, z, < z,;

o (d(zn,2n))n —1 0;

oif, for some x € L', (2,)n —>1 #, then (2,)n {2’ ¢ and (2,)n —1 2;

efor each z € L', (xp)n —r ¢ iff (2,)n —1 2.

Proof:

Since (zn)n is L-Cauchy, there exists (sn)n C L, (sn)n +1 0such that, for each n, p, d(2,, Zn4p) <
$p. We define (z,)n by 2, = /\ie{l,...,n}(ri V $i). (2n)n is obviously decreasing. [Notice also that
if (#n)n —>1 @ and (¢,)n $z 0 is the corresponding sequence, we can take (s, V t,), instead of
(sn)n (this also L-converges to 0 because of the O-sphere property), to make sure that z, > z.] In
addition, for each n and i < n,

n <z Vd(zi, x,) < Vs;,

so &p < zp for each n. We now want to prove that (z,), is L-Cauchy. Let n,p € IN. We apply
Lemma 3.2.(6 and 4) and D6:

d(zn, 2ntp) = d /\ z; Vs, /\ z; Vs | <

i€{1,...,n} i€{1,...,n+p}
< Om-1 \/ d(z; Vsi,z; Vsi) | <Vem-1 \/ d(en Ve, 2 Vs) | =
i€{1,...,n} i€{n+1,...,n+p}
= Pm-1 \/ d(zp Vsp,xiVs) | <

i€{n+1,...,n+p}

S Pm-1 v d(xnaxz)\/d(snasz) S z‘)01’77,—1(571 Vd(snao)) .
i€{n+1,...,n+p}

Now, by D7, the 0-sphere property, and Lemma 2.2.(3), (¢m-1(sn V d(sn,0)))n 4z 0, so, by
continuity, (¢m—1(sn V d(sn,0)))n Iz 0.
Furthermore, d(z,, 25) = 2n — 2 < (2n V $p) — 2n < S, 80 (d(2n, 2n)n —>1 0.
Suppose now (z,), —>r «, and let (t,)n C L, (tn)n 4z 0, with d(z,,2) < t, for each n. We
have that
d(zn, ) < d(zn, xn) Vd(zn, ),

However, L-convergence (or L-Cauchy property) only implies, but is not equivalent to, L’-convergence (or L'-
Cauchy property).
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and the fact that (z,), —1 # follows immediately form (d(zn, #n)n —>1 0. Hence (z,), —>1' @
so, by Lemma 3.1 (sine (z,)n 4 and z, > z for each n), (2,)n d1’ 2.

Finally, ” (2,)n — 1 @ implies (z,), —>1 &” follows similarly to the converse implication from
(d(zn, zn)n —>1 0 and d(zp, ) < d(zn, 2n) V d(2n, 2).

g.e.d.

Define Conv(L) ={x € L' / I(xn)n C L, (2n)n —>1 x}. Consider the following properties:
P1. L’ is Cauchy complete.
P2. L' = Conv(L).
P2’. For each y € L', there exists (2,), C L such that:
L4 (In)n \I/L’ Y,
L4 (In)n —LY-
P3. For each (yn)n C L' such that (yn)n 1+ 0, there exists (z,)n, C L such that:
efor each n, z, > yn;

L4 (xn)n ~I/L 0.

Notice that, by Lemma 4.3, P2 is equivalent to P2’. Sometimes in the literature, for diverse
types of structures, the notion of Cauchy completion is expressed in terms of countable suprema-
preserving embedding satisfying P1 and P2. However, we feel that Definition 4.2 gives a more
acurate expression of ”"completion”. We shall see that P1 and P2 always imply completion, while
completion implies P1 and P2 in the most encountered cases, those with K being closed to sub-
models.

One can readily see that P3 is a strong property of ”topological compatibility” between L and
L', beyond continuity of the embedding - P3, together with continuity, assures us that L-limit is
the same thing as L’-limit and L-Cauchy is the same as L’-Cauchy.

Lemma 4.4 P2 implies P3.

Proof:

We shall make use of P2’. Let (yn)n C L’ such that (y,)n {r 0. For each n, there exist
(z2)x C L, such that (22)x Lo’ ys.

Define z, = /\ie{l ) z?. We have that:
efor each n and ¢t <n, y, <y < 2}, 50 Yy < 2p;
L4 (Zn)n c L
e (2n)n }, because, for each n,i € IV, z? > P+t

Furthermore, it is clear that Lbr:((yn)n) = LbL/((fo)mk) = Lbr/((2n)n). Hence /\L Zn =
/\L yn = 0; afortiori, (z4)n 4z 0.

g.e.d.
Proposition 4.1 If P1 and P2 hold, then the inclusion ¢ : L — L’ is the Cauchy completion of
L.

Proof:

We only need to check the universality property. Let L’ be an element from K which is Cauchy
complete and let ¢ : L — L’ be a continuous M LM, embedding. Define f : L' — L” as follows.
Let y € L'; by P2, there exists (z,), C L such that (z,), —1 y; hence (2,), is an L-Cauchy
sequence, hence (¢((zn)n))n is an L”-Cauchy sequnce in L”; but L” is Cauchy complete, so there
exists z € L” such that (¢((zn)n))n —>1 2; we put f(y) = 2.

I. fis well defined. Indeed, if (2,)n, (@n)n € L such that (z,), —r y and (an)n —1 ¥, let
(sn)n +z 0 and (t,)n 4z 0 be the corresponding convergence sequneces from L. Then

d(zp,an) < d(@n,z) Vd(z,a,) < s, Vi,
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where (sp Vitn)n 42 0. So d(g(2s),9(an)) < g(sn Vt,), and it immediately follows that (g(zn))n
and (g(an))n have the same L”-limit in L”.

II. The function f extends g. Indeed, for each # € L, the constant sequence (), L-converges to &,
so f(z) = g(x).

III. f is a M LM,, morphism. This follows by a routine check using separation (Corollary 3.1),
the continuity of M LM, operations, together with the fact that g is a continuous morphism. For
example, let us prove that f(a Vv b) = f(a) V f(b). We have (an)n —r a, (bp)n —>1 b, with
(an)n,(bn)n € L. Then (an Vbp)n —L a Vb, so

(9(an) V g(bn))n = (9(an Vbn))n —>r» flaVb) .

On the other hand, (g(an) V g(bn))n — f(a) V f(b). So f(aVb) = f(a) V f(b).
IV. fis a MLM,, embedding. Indeed, if a,b € L’ such that a # b, then d(a,b) > 0. By P2’, there
exist (an)n, (cn)n C L such that:
¢ (an)n —> a and, for each n, a, > a;
o (bp)n —> b and, for each n, b, > b.

Let (sp)n 4z 0 and (¢,)n 1 O be the corresponding convergence sequences. Denote ¢, = s, Viy;
we have (¢,)n b1 0, and also, by continuity of ¢, (¢y)n {z/ 0. Furthermore,

d(a,b) < d(a,an) Vd(an, by) Vd(by,b) <d(an,by) Ve, ,

so d(an,bn) < d(a,b) — ¢,. If, by absurd, d(a,b) — ¢, = 0 for each n, then d(a,b) < ¢, for each
n, so d(a,b) = 0, Wthh is a Contradlctlon So there exists m € IN such that d(a,b) — e > 0;
denote d=d(a b) em; since (sp)n |, d(a,b) — ¢, > J is true for each n > m. So, from a certain
n, d(an,by) > 6 > 0. Now, it is not possible that /\ﬁ d(an,b,) = 0, because it would imply, by

continuity and Lemma 4.1.(3), that /\ﬁl d(an,b,) =0, a contradiction to d > 0. So we can actuall
consider § € L a non-zero lower bound of (d(a,,b,)),. Since g is an embedding, h(d) > 0 is a lower
bound of (d(g(an),9(bn))n. The last immediately implies that (g(as)), and (g(b,)), cannot have
the same L”-limit in L”; hence f(a) # f(b).
V. f is continuous. Indeed, let (y,), C L', with (yn)n 4z 0. By Lemma 4.4, P3 holds, so there
exists (#p)n C L, with (zn)n 4z 0 and &, > y, for each n. Since g is continuous, (g(zn))n $7 0;
moreover, f, being an M LM,, morphism, is increasing, so, for each n, f(y,) < f(zn) = g(2n), so
(f(g))n 42 0.
VI. Finally, the unicity of f is assured by P2: if f/ : L'’ — L” is another such function, then,
for each y € L', we get (zn)n C L with (z,)n —1 y; so, by the continuity of f/, (9(xn))n =
(f'(zn))n —>L» f'(y). Thus f'(y) is the unique L”-limit of (g(zn))n, hence f'(y) = f(y).

g.e.d.

