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1. Introduction, the relevant scales

With the development of the nanotechnologies, new possibilities recently
emerged to find electronic properties which reflect the discrete aspect of en-
ergy spectra. The objects we shall describe in this course are metals which
will be considered as quantum mechanical objects. Long time ago Kubo
realized that in a small system of typical size L, the inter-level spacing
∆ ∝ L−d may become as large as the temperature. The discreteness of the
spectrum should manifest itself through a qualitative change in thermody-
namic properties[ 1, 2]. It turns out that beside ∆, another characteristic
energy scale Ec emerges (the Thouless energy), which determines the ther-
modynamic properties in a crucial way.

It is the purpose of this course to review the properties of the metallic
spectra and relate them to physical quantities, transport and thermody-
namics. In a first approximation, a metal can be considered as a complex
quantum system which shares universal spectral properties with other so-
called chaotic systems, like nuclei, molecules, models of billiards. One es-
sential property is that the energy levels are strongly correlated and present
the phenomenon of spectral rigidity [ 2].

Such a system is described by four length scales: the sample size L, the
mean free path le which describes the elastic collisions, the Fermi wave
length λF which depends on the density of electrons and the coherence
length Lϕ. This last scale is very important because the effects we aim to
describe in this course result from the phase coherence of the wave functions
and thus disappear beyond Lϕ[ 3]. Smaller distances define the mesoscopic

regime. In this course, we shall mostly consider an electron gas in the
following limits:

λF ≪ le ≪ L≪ Lϕ (1.1)

which correspond to a weakly disordered (λF ≪ le), mesoscopic (L ≪ Lϕ)
metal in the diffusive regime (le ≪ L). When the disorder becomes so
large that le is reduced to a length of order λF , the wave functions become
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6 G. Montambaux

localized on a typical scale ξ called the localization length[ 5, 6]. Here we
shall study only the diffusive regime where ξ → ∞.

In this regime, an electron moves diffusively because it experiences many
elastic collisions while moving in the sample. The typical distance covered
by the diffusive particle in a time t varies as r2(t) ≃ Dt. The diffusive
motion is thus characterized by a new time scale τD which is the typical time
for an electron to travel through the sample. It is defined as τD = L2/D.
To this time scale corresponds a new energy scale Ec called the Thouless
energy:

Ec =
h̄

τD
=
h̄D

L2
(1.2)

where the classical diffusion coefficient D is given by

D =
v2

F τe
d

=
vF le
d

(1.3)

τe = le/vF is the elastic collision time. vF is the Fermi velocity. It is
interesting to notice that the d.c. residual (T = 0K) conductance σ can
be directly related to the Thouless energy. Using the Einstein relation
σ = e2ρ0D, where ρ0 is the average density of states, and the Ohm re-
lation between the conductance G and the conductivity, G = σLd−2, the
dimensionless conductance g can be written as

g =
G

e2/h̄
=
σLd−2

e2/h̄
=
Ec

∆
≡ N(Ec) (1.4)

since the average interlevel distance ∆ is 1/(ρ0L
d). N(Ec) is thus the

average number of states in a strip of the spectrum of width Ec. We shall
see that, beside ∆, the energy scale Ec enters in an essential way to describe
the spectral properties of mesoscopic systems. Although disordered systems

ec EE∆ E h/τ

ballistic

F0

quantum ergodic diffusive

Fig. 1. Relevant energy scales

have been mainly studied for their transport properties, there has been in
the recent years an increasing interest in their spectral properties. This is
in large part because of the development of nanotechnologies which allows
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the fabrication of mesoscopic devices and the detection of small signals. In
particular, the discovery of persistent currents in mesocopic isolated rings
has motivated the study of the statistical properties of energy levels in the
presence of an external parameter, a Aharonov-Bohm (AB) magnetic flux,
which breaks the Time-Reversal Symmetry (TRS)[ 7, 8, 9, 10]. This
breakdown of TRS has the effect of changing the spectral properties. It
has become also possible to measure the spectral correlations by transport
experiments in which it is possible to do a spectroscopy of the levels[ 11].

Another motivation for the study of spectral correlations comes from an
argument due to Thouless which relates the conductance to the typical vari-
ation of the energy levels in a change of the boundary conditions[ 12, 13].
This argument links the transport properties to the spectral properties and
will be discussed in details. Among the signatures of the phase coherence
on transport properties, a very important one is the property of Universal
Conductance Fluctuations. In the mesoscopic regime , the conductance
is not a self-averaging quantity and its distribution is characterized by a
universal variance[ 14, 15, 16, 17]

〈G2〉 − 〈G〉2 ∼ (
e2

h̄
)2 (1.5)

We shall see that this universal variance is closely related to the spectral

rigidity mentioned above[ 17].
The course is organized as follows: the next section presents the mi-

croscopic model used for disordered metals. It describes non-interacting

particles moving in a random potential. It is shown that low energy spec-
tral properties exhibit the universal features of the Random Matrix Theory
(RMT) and that deviations exist above the energy scale Ec. In section 3, a
semi-classical picture relates the spectral correlations to the description of
a diffusive particle in a random medium. Section 4 is devoted to the per-
sistent current in a mesoscopic ring and its relation with the fluctuations
of the local or global density of states. The curvature distribution and its
relation with the conductance are analyzed in section 5. Then it is seen
that the parametric correlations, namely the correlations between energy
levels at different values of an external parameter like an AB flux, exhibit
a universal behavior after rescaling of the energy and flux scales (section
6).

This course overviews only some aspects of the spectral fluctuations in
disordered metals, especially those using the semi-classical approach[ 18].
The subject has been covered by many aspects on recent review papers[
4, 19, 20, 21]. Throughout this course, unless otherwise specified, we
shall set h̄ = 1, Ld = 1, ∆ = 1 and we shall describe spinless electrons.
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2. Metal as a quantum chaotic system

The study of spectral statistics in complicated systems has been initiated
by Wigner, Dyson, Mehta and others to describe the spectra of nuclei [
22, 23, 24, 25, 26]. These authors describe the statistical properties of
matrix Hamiltonians, with a Gaussian distribution of the elements around a
zero average. A remarkable feature of the Random Matrix Theory (RMT)
is that the distribution of levels depends only on the symmetry of the
Hamiltonian. In particular, if the Hamiltonian is invariant under time–
reversal symmetry, the statistical ensemble of matrices is invariant under
orthogonal transformations and is called Gaussian Orthogonal Ensemble
(GOE). If the system is not invariant under time–reversal symmetry, for
example in the presence of a magnetic field, the statistical ensemble of
matrices is invariant under unitary transformations and is called Gaussian
Unitary Ensemble (GUE). The RMT has been applied to a variety of very
different physical situations in nuclear, atomic and molecular physics [ 2,
22, 23, 24, 25, 26]. The remarkable outcome is that it gives a universal
description of complex spectra and we shall use it to describe the spectra
of disordered metals.

The relevance of the RMT for a metal has been first pointed out by
Gorkov and Eliashberg, in their study of ac response of small metallic
particles[ 27]. In their work, the complexity was not coming from the
many–body nature of the Hamiltonian like in nuclear physics but from the
scattering of electrons on the random shape of the boundaries, the system
having the structure of a billiard with rough boundaries. Here we describe
a disordered metal where the electrons are scattered elastically by fixed
impurities.

Neglecting the electron-electron interactions, a disordered metal is usu-
ally described by a one particle Schrödinger equation

Hψ =
−h̄2

2m
(∇ − i

eA

h̄c
)2ψ + V (r)ψ = Eψ (2.6)

A is the vector potential. The disorder potential is commonly modeled as:

〈V (r)〉 = 0 〈V (r)V (r′)〉 =
δ(r − r′)

2πρ0τe
(2.7)

τe is the elastic collision time. This structure is convenient for analyti-
cal calculations and the essential physics does not depend on the detailed
choice of the disorder. The discrete version of this Hamiltonian, called the
Anderson tight-binding Hamiltonian[ 5], is commonly used for numerical
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calculations

Hψi = −
∑

j

tij exp(i
e

h̄c

∫ j

i

Adl)ψj + V (i)ψi (2.8)

where the wave function ψi is defined on the sites i of a lattice. In the sim-
plest version of this model, the tij are taken as constant tij = t and V (i) is
a random variable with a uniform distribution in the range [−W/2,W/2].
This Hamiltonian, first described by Anderson, exhibits localization prop-
erties and a Metal-Insulator transition in 3D [ 5, 6]. Fig. 2 shows a typical
spectrum in the diffusive and localized regimes, in the presence of an ex-
ternal AB flux (see sect. 4). The goal of this course is to describe the
statistical properties of such spectra. Let us first recall the usual quanti-
ties used to measure the level fluctuations[ 24, 25, 26] (The energies are
measured in units of the mean level spacing ∆:

05
1015
20

0 0:1 0:2 0:3 0:4 0:5
E=t

' 05
1015
20

0 0:1 0:2 0:3 0:4 0:5
E=t

'
Fig. 2. A typical spectrum of a metal in the diffusive regime (left), and in the localized
regime (right). ϕ = φφ0 is the normalized Aharonov-Bohm flux, see sect. 4.

– The distribution P (s) of spacing s between consecutive levels. In the
RMT, it is well described by the Wigner-surmise:

P (s) ∝ sβ exp(−cβs2) (2.9)
where β depends on the symmetry of the Hamiltonian. When there is no
correlation between levels, it has a Poisson behavior:

P (s) = exp(−s) (2.10)
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Fig. 3. P (s) and Σ2(E) for a metal in the diffusive regime, with (black dots) and without
(open dots) magnetic flux[ 30]. They are very well described by the Random Matrix
Theory.
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Fig. 4. Two-point correlation function for a metal in the diffusive regime, with (left)
and without (right) magnetic flux[ 31]. The continuous line is the RMT prediction A δ

function at the origin is not shown.

– The two-point correlation function of the Density of States (DOS):
K(ǫ1, ǫ2) = 〈ρ(ǫ1)ρ(ǫ2)〉 − ρ2

0 (2.11)
The average 〈...〉 is done on energy. Here the average will be also made
on different disorder realizations. In the diffusive regime, these two proce-
dures are equivalent. If, after averaging, the DOS is constant, the function
K(ǫ1, ǫ2) depends only on the difference ǫ1 − ǫ2. In the RMT and for large
separation ǫ, it varies as K(ǫ) → −1/(βπ2ǫ2). At ǫ = 0, it has a δ peak
which describes the self-correlation of the levels. The full expression is
simple in the GUE case: K(ǫ) = δ(ǫ) − sin2(πǫ)/(πǫ)2 (see fig. 4).
– The number variance Σ2(E)

Σ2(E) ≡ 〈δN2(E)〉 = 〈N2(E)〉 − 〈N(E)〉2 (2.12)
measures the fluctuation of the number of levels N(E) in a strip of width
E. By definition, the number variance can be written in terms of this
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Fig. 5. The structure factor K̃(t) for a metal in the diffusive regime, with and without
magnetic flux.

two-point correlation function.

Σ2(E) =

∫ E

0

∫ E

0

K(ǫ1 − ǫ2)dǫ1dǫ2 = 2

∫ E

0

(E − ǫ)K(ǫ)dǫ (2.13)

In the RMT , for E > ∆, it has a logarithmic behavior:

Σ2(E) ≃ 2

π2β
ln(E/∆) + Cte (2.14)

Although the number variance is very frequently used in the literature,
this quantity is not always the most appropriate to describe the correlation
because it is a double integral of the DOS-DOS correlation function K(ǫ).
Thus the behavior of this quantity at an energy scale E depends on the
behavior of the two-point correlation function for all energies smaller than
E.
– The Fourier transform K̃(t) is called the spectral form factor

K̃(t) =
1

2π

∫

K(ǫ) exp(iǫt)dǫ (2.15)

The advantage of this quantity is to be directly related to the diffusive
motion of a classical particle (sect. 3).
At small times t ≪ τH where τH = 2πh̄/∆ is called the Heisenberg time,
the form factor varies linearly with time K̃(t) → t/(2π2β) and it saturates
to a constant value 1/2π for t → ∞. This constant is simply the Fourier
transform of the δ peak which describes the self-correlation of the levels[
28]. Figures 3,4,5 present numerical calculations of the different correlation
functions, with the Anderson Hamiltonian[ 29, 30, 31]. They are very well
fitted by the RMT. Using the supersymmetric technique to calculate K(ǫ)
in the microscopic model (eq. 2.6), Efetov has shown that its expression
actually coincides with the RMT result[ 32].

However, fig. 6 shows that above a given energy which is size and disor-
der dependent and which has been identified with Ec, the number variance
exhibits deviations and increases rapidly with energy. These deviations
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∆

2

E/

(E)Σ

Fig. 6. The number variance exhibits deviations to RMT above Ec

from RMT are not surprising: the Anderson Hamiltonian has a very dif-
ferent structure from a random matrix. It has many zero matrix elements.
As we have seen in the introduction, there are other energy scales not in-
cluded in the RMT. Thus we expect deviations from the universal behavior.
RMT systems are ”ergodic” in the sense that their eigenfunctions cover uni-
formly the phase space and have no internal structure. This is clearly not
the case in a metal at small times or large energies where a diffusive parti-
cle cannot explore the entire space (fig. 7). More precisely, for small times
tE ≪ τD, i.e. large energies E ≫ Ec, the spatial correlations extend on
a scale LE =

√
DtE =

√

h̄D/E, so that the system consists of (L/LE)d

independent pieces, fig. 7. Consequently, Σ2(E) ∼ (L/LE)d ∼ (E/Ec)
d/2

[ 17].
In the next chapter, we describe the specific properties of the metallic

t > τ
D

τ
D

t <   

Fig. 7. Schematic diffusion at small times (diffusive regime) and large times (ergodic
regime)
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spectra and their deviations from the universal properties given by the
RMT.