Proposition 4.2 Assume that K is closed to submodels. Then:

(1) Conv(L), with induced operations from L', is an element of K.

(2) If P1 and P3 hold, then Conv(L) is Cauchy complete.

(3) The inclusion ¢ : L — L' is a Cauchy completion of L iff P1 and P2 hold.

Proof:
(1): All we need to show that Conv(L) is stable to the M LM, operations. This follows at once
from the continuity of M LM,, operations on L (Lemma 4.2).
(2): Let (yn)n € Conv(L) a Conv(L)-Cauchy sequence. Then it is also an L’-Cauchy sequence, so,
by P1, there exists z € L' such that (y,)n, — 1’ z. By Lemma 4.3, we can actually consider that
(Yn)n 4o’ z. Using P2’ for each n, there exists (z})x C L, such that:
L4 ($Z)k —>L Yn;
.($Z)k ~I/L’ Yn -
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Define, for each n, z, = /\z’e{l _.n} &i'. Since, for each n, (27 )x has the same lower bonds in L’
as Yn, it follows that (2})g , has the same lower bounds in L’ as (yn)n; but (27)x . has also the

same lower bounds in L' as (z,)n. These imply that /\ﬁl Zn = AL/ Yn = z; thus, by Lemma 3.1,
(2n)n —> 1’ z; but this implies, by P3, (z,)n —1 2, that is z € Conv(L). We obtained that z is
the L-limit (and, even surer, the Conv(L)-limit) of (z,)n.

(3) The ”if” part was already proved by Proposition 4.1.

“only if”: Notice that the inclusion ¢/ : L — Conv(L) is continuous, because ¢ : L — L' is so.
Thus, according to points (1) and (2), Proposition 4.1 can be applied to ¢/ to conclude that ¢/ is a
Cauchy completion of L. But ¢ is also assumed to be a Cauchy completion of L.

Furthermore, the inclusion ¢” : Conv(L) — L' is continuous. Indeeed, let (y,)n C Conu(L)
such that (yn)n dconv(r) 0. Because P3 holds relative to ¢/ (by points (1) and (2) and Lemma 4.2),
there exists (zn)n C L, (#n)n 41 0, such that, for each n, x, > y,. Since ¢ is continuous, (z,)n ' 0;
thus (yn)n 4z’ 0 too. One can immediately see that ¢” is the only continuous M LM,, embedding
from the universality property of ¢/ relative to ¢ (constructed as in the proof of Proposition 4.1).
But this is also a M LM, isomorphism (because the other universal embedding g : L' — Conv(L)
has to be inverse, both left and right, to ¢”, as one can see by applying the uniqueness property
of 4" to lcony(ry and of ¢ to 11+). So ¢” is surjective, which means L' = Conv(L). Hence ¢ = 4/
satisfies P1 and P2.

g.e.d.

The below corollary shows that, in order to provide a Cauchy completion of an element of a
class K closed to submodels, it suffices to continuously embed it into a Cauchy complete one.

Corollary 4.1 Assume that K is closed to submodels and P is an element of . Then P has a
Cauchy completion iff P is continuously embedded into a Cauchy complete element P’ of K.

Proof:

We apply the above proposition, with L = P and L' = P’. +: P — Conv(P) is the desired
completion.

g.e.d.

4.2 The existence of Cauchy completion

For this subsection, we assume that K is a variety. (This hypothesis about K, the strongest so
far, still covers the most encountered cases of distances, namely the polinomially defined ones - in
particular, dy and dg.) We also fix L, an element of K. We are going to construct the Cauchy
completion of L in a classical fashion, as a quotient of the algebra of Cauchy sequences.

Define Cauchy(L) = {(xn)n € L / (2n)n is L-Cauchy in L}.
Lemma 4.5 Cauchy(L), with pointwise defined operations, is a M LM,p,.

Proof:

We need to show that Cauchy(L) is a stable part of LIV, But this is actually shown by the
second part of Lemma 4.2.

g.e.d.

On Cauchy(L), define the binary relation = by (2n)n = (yn)n iff (d(2n, yn))n —2 0in L.

Lemma 4.6 = is a M LM,, congruence on Cauchy(L) (hence Cauchy(L)/=is a M LMy,).

14



Proof:

Let us first show = to be an equivalence. Reflexivity and symmetry are obvious, while transitivity
follows at once from Lemma 3.2.(2).

For the compatibility with operations, let (2n)n, (YUn)n, (@n)n, (bn)n be elements of Cauchy(L)
such that (z,)n = (an)n and (yn)n = (bn)n; and let (sp)n 4z 0 and (¢n), $z 0 such that, for each
n € IN, d(xn,an) < sp and d(yn, bn) <tn. Then (s, Vin)n Iz 0 and (em—-1(8n VIn))n 42 0. Using
D8, D9 and Lemma 3.2.(4,5,6), we obtain the followig:

e dlpi(20) 1(0n)) < omos (o)

o (T, T3) < 1 (50);

od(xn Vyn,an Vby) < spVuyn;

( (Inyyn) (an; bn)) < sp vV ¥n;

od(xn AYn,an Abp) < @m—1(8n V Yn).

These immediately imply compatibility.

g.e.d.

Denote L' = Cauchy(L)/ = and, for each (z,), € Cauchy(L), by cl((zn)n) its =-congruence
class (so ¢l : Cauchy(L) — L' is the factorization M LM, morphism.) Also, for each « € L, denote

by (), the z-constant sequence, which is of course a Cauchy sequence. (Obviously, z — (x), is a
M LM, embedding between L and Cauchy(L).)
Define I : L — L' by I(z) = cl((x)n).

Lemma 4.7 [ is an M LM,, embedding.

Proof:

Being a composition of two M LM, morphisms, [ is also an M LM,, morphism. We only need to
prove its injectivity. If I(z) = I(y), then there exists (sp), Iz 0 such that, for each n, d(z, y) < sp;
so d(z,y) = 0, hence z = y.

g.e.d.

Lemma 4.8 Let (24)n, (Yn)n € Cauchy(L). Then cl((n)n) < cl((yn)n) in L' iff there exists
(sn)n € L, (8n)n 4 0, such that, for each n, z, <y, V sp.

Proof:
“only if”: We have that ¢/((xn Ayn)n) = cl((2n)n), 80 (5 AYn)n = (2n)n. This means the existence
of an (sp)n C L, ($n)n 4z 0, such that, for each n, d(zp A yn, x,) < s,. Now, using D3, we get, for
each n,
n < d(@n AYn, ) V (20 Ayn) < (0 AYn) V sp

80 T < (€n VSp) A (Un V sn), 50 n < Yn V sp.

7if”: We need to show cl((zn V yn)n) < cl((yn)n), that is cl((zn V yn)n) < cl((yn)n). For this notice
first that cl((zn V yn)n) < cl((yn V sn)n) (because, for each n, 2, Vyn < sp Vyn Vyn = Yn V sp).
All that is left to show is ¢/((yn V sn)n) = cl((yn)n). This follows from

d(ynyyn \/Sn) = d(yn VO0,y, V Sn) < d(oasn) )

(by D5), together with (d(0, s,)), 4z 0 by D7.
g.e.d.