3. Level correlations in a disordered metal

We assume that the disorder is weak, so that the energy scales obey the
hierarchy of eq. 1.1. Thus the dimensionless conductance g ≫ 1. In this
regime, we want now to account for level correlations within and beyond
the RMT regime.

First it is useful to introduce the following important operator known as
the Green function or resolvent:

GR,A(E) =
1

E −H ± i0
(3.16)

In the site representation, the elements of the Green function are given by

GR,A(r, r′, E) = 〈r|GR,A(E)|r′〉 =
∑

n

φ∗n(r)φn(r′)

E − En ± i0
(3.17)

En and φn are eigenenergies and eigenstates of the Hamiltonian. The
Fourier transform GR(r, r′, t) = 1

2iπ

∫

GR(r, r′, E)e−iEtdE has the follow-
ing interesting property: Take a wave function ψ(r, t = 0), solution of the
time dependent Schrödinger equation (2.6). The time evolution of this
wave function can be written as:

ψ(r, t) =

∫

dr′GR(r, r′, t)ψ(r′, 0) (3.18)

So GR(r, r′, t) ”propagates” a particle from (r′, 0) to (r, t). It results im-
mediately that the probability for a particle in r′ at t = 0, to be in r at t
is

|GR(r, r′, t)|2 = GR(r, r′, t)GA(r′, r,−t) (3.19)

If the particle is prepared at the energy ǫF , the probability becomes[ 33,
34]:

P (r, r′, t) =
1

2π

∫

P (r, r′, ω)e−iωtdω (3.20)

with

P (r, r′, ω) =
1

2πρ0
〈GR(r, r′, ǫF +

ω

2
)GA(r′, r, ǫF − ω

2
)〉 (3.21)
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The DOS can be expressed in term of the Green function as

ρ(E) = − 1

π

∫

ImGR(r, r, E)dr (3.22)

It is also useful to define the local DOS as

ρ(r, E) = − 1

π
ImGR(r, r, E) (3.23)

The two-point correlation function can thus be written as:

K(ǫ1, ǫ2) =
1

2π2

∫ ∫

drdr′〈GR(r, r, ǫ1)G
A(r′, r′, ǫ2)〉c (3.24)

where 〈...〉c is the connected part of the average. It is essential to notice
that the Green function appearing in the DOS and its correlation function
is a diagonal quantity (in space representation) which depends on the prop-
agation of particles from some origin to itself. All spectral quantities will
thus depend only on G(r, r, E).

Another very important quantity which depends only on the diagonal
Green function is the return probability to the origin P (t) = P (r, r, t). Its
Fourier transform P (ω) is given by

P (ω) =
V

2πρ0
〈GR(r, r, ǫF +

ω

2
)GA(r, r, ǫF − ω

2
)〉 (3.25)

Upon averaging, P (ω) is independent of the position r.
One sees that K(ǫ1, ǫ2) and P (ω) have similar structures. The goal of

this section will be to relate these two quantities. To calculate P (t), we
assume that the metal is well described by a random potential in which the
electrons experience a diffusive motion of classical particles so that P (ω)
is a classical quantity equal to Pcl(ω)[ 33, 35]. The probability to diffuse
from r′ to r is thus given by the solution of the classical diffusion equation
i.e.

Pcl(r, r
′, t) =

∑

q

e−Dq2teiq(r−r′) (3.26)

where the diffusion modes q are quantized by the boundary conditions. In
the limit of an infinite system, it takes the familiar form

Pcl(r, r
′, t) =

V

(4πDt)d/2
e−|r−r′|2/4Dt (3.27)

where D is the diffusion coefficient. The return probability and its Fourier
transform are thus given by[ 36]:

Pcl(t) =
∑

q

e−Dq2t Pcl(ω) =
∑

q

1

−iω +Dq2
(3.28)
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In sect. 3.2, we shall show that the two-point correlation function K(ω =
ǫ1 − ǫ2) is related to the return probability P (ω).

3.1. A brief reminder about weak-localization

Before describing the structure of the spectral correlations, let us first recall
a brief qualitative derivation of the first quantum correction to the classical
conductivity, called weak-localization correction [ 33, 35, 38]. Linear
response theory shows that the d.c. T = 0K average conductivity[ 37] has
the following structure:

〈σ〉 = − e2h̄3

2πm2V

∫ ∫

drdr′〈∂xG
R(r, r′, ǫF )∂x′GA(r′, r, ǫF )〉 (3.29)

By writing the Green function as a sum of contributions from classical
paths, as it will be explained in more details in the next subsection (eq.
3.33), the conductivity has the following structure:

〈σ〉 ∝
∑

j,k

〈BjB
∗
ke

i(Sj−Sk)/h̄〉 (3.30)

where Bj and Sj are the amplitude and the action associated to each path
j. For most of the pairs of trajectories, Sj − Sk > 2πh̄, so that their
contribution to the conductivity cancels in average. The classical conduc-
tivity is given by the sum of the intensities: σcl ∝ ∑

j |Bj |2. However,
there is a class of trajectories which can also contribute to the conductiv-
ity: those which form closed loops. Such a loop can be traveled in clockwise

r’r

Fig. 8. The two closed trajectories which make a closed loop are time-reversal symmet-
ric. They give an additional contribution to the conductivity called weak-localization
correction. This correction is proportional to the number of such closed trajectories.

or anti-clockwise directions. Both trajectories, j and its time-reversed jT ,
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have the same action, so that they interfere constructively. As a result,
in addition to the classical contribution, there is a correction of the form
∆σ ∝ ∑′

j BjB
∗
jT where the sum extends over the closed trajectories. The

sign of the correction is negative because the trajectories j and jT have
opposite momenta. As a result there is an enhanced probability to scatter
in backwards direction. The conductivity is thus reduced. This effect is
often called coherent backscattering or weak-localization. This is a phase
coherent effect because only trajectories of size smaller than Lϕ will con-
tribute to the correction. The amplitude of the correction is proportional
to the total number of loops of any size. The number of loops of length
vF t being proportional to the return probability Pcl(t), one deduces that
the total correction is given by:

∆σ

σ
∝ −λ

d−1
F vF

V

∫ τϕ

τe

Pcl(t)dt (3.31)

λd−1
F is the transverse area associated to a semi-classical trajectory. The

integral is calculated between τe, the smallest time for diffusion, and τϕ,
the time after which the electron looses phase coherence. τϕ is given by
L2

ϕ = Dτϕ. A magnetic field[ 39] or a Aharonov-Bohm flux[ 40], by breaking
the time-reversal symmetry, destroys the weak-localization correction[ 41].

In the next subsection, we calculate the spectral function K(ω), by using
very similar arguments.

3.2. Semi-classical description of energy levels correlations

We survey here a method which gives a very physical description of the level
correlations because it directly relates them to the structure of the classical
motion of a diffusive particle. More precisely, one can get a relation between
the spectral form factor K̃(t) and the classical return probability for a
particle to return to the origin P (t). This description has been developed
for diffusive electrons by Argaman, Imry and Smilansky[ 18] from ideas
originally applied to other various classically chaotic systems[ 42, 43, 44].
We present here a brief and slightly different derivation. The first step is
to write the Green function as a path integral [ 45, 46]

GR(r, r′, t) =

∫ r

r′

D[x] exp(
i

h̄
S[x]) , (3.32)

where S[x] =
∫

pdx is the classical action for the path x(t) going from
x(0) = r′ to x(t) = r. The integral extends over all paths going from
x(0) = r′ to x(t) = r. The classical paths given by δS[x]/δx = 0 give the
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main contribution to the integral (3.32) so that the Green function can be
written as

GR(r, r′, E) =
∑

j

Aj(r, r
′, E)eiSj(r,r′,E)/h̄ , (3.33)

This expression results from a stationary phase approximation near classi-
cal paths[ 47, 48]. The amplitudes Aj result from a Gaussian integration
around the classical trajectories. Using the definition (3.25) of the return
probability P (ω), one gets

P (ω) =
1

2πρ0
〈
∑

j,k

Aj(r)A
∗
k(r)ei[Sj(E+ ω

2
)−Sk(E−ω

2
)]/h̄〉 , (3.34)

This sum is done over closed paths. We have defined Aj(r) ≡ Aj(r, r).
Moreover, for a closed path, the action is independent of the starting point.
The main energy dependence is contained in the phase factors and we have
suppressed it in the amplitudes Aj . It has been argued by Berry that the
phase factors with large actions such that Sj −Sk ≫ 2πh̄ should cancel on
average[ 28, 49]. As a result, in the absence of time reversal symmetry, only
the diagonal terms are kept in the sum. Using the relation Tj = dSj/dE
between the period and the energy dependence of the action for a closed
path, the phase factors can be expanded as Sj(E+ω/2) = Sj(E)+ωTj/2,
so that one obtains:

P (ω) =
1

2πρ0
〈
∑

j

|Aj(r)|2eiωTj 〉 (3.35)

By Fourier transformation, the return probability can be written as:

P (t) =
1

2πρ0
〈
∑

j

|Aj(r)|2δ(t− Tj)〉 (3.36)

After disorder averaging, this quantity is independent of the origin r. We
now turn to the calculation of the two-point correlation function, that we
write in a symmetrized form. Using the expression in terms of the Green
functions, doing the same manipulations as for the return probability, one
obtains

K̃(E, t) =
1

2π

∫

〈ρ(E +
ǫ

2
)ρ(E − ǫ

2
)〉eiǫtdǫ

=
1

2π2
〈
∑

j

∫ ∫

drdr′Aj(r)A
∗
j (r

′)δ(t− Tj)〉

=
1

2π2
〈
∑

j

|Aj |2δ(t− Tj)〉 , (3.37)
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where Aj ≡
∫

Aj(r)dr. Clearly, the expressions for P (t) and K̃(t) are
very similar. To relate them, it is now important to make the following
distinction. The semi-classical motion is characterized by an ensemble of
closed trajectories. Pj = |Aj(r)|2 is the probability to be on the trajectory
j with origin r. Many other trajectories follow the same path but they start
from different points r and r′. This ensemble of trajectories, who have the
same action, is called an orbit. The probability to be on a given orbit j is

r r

r’

Fig. 9. a) Two identical trajectories starting from the same origin and belonging to
the same orbit: these trajectories contribute to P (t). b) Two trajectories with different
origin belonging to the same orbit: these trajectories contribute to K̃(t).

|Aj |2 =
∫ ∫

drdr′Aj(r)A
∗
j (r

′). One sees that for one given r, the possible
choice for r′ on the orbit j is proportional to the volume of this orbit. This
”semi-classical” volume is λd−1

F vFTj were λd−1
F is the section of the classical

orbit and vFTj is its length. Recalling that λd−1
F vF is proportional to the

inverse DOS, one deduces (this simple argument cannot reproduce here the
correct prefactor):

|Aj |2 =
1

4πρ0
PjTj (3.38)

This result has been obtained for the first time by Hannay and Ozorio de
Almeida in the ergodic case (Pj = 1) [ 50, 49]. After summation over the
orbits, comparing eqs. 3.36 and 3.37, one obtains:

K̃(t) =
1

4π2
tPcl(t) (3.39)

This semi-classical expression is believed to be valid for small orbits ,
with period t smaller than the quantum (or Heisenberg) time τH = 2πh̄/∆[
18, 49]. Fourier transform of eq. 3.39 gives

K(ω) =
1

2π2
Im

∂Pcl(ω)

∂ω
= − 1

2π2
Re

∑

q

1

(−iω +Dq2)2
(3.40)
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and the number variance is obtained from double integration (eq. 2.12):

Σ2(E) = 8

∫ ∞

0

dt
K̃(t)

t2
sin2(

Et

2
) =

2

π2

∫ ∞

0

dt
P (t)

t
sin2(

Et

2
) (3.41)

In the above diagonal approximation, eq. 3.35, we kept the terms where
k = j. However, in the case where the system is time-reversal invariant,
for each orbit j there is an orbit which is reversed by time inversion k = jT

and which have the same action. Thus, the non-diagonal terms k = jT

also survive on average. This interference term is not taken into account in
the classical diffusion so that the semi-classical probability to return to the
origin is actually twice the classical probability P (t) = 2Pcl(t). This de-
scription is called semi-classical because it is essentially a classical picture in
which the quantum mechanics only appears through a phase coherent clas-
sical contribution. The two contributions are called in the diagrammatic
language the diffuson (diagonal) and the cooperon (interference) contribu-
tions. Eq. 3.40 has been obtained for the first time directly by Altshuler
and Shklovskii, using a diagrammatic calculation[ 17].

In order to take into account the loss of coherence due to dephasing
events, an exponential damping e−γt has to be added in the interference
term of P (t) which cuts the contribution of long orbits, so that the diffusion
pole in 3.40 has a gap −iω+Dq2 → −iω+Dq2 +γ. The inverse scattering
time γ is related to the coherence length Lϕ: γ = h̄D/L2

ϕ Moreover, the
semi-classical approximation breaks down for small energy scales ω < ∆
so that, even without damping, the divergence in the diffusion pole has to
be regularized by the transformation ω → ω + iγ∆ where γ∆ is an energy
scale of the order of ∆[ 30]. The correlation function exhibits clearly two
distinct regimes:

When ω < Ec or τ > τD, the diffusion is uniform in the sample (fig.
7): P (t) = 2/β so that K̃(t) varies linearly in time K̃(t) = t/(2βπ2).
By Fourier transform, one has K(ω) = −1/βπ2(ω+ iγ∆)2 and the number
variance varies logarithmically: Σ2 = (2/βπ2) ln(E/γ∆). This is the ergodic

regime well described by the RMT. It is obtained by taking only the q = 0
contribution in the sum 3.40. This contribution is called the uniform or
zero mode. It should be emphasized that this semi-classical approximation
cannot describe properly time scales close to τH or energy scales ω 6 ∆.