Lemma 4.9 [ : L — L' is continuous (w.r.t. the order topology).
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Proof:

Let (2,)n C L such that (2,)n {2 0. We want to show (I(z,))n {z+ 0. For this, let Y € L’ such
that, for each n, Y < I(z,). According to Lemma 4.3, we can take Y = cl((yx)x), with (yg)r .
Let n € IN. By the previous lemma, from ¢l ((yx)x) < el((zn)g), we find the existence of a sequence
(sk)k € L with (sg)g 4 0 such that, for each k € IV, yr < 2, V s.

Notice that (yx)x 4z 0; indeed, if z € L is a lower bound of (yn)n, then

zg/\(rn\/sk)gxn\//\skzrn.
k k

But this happens for each n, so z = 0.
Now, (Yn)n $z 0 implies (d(yn,0))n 42 0,80 Y = cl((yn)n) = 0in L'
g.e.d.

Lemma 4.10 Let (yn)n € Cauchy(L). Then (I(yn))n —rz) cl((yn)n) in L'

Proof:
We konw that d(yn, Yntp) < s, for each n,p € IV, with (sp)n C L, (sn)n 4z 0. Then, for each

d(L(yn), cl((yk)r)) = d(cl((yn)x), cl((yr)r)) = cl((d(yn, y&))x) -
If we show cl(d(yn,yx)s) < I(sn), then we are done. But this is true, by Lemma 4.8, if we take
(tk)k to be: ty = s, if K < n and ty = sg is k > n. Obviously, (tx)r Jz 0 and, for each k,
d(Yn,Yx) < 5p Vs = 55 Vig; and (4 V sk)i 4o 0.
g.e.d.

Lemma 4.11 L’ is Cauchy complete.

Proof:

Let (Y;); an L'-Cauchy sequence in L’. By Lemma 4.3, we can take (Y;); . Also, according
to the same lemma, for each i € IV, we can take Y; = cl((y¥)x), with (I(y5))x {1+ Yi; by Lemma
4.10, (I(yF))x —> 1 Yi. Notice that, by Lemma 4.4, we have that P2 implies P3” relative to the
inclusion ¢ : (L) — L' (or, we might say, relative to the embedding I : L — L'); and, by Lemma
4.2, P2 holds. So, using P3, we immediately see that, for a sequence (7, ), I(L)-convergence is the
same thing as L’-convergence, and I(L)-Cauchy is the same thing as L’-Cauchy. So we have that:
e there exists (t,)n C L, (tn)n 4 0, such that, for each n,p, d(Ys, Yotp) < I(tn);
efor each i € IV, there exists (s})x C L, (s )x — 1 0, such that, for each k, d(I(yF),Y;) < I(sF).

Define, for each n, b, = /\ie{l,...,n} yi'. 1t is clear that

Lbro((Y)i) = Lo (1(yf))ix) = Lbr ((1(ba))n) -
We want to show that (d(/(b,),Yn))n) —1z) 0 in L. Define (an), by a, = /\ie{l,...,n}(S? V).
For each n and j < n, by D6 and Lemma 3.2.(2),
d(I(ba),Ya) =d( \ 1), Yn) <d(I(y}),Ya) <
i€{1,...,n}
<d(I(y}), Y;) v d(Y;, Ya) < I(sT) V I(t;) -
So d(I(by),Ys) < /\ie{l,...,n} I(s?)V I(t;) = I(an). Furthermore, (an), {r 0. Indeed, (an)n |

because, for each i, (s?), |. Also, let z € L, z < a,, for each n. This means, consecutively:

Vo, Vie{l,...,n}, z<sVi;;

16



Vi, Vn>1i, 2<s}Vt;

Vi, 2 < Ntivsp)=t;iv J\ sf =t; .
So, for each ¢ € IN, z < t;; hence z = 0. Thus, (an), 41 0.
Now, notice that (I(b,))n is I(L)-Cauchy. Indeed, for each n,p € IV,

AT (bn), I(baty)) < AT (b), Ya) V (Y, Vi) V d (Vo I(butp)) < I(an V¥ agy) = Ian V)

and (@, Vt,)n $z 0. This means that (b, ), is L-Cauchy in L, so, by Lemma 4.(10), (I(bn))n —1
cl((bn)n) in L'; by continuity, (1(b,))n —1 cl((bn)n) in L'; . Since (d({(bs),Yn))n —1 0; it
immediately follows that (Y,,), — 1 ¢l((br)n). So we have found a limit in L’ for (Y,)n, finishing
the proof.

g.e.d.

Proposition 4.3 The embedding I : L — L’ is the Cauchy completion of L.

Proof:

According to Lemmas 4.(10) and 4.(11), P1 and P2 hold relative to the continuous M LM,
embedding . So, by Proposition 4.1, I is the Cauchy completion of L.

g.e.d.

Corollary 4.2 Any LM,,-algebra has a Cauchy completion w.r.t. the order topology and dg or
dp (or, in other words, the classes of dgy — LM,,s and dp — LMp,s have the Cauchy completion

property).

5 The relation to Boolean algebras

5.1 Boolean completions as LM; completions

It is well-known that LM,,-algebras generalize Boolean algebras in that, for m = 1, the LM,,-
algebras are in fact Boolean algebras (together with ¢g the identity). Thus, the results from the
previous section particularize for Boolean algebras, with an axiomatical notion of distance,? that is
a binary operation d : B x B — B such that D1-D7 and d(Z,y) = d(z, y) hold.

In particular, if K is the class of all Boolean algebras with distance d(z,y) = (2 A7) V (y A T),
we obtain the completion result from [25]. In the next subsection, we shall consider completions of
Boolean algebras w.r.t. the usual distance (which coincides, for LM7, both to dg and dp).

5.2 Completions along adjunction

There exists a tight relationship between LM,,-algebras and Boolean algebras, expressed by a
certain type of adjunction between Boole, the category of Boolean algebras, and LM, , the category
of L M,-algebras (see [12]). We are going to investigate, for the LM, distance dp (defined poinwise
by the distance between the nuances hierarchies) and for the classical Boolean distance d(z,y) =
(zAY)V (yAT) (which coincides with dp when Booleans algebra are seen as LM;s) how completions
behave when transported along this adjunction. So, from now one, we only discuss order completions
w.r.t. the distance d = dp - notice that here, because d is polinomially defined in terms of the LM,
operations, ” M L M,, morphism” means ” L M,;, morphism”.

2We are not aware of any treatement of convergence in Boolean algebras w.r.t. to a generic distance.
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For each structure R, be it LM,, or Boolean algebra, denote by =g the congruence relation
on Cauchy(R), defined in the previous section, and by R’ the quotient algebra Cauchy(R)/ =g.
According to Proposition 4.3, the embedding Ig : R — R/, given by Ig(z) = cl((z),) is the
Cauchy completion of R.

Define the functors C' : LM,,, — Boole and D : Boole — LM, by:

o (' is already defined on objects: C'(L) is the Boolean center of L.

oif h : Ly — Ly is a LM,, morphism, let C(h) : C(L;) — C(L3) be the restriction and
corestriction of h.

eif B is a Boolean algebra, let D(B) be the subset of B™ consisting of all decreasing vectors
z = (21,...,2m) (i.e. such that, for each i < j, 2; > z;); define the operations V, A, 0, 1 pointwise;
the operation = by (z1,...,2m) = (Fm,...,T1); for each i € {0,...,m — 1}, gi(z1,...,2m) =
(Zig1,- -, @it1). Then D(B) becomes a LMp,.

eif f: By — B5 is a Boolean morphism, let D(f) : D(By) — D(B3) be defined by

D(f)(z1,...,20) = (f(z1), ..., f(zn)) .