Keeping only the diagonal terms corresponds to the GUE case (β =
2) and the interference terms double the contribution to the correlation
function (β = 1). This explains why the fluctuations in the GOE case are
about twice as large as in the unitary case.

In the opposite limit (fig. 7), when ω ≫ Ec or τ ≪ τD, the return
probability depends on the space dimensionality d : P (t) ∝ V/(Dt)d/2 so
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that K̃(t) ∝ t1−d/2/Dd/2 and, for ω ≫ Ec:

K(ω) ∝ − 1

βω2

(

ω

g

)d/2

cos(
πd

4
) (3.42)

This leads to a power law dependence of the number variance[ 17]

Σ2(E) ∝ 1

β

(

E

Ec

)d/2

(3.43)

It is remarkable that the sign of the correlation function is now dimension
dependent. In three dimensions, K(ω) varies at large energies positively
like +1/

√
ω instead of −1/ω2 for RMT, meaning that the levels tend to

attract each other at large energies[ 51]. The power law regime of the
variance has been found numerically recently. However, the deviation of
the correlation function from RMT is quite hard to observe numerically in
the metallic regime[ 52, 53, 31] when g ≫ 1.

Finally, when E > h̄/τe, i.e. t < τe, the motion is not diffusive anymore
and becomes ballistic. In this regime, the spectral rigidity is very weakly
dependent on E[ 54].

3.3. Breakdown of time-reversal symmetry, Aharonov-Bohm flux

0
φ=ϕφ

Fig. 10. A ring pierced by a Aharonov-Bohm flux

The above section has stressed the importance of the interference effects
in the origin of spectral rigidity. They are affected by the presence of an
external parameter which breaks the time-reversal symmetry, for example
a Aharonov-Bohm (AB) magnetic flux: one considers a disordered metal
having the geometry of a quasi-1D ring of perimeter L pierced by an AB
flux φ, fig. 10. It is assumed that the vector potential A is a constant φ/L
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in the ring. The energy spectrum is solution of the Schrödinger equation
(2.6) with the periodic boundary condition ψ(x+L) = ψ(x) where x is the

coordinate along the ring. A gauge transformation ψ′(x) = ψ(x)eie
∫

Adl/h̄

removes the flux from the Hamiltonian: H(φ)ψ = H(0)ψ′ but the new wave
function ψ′ obeys a new boundary condition ψ′(x + L) = ψ′(x)e2iπφ/φ0 ,
where φ0 = h/e is the flux quantum. An external Aharonov-Bohm flux is

thus mathematically equivalent to a change in the boundary condition[ 55].
Moreover, it breaks the time reversal symmetry and must lead to a change
in the spectral statistics, from the orthogonal to the unitary symmetry.

The transition between the two symmetries for random matrices has been
considered by Pandey and Mehta [ 56, 57]. They have used an interpolating
ensemble of matrices of the form H = H(S) + iαH(A) where H(S) and
H(A) are real symmetric and antisymmetric matrices of dimension N and
variance v2. (α = 0) is the orthogonal case and (α = 1) describes the
unitary symmetry. These authors have shown that the transition between
GOE and GUE is driven by the single parameter Λ = v2α2/∆2. For
Gaussian matrices, the average interlevel spacing is not a constant in the
spectrum so that the transition depends on the position in the spectrum[
56, 57]. For a Gaussian matrix of size N and variance v2, the mean level
spacing in the band center is given by ∆ = πv/

√
N so that the parameter

which drives the transition is the combination Λ = Nα2/π. For example,
for small times t ≪ τH , Pandey and Mehta found that the form factor is
given by

K̃(t, α) =
t

4π2
[1 + e−4πΛ∆t] (3.44)

and interpolates between GOE (Λ = 0) and GUE (Λ ∼ 1). To relate these
parameters to those of our physical problem, let us return to the semi-
classical description. With the above gauge transformation, the diagonal
Green function gets an additional phase factor:

GR(r, E, ϕ) =
∑

j

Aj(r)e
i[Sj/h̄+2πmjϕ] (3.45)

where ϕ = φ/φ0 and mj is the winding number of the trajectory j. Fol-
lowing the same steps as in section 3.2, one finds

P (ω, ϕ) =
1

2πρ0
〈
∑

j

|Aj(r)|2eiωTj [1 + ei4πmjϕ]〉 (3.46)

and its Fourier transform:

P (t, ϕ) =
1

2πρ0
〈
∑

j

|Aj(r)|2δ(t− Tj)[1 + cos(4πmjϕ)]〉 (3.47)
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The diagonal terms k = j are unchanged and the terms k = jT get a
phase 4πmjϕ, since, after one turn around the loop, one trajectory picks
up a phase 2πϕ and its time reversed picks up a phase −2πϕ. Classifying
the trajectories with respect to their winding number, one finds:

P (t, ϕ) = Pcl(t, 0) + Pint(t, ϕ)

=
L√

4πDt

∞
∑

m=−∞
e−m2L2/4Dt[1 + cos(4πmϕ)] (3.48)

The first term is the classical return probability and the second is the
interference term which oscillates with period φ0/2. We have assumed that
along the transverse directions, the return probability is time independent
so that our expression is one-dimensional. The flux dependent part of
P (t, ϕ) is shown on figure 11. This figure clearly exhibits the two regimes,
t < τD where the motion is diffusive and the flux dependence is small, and
t > τD where the motion is ergodic and the flux dependence is large.
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Fig. 11. Interference part of the return probability

Let us first describe the limit where t ≫ τD and ϕ≪ 1 so that the sum
over winding numbers can be replaced by an integral. This is the zero-

mode approximation which corresponds to the ergodic regime. The return
probability becomes:

K̃(t, ϕ) =
1

4π2
tP (t, ϕ) =

t

4π2
[1 + e−16π2Ecϕ2t] (3.49)

This result is similar to the one found in the RMT, with the mapping:

Λ =
Nα2

π
= 4π

Ec

∆
ϕ2 (3.50)
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Fig. 12. Variance number Σ2(E, ϕ) for different values of the flux ϕ and comparison
with RMT (left). Σ2(E, ϕ) versus flux for a given energy (right): note that this variation
is reminiscent of the variation of P (t, ϕ) vs ϕ when t ≫ τD, fig. 11

This mapping is quite natural: Ec/∆, which gives the range of the RMT
correlation, is related to the dimension N of the random matrices and ϕ
plays the role of the symmetry-breaking parameter α[ 30].

We can then use the exact RMT result to calculate any correlation func-
tion in a flux for any energy range ǫ < Ec. All the correlation functions are
thus universal functions of the combination of parameters Ecϕ

2[ 30, 58].
Using a supersymmetric approach, Altland et al. have indeed directly found
that the two point correlation in the cross-over regime is well described by
the RMT correlation function[ 59].

This dependence (3.49) of the form factor with the flux has a very sim-
ple origin: diffusive pairs of orbits accumulate a typical phase 〈Φ2〉 =
〈(4πmϕ)2〉 where 〈m2〉 is the typical winding number. In the diffusive

regime, 〈m2〉 = 2Dt/L2 = 2Ect. 〈cosΦ〉 = e−〈Φ2〉/2 = e−16π2Ecϕ2t. The
symmetry breaking depends on the length of the trajectories. For a tra-
jectory of time t, TRS is broken for Φ ∼ 2π, i.e. ϕc ∼ 1/

√
Ect. The

characteristic flux associated with an energy ǫ is thus φc ∼
√

ǫ/Ec.
It should be emphasized that this argument holds even for the ballistic

regime in the non-integrable case, for example for billiards in an AB flux.
In that case, the motion is ballistic but the accumulation of the phase with
time is still diffusive[ 60, 61, 62, 63].

Using the relation 2.12, we obtain the number variance:

Σ2(E) =
1

2π2
ln(1 +

E2

γ2
∆

) +
1

2π2
ln

(

1 +
E2

(γ∆ + 16π2Ecϕ2)2

)

(3.51)

This fits perfectly the variation of the number variance with the flux (fig.
3.3). For Ecϕ

2 ≫ ∆, the number variance is reduced by about a factor
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two, as it is expected from the RMT.
In order to describe the complete variation of the form factor or of the

number variance with flux, including the φ0/2 periodicity, the expression
for P (t, ϕ) as a discrete sum (3.48) over winding numbers m has to be used[
64]. Alternatively, P (t, ϕ) can also be expanded as a sum over the diffusion
modes q, (eq. 3.26). In the ring geometry, the modes are quantized by
the periodic boundary conditions[ 64]. For a quasi-1D diffusion, q = 2nπ

L
for the classical term and q = 2π

L (n + 2ϕ) for the interference term. As a
result,

P (t, ϕ) =
∑

n

(

e−4π2n2Ect + e−4π2(n+2ϕ)2Ect
)

(3.52)

There is an interesting duality between the mode (eq. 3.52) and the winding
number (eq. 3.48) expansions. The zero-mode approximation corresponds
to a continuous summation over the winding numbers up to infinity, as
we have done above. On the other hand, the m = 0 winding number
corresponds to an continuous summation over the modes, i.e. to an infinite
system where the flux dependence is lost. These two descriptions are related
by the Poisson summation formula.

For, E > Ec, i.e. t < τD, a diffusive particle has a very small probability
to encircle the flux. More and more diffusion modes become important
and the number variance increases with the energy window as a power law.
However, the flux dependence is still very small. For Ec ≫ ∆, it is found
to vary as:

Σ2(E,ϕ) = Σ2(E, 0) − 1

π2
ln(1 + 4

Ec

γ∆
sin2(2πϕ)) (3.53)

One sees that in this regime, the reduction of the number variance is
much smaller than what could have been naively expected. This is because
the contribution to the spectral rigidity comes from short time trajectories
and most of these trajectories cannot enclose a flux. This is clearly seen
on fig. 11 where the flux dependence of P (t, ϕ) is small.

Finally, let us also emphasize that, although the spectrum has the period-
icity φ0, the spectral rigidity has the periodicity φ0/2. The Hamiltonian at
φ = φ0/2 has the GOE symmetry. This is a situation of ”false time-reversal
violation”[ 65].

In the next section, we study the physics of the persistent currents which
is intimately connected to the evolution of the spectral rigidity in a flux.
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4. Persistent currents

4.1. Introduction

Although in the 80’s most of the physics of the mesoscopic systems dealt
with transport properties, a wide interest recently emerged in the experi-
mental studies of the equilibrium properties. Among them the search for
the persistent current of an isolated mesoscopic metallic ring pierced by a
magnetic Aharonov-Bohm flux φ = ϕφ0.

Such a ring carries an equilibrium magnetization M which is the deriva-

tive of the free energy F with respect to the magnetic field H : M = −∂F

∂H
.

It corresponds to a current I flowing along the ring, which is given by

I(T ) = −∂F

∂φ
= −

∑

n

fn
∂ǫn
∂φ

I(T = 0) = −∂E

∂φ
= −

∑

ǫn<ǫF

∂ǫn
∂φ

(4.54)

fn is the Fermi factor associated with the energy ǫn. For non-interacting
electrons, this current is simply the sum of the flux derivatives of each
individual energy levels. Introducing the flux dependent DOS, ρ(ǫ, ϕ), the
current is rewritten as:

I = − ∂

∂φ

∫ ǫF

0

ǫρ(ǫ, ϕ)dǫ (4.55)

The existence of this current has been predicted long ago by Hund[ 66]
and first calculated by Bloch and Kulik for a clean strictly 1D ring[ 67,
68]. In 1983, Büttiker, Imry and Landauer proposed that it could be also
observed in a metallic disordered ring[ 69]. This persistent current has been
observed for the first time by Levy et al. who measured the magnetization
of 107 isolated mesoscopic Cu rings[ 7]. In this experiment, the observed
magnetization gives only access to the average current of each ring 〈I〉.

The estimation of this average current raises an interesting problem.
From the spectrum of fig. 2 we see that the energy levels move upwards
and downwards with the flux in a random way. One can thus expect single
level current in = ∂ǫn/∂φ to be zero on average: 〈in〉 = 0 and thus 〈I〉 = 0.
In other words, 〈ρ(ǫ, φ)〉 is flux independent. This is because the average
DOS involves only trajectories of zero length so that no flux is enclosed by
these trajectories. One then concludes that there is no average persistent
current (the current is actually exponentially small[ 70, 71]. During the
last years, there has been a large amount of work to explain the origin of
a non-zero average current.

On the other hand, two experiments have been performed on single rings,
one on Au rings[ 8] , the other on GaAs−GaAlAs rings[ 9]. The relevant
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quantity in these cases is the typical current Ityp = (〈I2〉 − 〈I〉2)1/2 ≃
(〈I2〉)1/2.

In the following subsection, we present the calculation of the typical and
average persistent current for diffusive non-interacting electrons.