Lemma 5.1 [2] C is faithful, T is fully faithful, and 7" is a right adjoint of C; the unit of the ad-
junction is n = (nr)r, with ny : L — D(C(L)) a LMy, embedding, nr(z) = (em—-1(2), ..., vo(2));
the counit is € = (eg)p, with ep : C(D(B)) — B a Boolean isomorphism, eg(z) = z; for each
z € C(D(B)).

The functors C' and T
1) preserve products (constructed in a usual, set-theoretical fashion) in the follwwing way:
o C (MgerLi) = MrexC(Li);
oD (erKBk) ~ erKD(Lk), by (CL‘}C, .. ,x?)k g ((CL‘}C);@, ey (I?)k)
2) preserve surjective morphisms in the following way:
elet R be a congruence on the LM,, L, Ry be R restricted to C(L) and ¢lp : L — L/R be the
canonical LMy, factorization morphism; then Ry is a congruence on C(L) and C(clr) : C(L) —
C(L/R) = C(L)/Ryq is the factorization Boolean morphism of Ry.
elet Ry be a congruence on the Boolean algebra B, R C D(B) x D(B) be R taken pointwise, and
elp : B — L/Ry be the Boolean factorization morphism; then R is a congruence on D(B) and
D(elp) : D(B) — D(B/Ry) = D(B)/R is the LM, factrorization morphism of R.

A LM, L is called Post algebra if the embedding 7y, is actually a LM, isomorphism.3

Lemma 5.2 Let L be a LM,, and let (z,), C L, x € L. Then:

(1) if (zn)n € C(L), then (2n)n Iz 0iff (z4)n Lo) 0

(2) (2n)n is Cauchy in L iff, for each i € {0,...,m — 1}, (¢i(2n))n is Cauchy in C(L);

(3) if () C C(L) is Cauchy, then (z,), is Cauchy in L iff it is Cauchy in C(L); if (2n)n, (Yn)n C
c L); then ('Tn)n =L (yn)n iff (xn)n =c(L) (yn)n

If (z,), is convergent in L, then, for each i € {0,...,m — 1}, (¢i(2n))n is convergent in C'(L);
If m > 2, then the converse of (5) is not necessarily true;
If L is a Post algebra, then the converse of (5) is true.*

)
)
)
(
) If (2,), — @ in L iff, for each ¢ € {0,...,m — 1}, (¢i(2n))n — @i(z) in C(L);
)
)
)
) If L is Cauchy complete, then C'(L) is Cauchy complete; if L is a Post algebra, the converse is

Proof:
(1): One implication is obvious. For the other, assume that (2,), | 0 in C(L) and let z € L be

3 Actually, such an algebra is polinomially equivalent to a Post algebra in the sense of [11] - see [2], page 165.
40f course, not only Post algebras enjoy this property - it also holds for all LM,,s of finite Boolean center.

18



a lower bound of (z,),; then, for each i € {0,...,m — 1} and n € IN, p;(2) < p;(zn) = Zn, so
@i(z) = 0. Hence, by the determination principle, 2 = 0.

(2): 7only if”: (#), is Cauchy in L, then there exists (yn), 4 0 in L such that, for each n,p € L,
d(zpn, Znyp) < yn. This implies that, for each i € {0,...,m —1}, (¢i(yn))n 4 0in L, hence in C(
furthermore, d(@i(zn), ¢i(2ntp)) < d(2n, Tntp) < Yn, so, because d(p;(zn), ¢i(Tntp)) is in C(
it follows that d(p;i(zn), ¢i(2Zntp)) < pz(yn)

”if”: we have, for each i € {0,...,m — 1}, (s%)n | 0 in C(L) (hence also in L) such that, for
each n,p, d(pi(zn), pi(Tntp)) < 8. Deﬁne for each n, y, = \/ze{o,...,m—l} st and, by the O-sphere

L);
L)

)

property, (yn)n 4 0in L; and also d(zn, Znyp) < Yn.

(3): The first part follws immediately from point (2), since z € C(L) iff g;(2) = « for each
i€{0,...,m—1}. So let us prove the second part.

“only if”: We have (sp), C L, (8n)n {1z 0, such that, for each n, d(z,, yn) < sn. Sod(pi(zn), pi(yn)) <
d(zp,yn) < s, and, since d(p;(2n), vi(yn)) is Boolean, it follows that d(w;(zn), ¢i(yn)) < @i(sn);
and each (pl(sn))n 4z 0,50 (9i(sn))n dcw) 0

7if”: If (s},)n are the sequences corresponding to (@i(2n))n =c () (¥i(Yn))n, one can easily see that
(sn)n defined by s, = \/iE{O,m,m—l} st brings (#n)n =L (Yn)n-

(4): The proof is very similar to the one of point (2).

(5) follows immediately from (3): if (z,), — ® in L then each (¢;(2,)), converges to ¢;(z) in L.
(6): Assume that m = 2. Let R C P(IN) x P(IN) be defined by

R={(A,B) CP(IN) x P(IN) / A is infinite and B=IN or A =) and B is finite} .

The operations A and V are pointwise intersection and union, the lattice 0 and 1 are (@, %) and
(IN,IN); (A, B) = (IN\A, IN\ A); the operators ¢y and ¢; are the projections. One can easily see
that these operations make R a LM;. Consider now the sequence (X,)n, = ([n,0),N), C R.
Then (po(Xn))n 40, and (v1(Xn))n 4 IV in C(L) = P(IN), but (X,)n is not convergent in L. this
example can be easily generalized to a LM, of an arbitrary m > 2.
(7): Assume that, for each i € {0,...,m — 1}, (¢i(2n))n —> s; in C(L). Because L is a Post
algebra, there exists € L such that, for each ¢, ¢;(2) = s;. It now remains to apply point (3).
(8): The first part follows at once from (5) and (2), and the second from (7) and (2).

g.e.d.

Proposition 5.1 Let L be a LM, and B be a Boolean algebra. Then C(L') ~ C'(L)" and D(B’) ~
D(B)'.

Proof:

We have that C(L?) = (L)Y, and, by Lemma 5.2.(3), for each (2, )n, (yn)n € C(L)TY
¢ (2,)n is Cauchy in C(L) iff it is Cauchy in L; so C'(Cauchy(L)) = Cauchy(C(L));
¢(@n)n = (Yn)n in Cauchy(L) iff (zn)n = (Yn)n in L; so =¢(r) is the restriction of = to
Cauchy(C(L)), hence

C(L') = C(Cauchy(L)/ =L) = C(Cauchy(L))/ =c )= Cauchy(C(L))/ =cy= C(L)" .

For the second part, let the LM, isomorphism f : D(BW) — D(B)Y defined by Fl(@i)n, ..., (27
(zL ... ™).

We first notice that, if (zn)n = (2L,...,2™)y C D(B), (2n)n is Cauchy in D(B) iff, for each
ied{l,.. } (z)n is Cauchy in B. Indeed By Lemma 5.2.(2), (z5)n is Cauchy in L iff, for each
i€ {0,.. — 1}, (¢i(2n))n is Cauchy in C'( (B)); and the isomorphism ¢g : C(D(B)) — B
takes each «pl(zn) into zi*!. So it makes sense to consider the restriction and corestriction of f, the
LMy, isomorphism fq : D(Cauchy(B)) — Cauchy(D(B)).

In a similar fashion, we can prove: for each (zn)n, (tn)n C D(B), with (2z,)n, = (2},...,2™),
and (tn)n = (¥, -, U™, (2n)n =p(B) (tn)n iff, for each i € {0,...,m — 1}, (= n

=B yﬁ)
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(we apply the second part of Lemma 5.2.(2), and again the fact that ¢g is an isomorpsism and
€5(pi(2n)) = zit1). This means that =p(p) is the image by fo of pointwise-=p, which implies
that D(B') = D(Cauchy(B))/ =p and D(B)' = Cauchy(D(B))/ =pp) are isomorphic, by an
isomorphism hp sending (cl=, ((z1)n), ..., cl=5((27)n)) to =y p ((xk, ..., 2™),).

g.e.d.