4.2. The typical current

From the expression of the current in terms of the DOS, the typical current
Ityp is given by

I2
typ =

∂

∂φ

∂

∂φ′

∫ 0

−ǫF

∫ 0

−ǫF

ǫǫ′K(ǫ− ǫ′, ϕ, ϕ′)dǫdǫ′ (4.56)

where the correlation function K is the sum of the classical and of the
interference terms:

K(ω, ϕ, ϕ′) = Kcl(ω,
ϕ− ϕ′

2
) +Kint(ω,

ϕ+ ϕ′

2
) (4.57)

Similarly:

P (ω, ϕ, ϕ′) = Pcl(ω,
ϕ− ϕ′

2
) + Pint(ω,

ϕ+ ϕ′

2
) (4.58)

Fourier transforming K(ǫ− ǫ′) and using the identity
∫ ∞
0 ǫdǫeiǫt = −1/t2,

one obtains straightforwardly:

〈I2〉=
1

2φ2
0

∫ ∞

0

K̃ ′′
int(t, ϕ) − K̃ ′′

cl(t, 0)

t4
dt (4.59)

=
1

8π2φ2
0

∫ ∞

0

P ′′
int(t, ϕ) − P ′′

cl(t, 0)

t3
dt (4.60)

where ′′ denotes the second derivative ∂
2/∂ϕ2. The expansion of the return

probability in winding numbers gives directly the harmonics decomposition
of the typical current:

〈I2〉 =

∞
∑

m=1

〈I2〉m sin2(2πmϕ) (4.61)

with

〈I2〉m =
8m2

φ2
0

∫ ∞

0

Pm(t)

t3
dt (4.62)
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where Pm(t) = L√
4πEct

e−m2/4Ect. We use (α > 1):

∫ ∞

0

Pm(t)

tα
dt=

22α−1

√
π

Eα−1
c

m2α−1

∫ ∞

0

w2α−2e−w2

dw

= 2α−1(2α− 3)!!
Eα−1

c

m2α−1
. (4.63)

where the intermediate integral has the simple meaning of an average di-
mensionless winding number since w2 = m2L2/4Dt. Taking into account
the exponential reduction e−γt of the return probability at large times
due to inelastic scattering, one finds that the harmonics are exponentially

damped by a factor e−m
√

γ/Ec = e−mL/Lϕ. The harmonics of the typical
current are then given by:

〈I2〉m =
96

m3
(
Ec

φ0
)2[1 +

m

2

L

Lϕ
+
m2

3
(
L

Lϕ
)2]e−mL/Lϕ (4.64)

This result should be multiplied by 4 to take the spin degeneracy into ac-
count, so that the typical current is multiplied by 2. In the limit where
L ≪ Lϕ, the first term in brackets gives the main contribution[ 18, 72].
It is quite easy to understand qualitatively why the typical current is pro-
portional to Ec (This proportionality has been first derived in ref.[ 70]. In
that calculation, a two-cooperon diagram is missing). It is of the order of
the charge e divided by the characteristic time which is nothing but τD:
Ityp ∝ e/τD ∝ Ec/φ0 ∝ evF

L
le
L . It turns out that the calculation of this

typical current cannot explain the amplitude observed in the experiment
performed on single Au rings[ 8]. The order of magnitude of the observed
current is closer to evF

L . At the moment, there is no theoretical explanation
for this discrepancy[ 73]. The experiment performed on GaAs − GaAlAs
rings corresponds to a situation where le ≃ L and the observed current
corresponds to the theoretical prediction.

It is also interesting to calculate the single level typical current, ityp.
Similarly to the typical total current, it is given by

i2typ = ∆2 ∂

∂φ

∂

∂φ′

∫ ǫF

0

∫ ǫF

0

K(ǫ− ǫ′, ϕ, ϕ′)dǫdǫ′ (4.65)

It differs from the typical total current only by two energy factors. There-
fore, this implies an additional t2 term in the integral on time. One finds
easily:

〈i2〉m = 8m2(
∆

φ0
)2

∫ ∞

0

Pm(t)

t
dt (4.66)
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From the general expression of the integral 4.63, we obtain

〈i2〉m = 8m(
∆

φ0
)2e−mL/Lϕ (4.67)

This expansion in harmonics diverges for Lϕ → ∞. This is because the
semi-classical calculation breaks down for long times t > τH , i.e. for large
winding numbersm >

√

∆/Ec. It turns out that this expression of the typ-
ical single level current is only approximate and does not describe properly
the current resulting from numerical simulations[ 74]. This is because, in
the calculation of 〈i2〉, all energy scales are smaller than ∆. A calculation
based on the supersymmetry method is needed[ 75].

Finally, it is interesting to notice that a given harmonics of the typical
total current is g = Ec/∆ times larger than the single level current. This
means that although the total current is the sum of the currents of all the
energy levels in the spectrum, the contribution of the levels nearly cancel
and only the last Ec/∆ levels contribute to the total current. This is seen
more precisely with a calculation of the correlation between the harmonics
of the current taken at different energies: similarly to eq. 4.66, one finds

〈iEiE+ω〉m = 8m2

(

∆

φ0

)2 ∫ ∞

0

Pm(t)

t
eiωtdt

= 8m2

(

∆

φ0

)2

Re[e
−m

√

γ+iω

Ec ] (4.68)

where iE is the current at energy E. One sees that this correlation function
decreases on a scale Ec/m

2[ 76].

4.3. The average current

We turn now to the calculation of the average current relevant for the many
rings experiment[ 7].

4.3.1. The canonical current

The above calculation of the average persistent current, 〈I〉 = 0, implicitly
assumes that the Fermi level is flux independent, so that in eq. 4.55, the
only flux dependence is contained in the DOS. It has been proposed that
the fact that in each ring, the number of particles N is fixed and not the
Fermi level, plays an important role and leads to a finite average current[
77]. The reason is that the constraint thatN =

∫ ǫF

0
ρ(ǫ, φ)dǫ is fixed implies

that ǫF must be flux dependent. This flux dependence in eq. 4.55 being
correlated to the flux dependence of ρ(ǫ, φ) makes the average current non
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zero [ 78]. This ”canonical”∗ average can be found by doing an expansion
around the average Fermi level ǫF . Denoting by µ(φ) the sample and flux
dependent chemical potential and ǫF = 〈µ(φ)〉 one finds:

IN =−∂F

∂φ
|N = −∂Ω

∂φ
|µ(φ) (4.69)

=−∂Ω

∂φ
|ǫF

− ∂
2Ω

∂µ∂φ
|ǫF

(µ(φ) − ǫF ) (4.70)

By definition, the first term of this expression is the grand canonical current

Iµ. The first derivative −∂Ω

∂µ
is the number of particles N . As a result:

IN = IǫF
+

∂N

∂φ
|ǫF

(µ(φ) − ǫF ) (4.71)

We then use the relation δµ|N = −∆δN |µ which expresses that the varia-
tion of the chemical potential at fixed number of particles is proportional
to the variation of the number of particles at fixed chemical potential[ 79].
After averaging, neglecting 〈IǫF

〉, one deduces the following relation[ 78]:

〈IN 〉 = −∆

2

∂

∂φ
〈δN2(ǫF , φ)〉 = −∆

2

∂

∂φ

∫ ǫF

0

∫ ǫF

0

K(ǫ, ǫ′, φ)dǫdǫ′ (4.72)