Remark 5.1 The above proposition shows that that the functors C' and D commute with the
Cauchy completion, reflecting the ” pointwise character” of the distance dp. It also provides another
proof of the dp-completion existence out of Boolean completion, but only for Post agebras - a dp-
completion for the general case cannot be given, as far as we see, simply by the game of nuances.
Actually, both Propositions 5.1 and the following 5.2 (the main results of this subsection) hold
within a more general acceptance of the notion ”pointwise character” - namely, satisfaction of
Lemma 5.2.(2 and 4), acceptance which includes dg also.

Next, we characterize the class of all LM, s (containing the Post algebras) for which completion
can be achieved by completion of nuances.

Proposition 5.2 Let L be a LM,,. Then the following are equivalent:

(1) D(I¢y) onr : L — D(C(L)") is a Cauchy completion of L;

(2) Ipc(ryy onr : L — D(C(L))" is a Cauchy completion of L;

(3) For each z € D(C(L)), there exists (z,), C L such that (z,), —,, (1) 2

Proof: Notice that, if he(ry : D(C(L)') — D(C(L))" is the isomorphism from the proof of
Proposition 5.1, then hc(ry o D(Icr)) = Ipc(ry)- Hence (1) and (2) are equivalent. Denote
J=Ipcy and g = L.

”(2) implies (3)”: We apply Proposition 4.2.(3) to the embedding f o g to find that, for each
z € D(C(L))', there exists (an), C L such that (fg(an))n —s4z) 2. Then, for each y € DC(L),
we find (a,), C L such that (fg(an))n —sgr) f(y); hence (g(an))n —>gr) ¥-

”(3) implies (2)”: Notice that g is a continuous embedding, because (z,), | 0 in L is equivalent
to (¢i(2n))n 4 0in C(L) for each i, that is (g(2n))n = (po(2n), ..., ¢m-1(2n)n $ 0in DC(L). We
now check the universality property for f og. Let j : L — L” be a continuous embedding of L a
Cauchy complete LM,,, L”. In a perfectly similar way to the proof of Proposition 4.1 (where to
construct the embedding f : L' — L” we do not use the Cauchy completion of L), we define a
continuous embedding k : DC(L) — L”, unique with the property that ko g = j. Now, by the
universality of f, we find a unique continuous embedding v : DC(L)" — L” such that vo f =k,
so vo fog = j. The fact that v is the unique continuous embedding with vo f o g = j follows from
the previous above unicities (of v with v o f = k and of k with ko g = j.

g.e.d.

5.3 Completion of axled LM, s

In [26], it is considered a construction of LM,,s starting from Boolean algebras with ideals. It turned
out that this construction provides precisely the axled LMpys (see [2]). Here, we are interested
whether this construction commutes with completions. And we shall see that sometimes it does, in
a sense specified below.

We again assume that d = dp. Let us first recall the construction from [26], dressed up in
a convenient categorical language. Let IBoole be the category whose objects are pairs (B, I)
[Boolean algebra - ideal on it], and the morphisms between two objects (B,I) and (B’,I') are
Boolean morphisms f : B — B’ such that f(I) C I'. Define the functor £ : IBoole — LM, as
follows:
- on objects, E(B,I) = {(z1,...,2,) € D(B) | Tn A1 € I};
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- on morphisms, for f : (B,I) — (B’,I') in Boole, E(f) : E(B,I) — E(B’,I') is the restriction
and corestriction of D(f) : D(B) — D(B').

Definition 5.1 An ideal I of a Boolean algebra B is called broad if, for each countable X C B
such that A X =0, it holds that X U # .

Any ideal in a finite Boolean algebra (more generally, in a Boolean algebra such that 1 is an
isolated point w.r.t. the order topology) is broad. An ideal is broad iff it includes a vicinity of 1.
The next proposition says that £ commutes with completions provided the starting ideal is broad.

Proposition 5.3 Let (B, ) in IBoole such that I is broad and let « : B — B’ the Cauchy
completion of B (which is also a set-theoretical inclusion). Then E(¢) : E(B,I) — E(B’, ) is the
Cauchy completion of E(B, ).

Proof:

Notice first that, since C'(E(B, I)) = C(D(B)), C(E(B’,I)) = C(D(B')) and because of Lemma
5.2.(4) and [Proposition 4.2, Lemma 4.4], the notion of a sequence (z,), converging to an z is
independent of the structure considered (be it any one of E(B,I), D(B), E(B',I), D(B')), so long
as (2n)n and z are from inside that structure. In particular, if (z,), C D(B) and € D(B), then
(n)n —>p(B) * is equivalent to (2,)n —rp(B,1) %, etc. Thus,we shall use freely " (z,), — z”.

Let us now show that I closed in B’. Let (z,), C I such that (z,), — . Because of P2,
we can assume that (z,), C B. Than there exists (sp)n C B, (sn)n 4 0 ®, such that, for each n,
d(zp, ) < 8,. Since [ is broad, from a certain n, s, € I. So we can assume (s,), C I. Recall the
construction, in Lemma 4.3 (particularized to the Boolean case), of a decreasing (z,), C B having
the same limit as (2,),, that is z; because I is an ideal, z, stays inside I, so (z,), C I. But this
implies x € I.

We are now able to check P1 and P2 for E(¢) : E(B,I) — E(B',I) and conclude, using
Proposition 4.1, that it is a Cauchy completion of E(B, I).

P1: Let (an), € E(B',I) be a Cauchy sequence. Because D(B') is Cauchy complete, there exists
a € D(B') such that (a,), — a. Denote, for each n, &, = @o(an), Yn = em-1(an); © = wo(a),
Y = om-1(a). We know that (z,)n — @, (Yn)n € ¥, Tn Ayn € I for each n; and we want to show
T Ay € I; but this is true, since the Boolean operations are continuous and 7 is Cauchy complete
in B’

P2: Let a € E(B',I). By Propositions 4.2.(3) and 5.1, P2 holds for D(:) : D(B) — D(B'), so
there exists (an), € D(B) such that (an), — a. Denote again z, = @o(an), Yn = em-1(an),
z = pg(a), y = pm—-1(a). Then (zn)n —> &, (Yn)n € y, TAy € I. Applying Lemma 4.3 and its
dual, we can take (z,), to be decreasing > # and (yn)n increasing < z; so Tp Ayp, < TA Y, s0O
(an)n C E(B,I).

g.e.d.

6 Lukasiewicz distance on proper LM, -algebras

An important class of LM,,-algebras is the class of proper LMpy-algebras defined in [8]. This
structures are obtained adding a family of binary operations to the basic type of LMy,-algebras
and some conditions for this operations. In [8] is proved that proper LM,,-algebras provide an
axiomatization of the m-valued calculus of Lukasiewicz. The category of proper L M,,-algebras is
isomorphic with the category of MV,,-algebras defined in [14], which are the structures commonly
used as algebraic counterpart of the m-valued Lukasiewicz logic. In this structures we shall consider
the Lukasiewicz distance and we shall study convergence and Cauchy completions with respect to
this distance.

5Notice that, by continuity, (srn)n 45 0 iff (sn)n 45 0.
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Definition 6.1 [8] A proper L M,,-algebra is a structure (L,{Fi;}¢ j)es,,), where L is a LMp,-
algebra and {F;}i jyes,, is a family of binary operations on L such that
@k(Fz](éL‘,y))— Jz’(l’)/\t]j(y), ifh>i—j, (F)
for any , y € L, k € {0,...,m— 1} and (4, j) € Sm, where
Ji(2) = em—1-i(%) N om—a_;(z) for any ¢ € {0,...,m — 2},
Sm={(,7) 1 j<1,2<i<m—-2,0<j<m—4}if m >4 and
S =0if m< 4.

If weset T, = {(4,7) :j<4,1<i<m—-20<j<m-—3}ifm>3and T, =0if m < 3 then,
for m > 3, we extend the definition of Fj; for any (i, j) € Thn:

Fro(x,y) = J2(x) A Ji(y) AT,

F(m—Z)(m—S)(xa y) = m—2('73) A Jm—B(y) Ax.

It is easy to see that F;; satisfy the condition (F) for any (¢, j) € Tp,.

As a consequence of the determination principle, the family Fij(i,j)esm’ if exists, it is unique.
Hence, saying that L is a proper L M,,-algebra, we shall tacitly understand that the family Fii(i,j)esm
is the only possible one.

In [15] it is proved that the category of proper LM,,-algebras is isomorphic to the category
of MV,-algebras. Recall that an MV, -algebra is a structure (A,®,”,0), where & is a binary
operation, ~ is a unary operation and 0 is a constant such that the following properties hold for

any z, y € A:

(M2) T =z,

(M3) GEB T = _a

(M4) Toy)dy= (YD) Dx,
(M5) ma = (m — 1)z,

(M6) [(jz) © (T ((j — 1)z))]* = 0,

for any € A and 0 < j < m — 1 such that j does not divide m — 1, where

‘l®y_(l@y),kr_l@~.~-@x.
k times
The axioms (M1)-(M4) define the notion of MV -algebra. The MV -algebras were defined in [6]
and they are the algebraic structures which correspond to the oco-valued Lukasiewicz logic.
Since the basic M V,,-algebra operations can be polinomially defined using the basic operations

of proper LM,,-algebra and vice versa, we shall freely use them without making any difference
between the two structures. One can see [10, 15, 8, 24] for the detailed definitions.

Hence, in any proper L M,,-algebra we ca define another difference and a corresponding distance:

=k y =20 =z ATA VL (@i(@) Avi) AN jyer,, Foi (@ 9),
diuk (2,9) = (2 —tuk ¥) V (Y —1uk 2).

The distance dj,x will be called Lukasiewicz distance, since this distance is commonly used in
the MV-algebra theory. Still, it is not an axiomatic distance in the sense of Definition 3.2, since
the residuation condition (D3) for this distance is z < y & djux (2, y) for any z and y.°

Using dj, we get corresponding notions of dj,;-Cauchy sequence and Cauchy completion of a
proper LM,,-algebra, in the style of Definitions 3.3 and 4.2.

5We shall use the name ”axiomatic distance” for distances in the sense of Definition.32.
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Remark 6.1 In [13] the convergence in MV-algebras is studied using the distance dj,gx. The MV-
algebra operations are continuous with respect to the convergence defined by dj, . The construction
of the Cauchy completion of an MV-algebra L is classical. If Cauchy(L) is the set of all dj,x-Cauchy
sequences of L, then Cauchy(L) with the pointwise defined operations is an MV-algebra . On
Cauchy(L), define the binary relation = by (2n)n = (Yn)n it (diwk(€n, Yn))n —1uk 0 in L. Hence
= is a congruence relation, so we can consider the quotient L;uk = Cauchy(L)/ =, which is the
Cauchy completion of L in the class of M V-algebra. In particular, the embedding I : L — L;uk,
I(z) = cl((x)n) is continuous. If L is an MVj,-algebra, then Cauchy(L) and L;uk are obviously
MV,,-algebras. In this case, L;uk is the Cauchy completion of L in the class of M V,,-algebras.

If L is a proper LM,,-algebra, then we can consider L as an M V,,-algebra and we get its djy-
Cauchy completion L;uk in the class of MV,,-algebras as in Remark 6.1. Hence, L;uk is a proper
LM,,-algebra which is Cauchy complete with respect to the convergence defined by djx. Due to
the categorical isomorphism between M V,,-algebras and proper L M,,-algebras, this actually means
that L;uk is the Cauchy completion of L in the class of proper LM,,-algebras with the distance
function djyk.

6.1 The relation with other distances
Let L be a proper LM,,-algebra and d an arbitrary axiomatic distance on L.

Lemma 6.1 The following properties hold:
(1) diur < d,
(2) if (zn)n is a d-Cauchy sequence in L, then (z,), is a diyk-Cauchy sequence.

Proof: (1) Tt is straightforward that dj,; < dg. For an arbitrary distance we use Remark 3.1.
(2) is a direct consequences of (1).

g.e.d

In the light of the above lemma, the following is obvious:

Lemma 6.2 If L is Cauchy complete w.r.t. djux, then (L, d) is a Cauchy complete M LMp,-algebra.

In the following, suppose that (L, d) is an M L M,-algebra such that L is a proper LMm—algebra
and d is, in addition, polinomially defined using the LM,,-algebra operations. Denote by L, the
Cauchy completion of L w.r.t. d and by L;uk the Cauchy completion of L w.r.t. dyug. Since d is
polinomially defined, (L;uk ,d) is also a M L Mp,-algebra.

Proposition 6.1 Under the above hypothesis, there exists ¢ : (le, d) — (L;uk, d) an embedding
of M LM,,-algebras.

Proof: Let Iy : (L,d) — (L;,d) be the Cauchy completion of (L,d) and Ijyx : L — L;uk
the Cauchy completion of L w.r.t. djux. Renark that, since [Ij,x is an LM,,-algebra morphism
and d is polinomially defined, we get Ik (d(z,y)) = d(Luk(z), Luk(y)) for any z, y € L. So,
Lk = (L,d) — (L;uk,d) is a continuous embedding of M LM,,-algebras. By Lemma 6.2 (2),
(L;uk,d) is Cauchy complete. Hence, there exists an unique continuous embedding of M LM,,-
algebras 4 : (le,d) — (L;uk, d) such that ¢ o Iy = Iyg.

g.e.d.

Remark 6.2 Since d is polinomially defined, the Cauchy completion is constructed in classical
fashion, as a quotient of the algebra of Cauchy sequences (see Section 4.2). If (z,), is a d-Cauchy
sequence then, by Lemma 6.1 (2), (2,), is a djug-Cauchy sequence. Let clg((2,)n) be the class of
(zn)n in le and cliyk ((2n)n) be the class of (z,), in L;uk. Then it is straightforward to see that,
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U(L,) = {cliur ((£2)n)/(Zn)n is d-Cauchy sequence}.
Hence, the Cauchy completion w.r.t. d can be obtained as a LM,,-subalgebra of the cauchy com-
pletion w.r.t. dj,x

6.2 The relation with the Boolean center

Let L be a proper LM,,-algebra. We shall establish a connection between the Cauchy completion
L;uk and the Cauchy completion of the Boolean center C'(L) (this completion will be denoted
C'(L)I). Remark that, whenever by, by € C(L), diyk(b1,b2) = dp(b1,b2) = (b1 /\E) V (bs /\E) is the
usual Boolean distance. Hence, whenever we shall talk about convergence, Cauchy sequences and
Cauchy completion for C'(L) the distance we shall refer to will be the classical one.

Proposition 6.2 For any z € L and (2,), C L, the following properties hold:

(1) (#n)n is a diug-Cauchy sequence in L iff (¢;(2,))n is a Cauchy sequence in C(L) for any
ie{0,...,m—1},

(2) 2 —uk @ in L iff pi(z,) — pi(2) for any i €{0,...,m—1}.

Proof: The ”only if” part is a consequence of the following inequality:
diuk (2, y) < Vity' dp(pi(@), pi(y)) for any 2, y € L.
Since the unary operation g, ..., ;-1 can be expressed pollinomially using the MV-algebra
operations, the ”if” part of (1) follows by the fact that the set of all Cauchy sequences is closed to
the MV-algebra operations (see Remark 6.1). For the ”if” part of (2) we use the fact the MV-algebra
operations are continuous w.r.t. djug.
g.e.d.

Lemma 6.3 If L is Cauchy complete w.r.t. djui, then C(L) is Cauchy complete. If L is a Post
algebra of order m, the converse is also true.

Proof: The proof of Lemma 5.2 (8) still holds for djy.
g.e.d.

Lemma 6.4 C’(L;uk) ~ C'(L)I.
Proof: The proof is similar with the proof of Proposition 5.1.
g.e.d.

7 Characterizations of Cauchy completions

We have seen that the Cauchy completness of the Boolean center is not a sufficient condition for
a LM,,-algebra to be Cauchy complete. In this section we shall provide a necessary and sufficient
condition for the Cauchy completeness of a LM,,-algebra using its representation as a chain of
Boolean ideals. Finally, we shall prove that for a special class of axiomatic distances the Cauchy
completions are isomorphic. In the particular case when we start with a proper LM,,-algebra,
this Cauchy completions are also isomorphic with the Cauchy completion w.r.t. the Lukasiewicz
distance dj,x. We shall firstly recall some preliminary definitions and results.
Let L be an arbitrary LM,,-algebra. If we define
e L — D(C(L)), n(e) = (pm-1(2), ..., (),
then 7z is an embedding of L Mps-algebras. Moreover, 7z, is an isomorphism iff L is a Post algebra
(see Lemma 5.1). If b € C(L), we get nr(b) = (b,...,b) and C(L) =~ D(C(L).

We also consider the auxiliary unary operations Jy, ..., J;,—2 defined as follows:
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Ji(2) = em—1-i(%) A pm—a2_;(z) for any ¢ € {0,...,m — 2}.
and we set Jp,_1(2) = @o(x) for any « € L.

Lemma 7.1 [24] In any LM,,-algebra L, the following properties hold:
(1) gi(z) = Z:nll_l_i Jg(z) for any i € {0,...,m— 1},
(2) if ¢ # j then Ji(z) A Jj(z) =0,
3) e (Ji(z)Az) =0if k < m—i—2 and pg(Ji(x) Az) = J;(x) otherwise, for any k € {0,...,m—1}
and i € {0,...,m — 2},
(4) Determination principle:
z =y iff J;(2) = Ji(y) for any : € {0,...,m — 1}.

In [24], a LM,,-algebra is characterized, modulo isomorphism, by a family of Boolean ideals of
the Boolean center C'(L). To be more precisely, if L is a LM,,-algebra, we define
I(L) = (Jo(L),...,Jm—2(L),C(L)),
Conversely, if B is a Boolean algebra and Iy, ..., I,_2 are ideals of B such that I; = I,,,_s_; for
any i € {0,...,m — 2}, we define
S(Io,...,Im—2,B) ={x € D(B)/J;i(x) € np(I;) for any i € {0,...,m —2}},
For two such sequences (Ip, ..., Im—2,B) and (Jo, ..., Jm—2,C), we define
(Io, .. .,Im_Q,B) >~ (Jo, ceey Jm_z, C)
if there exists a Boolean isomorphism h : B — C' such that h(I;) = J; for any i € {0,...,m — 2}.
Under the above definitions, the following properties hold:
S(Z(L)) =nc(L) =L,
Z(S(Lo, .-y Im—2,B)) = (n(11),...,nB(Im=2),C(D(B))) ~ (Lo, ..., Im—2, B).

Definition 7.1 If B is a Cauchy complete Boolean algebra, an ideal I C B is called Cauchy
complete if

[(bn)n C I Cauchy sequence and b, — b] imply b € I.

If B is a Boolean algebra and Iy, ..., I,_2 are ideals of B, then the sequence (I, ..., Iy_2, B) is
called Cauchy complete if B is Cauchy complete and Iy, ..., I,,,_2 are Cauchy complete ideals of B.

In the following we suppose that either d = djy, or d is an axiomatic distance such that the
following properties hold:
(C0) d is polinomially defined using the L M,,-algebra operations,
(Cl) if bl, bz S C(L) then d(bl, bg) = dB(bl, bg) = (bl /\E) \Y (bg /\H),
(C2) (zn)n is a d-Cauchy sequence in L iff (¢;(2n))n is a Cauchy sequence in
C(L) for any i € {0,...,m — 1},
(C3) & — x wart. diff g;(2n) — @i(2) for any i € {0,...,m — 1}.

Remark that, for d = djy i, we assume that the L M,,-algebras involved are proper L M,,-algebras.
We shall first prove a preliminary result.

Lemma 7.2 In an LM, algebra L the following properties hold for any z € L and (z,), C L:
(1) (¢i(xn))n is a Cauchy sequence for any i € {0,...,m — 1} iff (Ji(z,))n is a Cauchy sequence
for any ¢ € {0,...,m — 1},

(2) pi(zn) — x for any i € {0,...,m — 1} iff J;(2,) — z for any ¢ € {0,...,m — 1}.

Proof: (1) and (2) are consequences of the following relations:
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(2), Ji(y)) for k{0,...,m— 1},
-1- ((,Om_Q_i(CL‘),‘,Om_z_i(y)) for k{oa"wm_Q}a
d(Jm-1(2), Jm-1(y)) = d(pm-1(2), pm-1(y))-

Now, we able to provide a characterization of the Cauchy completeness and of the Cauchy
completion of a L M,,-algebra using the properties of the corresponding sequence of Boolean ideals.

Proposition 7.1 If L is a LM,-algebra, then L is Cauchy complete w.r.t. d iff Z(L) is Cauchy
complete.

Proof: ”only if”: Suppose that L is a LMp,-algebra, Cauchy complete w.r.t. d. Then C(L)

is Cauchy complete by (Cl1). For any ¢ € {0,...,m — 2} we have to prove that J;(L) is Cauchy
complete. Let ¢ € {0,...,m — 2} and (b,), C J;(L) a Cauchy sequence, b, —> b. We have to find
an element 2z € L such that J;(z) = b. For any n we define z, = (b,,.%. b,,0,...,0) € D(C(L)).
Hence, it is straightforward that J;(z,) = nr(b,) and J;(z,) = nr(0) for j # ¢. In consequence,
Ji(zn) € nr(J;(L)) for any j € {0,...,m — 2}, s0 z, € S(Z(L)) = nr(L). For any n, let z, € L
be the unique element such that nz(z,) = z,. It follows that np(Ji(z,)) = Ji(2n) = nr(bn), so
Ji(zn) = b, for any n. If j # 4, we can similarly prove that J;(2,) = 0 for any n. In consequence,
for any j € {0,...,m — 2}, the sequence (J;(xn))n is a Cauchy sequence in C'(L). By Lemma 7.2
(1) and (C2), (2n)n is a Cauchy sequence of L and, by hypothesis, there exists # € L such that
zn — ¢ wr.t d. By (C3) and Lemma 7.2 (2), Ji(z,) — Ji(z) in C(L), hence b, — J;(x) in
C(L). Since we also have b, — b in C'(L), by Corollary 3.1, it follows that b = J;(z). We proved
that b € J;(L), so the Boolean interval J;(L) is Cauchy complete for any ¢ € {0,...,m — 2}.
”if”: Assume that Z(L) is Cauchy complete and let (2,), € L be a Cauchy sequence in L. By (C2)
and Lemma 7.2 (1), (J;(2n))n is a Cauchy sequence in J;(L) C C(L) for any ¢ € {0,...,m — 1}.
By hypothesis, there are b; € J;(L) such that J;(z,) — b; for any ¢ € {0,...,m — 1}. Since the
Boolean algebra operations are continuous, using Lemma 7.1 (2), we get b; A b; = 0 for any ¢ # j,
so b; < b% for any i # j. For any i € {0,...,m — 1}, let y; € L such that J;(y;) = b;. Set

2= b1 V VI (Wi Abi) = bt V VI (i A Ji(i).
By Lemma 7.1 (3), we get ¢;(z) = ;n:_ni_l_i by for any ¢ € {0,...,m — 1}. Hence, for Jy,_1(z) =
Ym—1(x) = b1 and J;(x) = b;AbI A~ -Ab,_ fori € {0,...,m—2}. Since b; < b3 for any i + 7,
we get J;(x) = b; for i € {0, ..., m — 1}. It follows that J;(z,) — J;(z) for any i € {0,...,m—1}
so, by Lemma 7.2 (2) and (C3), z,, —  w.r.t. d. We proved that any Cauchy sequence in L has
a limit in L, so L is Cauchy complete w.r.t d.

g.e.d.

Proposition 7.2 If B is a Boolean algebra and Iy, ..., I,—o are ideals of B such that I; = I,;,_o_;
for any ¢ € {0,...,m — 2}, then (Iy,...,I;n—2, B) is Cauchy complete iff S(Ip, ..., m—2, B) is
Cauchy complete w.r.t. d.

Proof: If we denote S = S(Iy, ..., Im—2, B), then J;(S) = np(l;) ~ I; for any : € {0,...,m—2}
and C(S) = C(D(B)) ~ B. It is obvious that the Cauchy sequences and the convergence in Boolean
algebras are preserved by Boolean algebra morphisms. Hence, (lo, ..., Im—2, B) is Cauchy complete
it Z(S) = (Jo(S), - .., Im=2(S), C(S)) is Cauchy complete. By Proposition 7.1, it follows that Z(S)
is Cauchy complete iff S is Cauchy complete w.r.t. d and the intended result follows.

g.e.d.

Let B be a Boolean algebra and B’ its Cauchy completion defined as a quotient of the Boolean
algebra of the Cauchy sequences of B(see Section 4.2). For an ideal J of B set
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J = {cl((bn)n)/(bn)n C J is a Cauchy sequence}.
Proposition 7.3 Under the above assumptions, J isa Cauchy complete ideal of B'.

Proof: One can easily see that J' is an ideal of B'. Let (Yn)n be a Cauchy sequence in J
such that (), — Y in B'. We have to prove that Y € J . Since (Ya)n C J', for each n, there
exists a Cauchy sequence (y¥)x C J such that Y, = ¢l((y%)x). We firstly remark that any Boolean
algebra is a LM,,-algebra and the classical Boolean distance is an axiomatic distance in the sense
of Definition 3.2. Hence, Lemma 4.3 and its dual still hold for Boolean algebras with the classical
Boolean distance. By the dual of Lemma 4.3, we can take y* 1 for any n, Y,, 1 and (V,,), — Y
in B'. If we set b, = \/ie{l,...,n} yP for any n then one can prove that (b,), is a Cauchy sequence

of B and (Yn)n — cl((bn)n) in B (using the dual constructions from the proof of Lemma 4.11).
Remark that (b,), C J, because (y%) C J for any n. It follows that cl((by),) € J'. Since the limit
of a sequence in B’ is unique, we infer that Y = cd((bp)n), s0Y € J'. Hence we proved that J is
a Cauchy complete ideal of B'.

g.e.d.

Proposition 7.4 If L is a L M,-algebra and L' is the Cauchy completion of L w.r.t. d then
Ji(L) = Ji(L') for any i € {0,...,m —1}.

Proof: Suppose i € {0,...,m — 1} is an arbitrary element.
CT Y € Ji(L)I then there exists a Cauchy sequence (by), C J;(L) such that Y = ¢l((by)n). It
follows that b, = J;(2,) for any n, where (z,), C L. By (C2) and Lemma 7.2 (1), (2,), is also a
Cauchy sequence in L. Hence ¢l((z,),) € L' and Ji(e l((zn)n)) € Ji(LI). Since the LM,,-algebra
operations are pointwise defined on Cauchy sequences, we get Ji(c I((zn)n)) = ¢ {((Ji(2n))n) =
l((bn)n) =Y, s0Y € Ji(L').
727 Y € Ji(L'), then Y = Ji(el((2n)n)) for some Cauchy sequence (z,), C L. We get
Y = el((Ji(zn))n). By (C2) and Lemma 7.2 (1), (Ji(2,))n is also a Cauchy sequence in L and
(Ji(2n))n C Ji(L). Tt follows that Y € Ji(L)'.

g.e.d.

Remark 7.1 For any LM,,-algebra L we have
I(LY = (Ji(Ly), ., Jm_a (L

i I

), C(L)) = (i)', Jm-2(L)', C(L)).

Lemma 7.3 Let L be an arbitrary LM,,-algebra and let di, dz be two axiomatic distances which
satisfy (C0)-(C3). Then L is Cauchy complete w.r.t. d; iff L is Cauchy complete w.r.t. dy. If, in
addition, L is a proper L M,,-algebra then L is Cauchy complete w.r.t. dy,x iff L is Cauchy complete
w.r.t. an axiomatic distance d satistying (C0)-(C3).

Proof: Tt follows by (C1), (C2) and (C3). g.e.d.

In the sequel we shall prove that the Cauchy completions w.r.t. axiomatic distances satisfying
(C0)-(C3) coincide. Since such a distance is polinomially defined using the LM,,-algebra operations,
it can be considered on any L M,,-algebra. Hence, for such a distance d and for any LM,,-algebra L,
the pair (L, d) is a M LM,,-algebra. For a LM,,-algebra L, we denote by L;j the Cauchy completion
of L in the class K of all L M,,-algebras enowed with the corresponding distance defined by d. If L
is a proper LM,,-algebra, we have denoted by L;uk the Cauchy completion of L w.r.t. dj,x in the
class of all proper LM,,-algebras.

Proposition 7.5 If L is an arbitrary LM,,-algebra and d;, ds are two axiomatic distances which

satisfy (C0)-(C3), then
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Ly ~Ly
as m-algebras, as m-algebras with the distance d; and as m-algebras with the
LM,,-algeb M LM,,-algeb ith the di d d M LM,,-algeb ith th
distance ds).

Proof: By Remark 7.1 we get
I(Lg,) = (Ji(L) s Im—a(L) ,C(L) ) = I(Ly,).
Since 7 establish a categorical equivalence, we infer that L:il and lez are isomorphic L M,,-algebras.
The distance d; and dy are polinomially defined, so an LM,,-algebra isomorphism commutes with

both d; and ds.
g.e.d.

Proposition 7.6 If L is a proper LM,-algebra and d is an axiomatic distance which satisfy (C0)-
(C3), then

(as proper LMp,-algebras and as M LMp,-algebras with the distance d)

Proof: As in the proof of Proposition 7.5, it is straightforward that L;uk and le are isomorphic
LM,,-algebras. Since the distance d is polinomially defined, they are also isomorphic as M LM,,-
algebras with the distance d. We only have to prove that L, is a proper LM,,-algebra. Let
h : L;uk — le a L M,,-algebra isomorphism and suppose that {Fj;}(; j)es,, is the unique family
of operations that provide a proper LM,,-algebra structure for L;,,. If we define

Gij(z,y) = h(F;;(h~ (z),h™*(y))) for any (i,j) € Sy, and 2, y € L:i,
then {Gij}i jjes, is a family of binary operations on L:i which obviously satisfies the condition
(F) form Definition 6.1. Consequently, (LId, {Gij} i j)es,.) is a proper LM,,-algebra.
g.e.d

Corollary 7.1 If L is a LM,,-algebra, then the Cauchy completions w.r.t. dg and dp are isomor-
phic. If, in addition, L is a proper LM,,-algebra, this Cauchy completion are also isomorphic with
the Cauchy completion w.r.t. djy.

Proof: di and dp satisfy (C0)-(C3). ¢.e.d.

Remark 7.2 If L is an M V,,-algebra then we can consider its Cauchy completion in the class
of MV,,-algebras (as in Remark 6.1) or we can consider its Cauchy completion in the class of all
M LM,,-algebras with an axiomatic distance d which satisfy (C0)-(C3). The above results asserts
that Cauchy completions we get in each case are isomorphic as MV,,-algebras and as M LM,,-
algebras.
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