Therefore, when the number of electrons in the rings is fixed, the average
persistent current is finite and is rewritten in terms of the typical sample
to sample fluctuation in the number of levels below the Fermi energy ǫF [
64, 80, 81, 82]. From the above semi-classical analysis, the current can
be directly written in terms of P (t):

〈IN 〉 = −∆
∂

∂φ

∫ ∞

0

K̃(t, ϕ)

t2
dt = − ∆

4π2

∂

∂φ

∫ ∞

0

P (t, ϕ)

t
dt (4.73)

The integral is known (eq. 4.63) and gives the harmonics expansion

〈IN 〉 =
∞
∑

m=1

〈IN 〉m sin(4πmϕ) (4.74)

with

〈IN 〉m =
2

π

∆

φ0
e−mL/Lϕ (4.75)

∗ The word canonical is here slightly misleading. This calculation is actually performed
in the grand-canonical ensemble, with a constraint that the average number of particles
is fixed and flux independent
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The average current can be reconstructed as[ 83]

〈IN 〉 =
∆

πφ0

sin 4πϕ

coshL/Lϕ − cos 4πϕ
(4.76)

In order to take into account the spin of the electrons, the number variance
should be multiplied by 4 and the interlevel spacing divided by 2 so that
the current 4.76 is doubled.

This current oscillates with the period φ0/2 and is paramagnetic at small
flux. This is clearly seen from eq. 4.72: the average current measures the
change in spectral rigidity when the TRS is broken. The number variance
decreases when φ is finite so that the current has to be paramagnetic.
The order of magnitude of this average ”canonical” current is smaller than
observed experimentally for an ensemble of 107 Cu rings[ 7].

For completeness, we mention here that the magnetism of small disor-
dered metallic dots – where the external parameter is a magnetic flux in
the bulk of the dot instead of an AB flux – can be also described along the
same ideas[ 84].

4.3.2. electron-electron interactions

Another larger contribution to the persistent current may come from inter-
actions as has been first proposed by Ambegaokar and Eckern, in the frame-
work of the Hartree-Fock(HF) approximation and using diagrammatic cal-
culations[ 85, 80]. We present here a simple semi-classical derivation of this
contribution to the persistent current[ 86]. A different approach, based on
Density Functional Theory, leads to similar results[ 87]. The HF equations
read, for each state i

ǫiψi(r) = Tψi(r) + V (r)ψi(r) +
∑

j

∫

U(r − r′)|ψj(r
′)|2ψi(r)dr

′

−
∑

j

δσiσj

∫

U(r − r′)ψ∗
j (r′)ψj(r)ψi(r

′)dr′ (4.77)

In perturbation to the first order in the interaction parameter U , the
shift of the energy levels is thus given by

ǫi = ǫ0i +
∑

j

∫

U(r − r′)|ψj(r
′)|2|ψi(r)|2drdr′

−
∑

j

δσiσj

∫

U(r − r′)ψ∗
j (r′)ψj(r)ψ

∗
i (r)ψi(r

′)drdr′ (4.78)
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where the states ψi are those of the non-interacting system. As a result,
the total energy ET is now

ET =E0
T +

1

2

∑

i,j

∫

U(r − r′)|ψj(r
′)|2|ψi(r)|2drdr′

−1

2

∑

i,j

δσiσj

∫

U(r − r′)ψ∗
j (r′)ψj(r)ψ

∗
i (r)ψi(r

′)drdr′ (4.79)

where E0
T is the total energy in the absence of interaction. The summation

∑

i,j is on filled energy levels. σi is the spin of a state ψi. In terms of the

local density n(r) =
∑

i |ψi(r)|2, the total energy can be rewritten:

ET =E0
T +

1

2

∫

U(r− r′)n(r′)n(r)drdr′

−1

2

∑

i,j

δσiσj

∫

U(r − r′)ψ∗
j (r′)ψj(r)ψ

∗
i (r)ψi(r

′)drdr′ (4.80)

We now assume a screened Coulomb interaction: U(r− r′) = Uδ(r− r′)
where U = 4πe2/q2TF , qTF being the the Thomas-Fermi wave vector. For
such a local interaction, the Fock term gets the same structure as the
Hartree term and one has:

ET = E0
T +

U

2

∫

n2(r)dr − U

4

∫

n2(r)dr (4.81)

Because of the spin, the Hartree contribution is twice the Fock contribution[
85]. The interaction gives a new contribution to the persistent current

〈Ie−e〉 = −〈∂ET

∂φ
〉 = −U

4

∂

∂φ

∫

〈n2(r)〉dr (4.82)

We define the local DOS ρ(r, ω) so that n(r) = 2
∫ µ

0 ρ(r, ω)dω ( the factor
2 accounts for spin). The current can be rewritten as:

〈Ie−e〉=−U ∂

∂φ

∫

〈ρ(r, ω1)ρ(r, ω2)〉drdω1dω2 (4.83)

=− U

2π2

∂

∂φ

∫

〈GR(r, r, ω1)G
A(r, r, ω2)〉drdω1dω2 (4.84)

=−Uρ0

π

∂

∂φ

∫

P (ω1 − ω2)dω1dω2 (4.85)

=−Uρ0

π

∂

∂φ

∫ ∞

0

P (t, φ)

t2
dt (4.86)
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Using again the integral (4.63), one finds easily the harmonics content of
the HF current:

〈Ie−e〉 =

∞
∑

m=1

〈Ie−e〉m sin(4πmϕ) (4.87)

with

〈Ie−e〉m = 16
Uρ0

φ0

Ec

m2
[1 +m

L

Lϕ
]e−mL/Lϕ (4.88)

In the limit L ≪ Lϕ, the second term in brackets can be neglected and
one recovers the result obtained for the first time with a diagrammatic
calculation[ 85, 80, 88]. Starting from eq. 4.86, one can actually recover
the expression resulting from that calculation

〈Ie−e〉 =
Uρ0

π

∂

∂φ

∑

q

∫ ∞

0

Re
−ω

γ +Dq2 − iω
dω (4.89)

The quantization of the wave vectors of the diffusion modes in now flux de-
pendent q(φ). A Poisson summation leads to the above Fourier expansion.

Eq. 4.88 shows that the persistent current is proportional to the interac-
tion parameter. It is known that this current is smaller than experimentally
observed [ 7]. Moreover, inclusion of higher order contributions in the inter-
action parameter (the so-called Cooper channel renormalization) reduces
further the amplitude of the estimated current [ 89, 90, 91]. It is one
order of magnitude smaller than the observed current[ 7].

4.3.3. Local versus global fluctuations of the DOS

It is interesting to contrast the two expressions for the canonical and
Hartree-Fock average currents. The canonical current results from a con-
straint on the conservation of the total number of particles N . From this
constraint, the current has been rewritten in terms of the flux variation of
the two-point correlation function of the global density of states. On the
other hand, the HF average current has been written is terms of the two-
point correlation function of the local DOS. This must reflect the constraint
of a local conservation of a number of particles[ 80]. This can be simply
understood, using a simple argument due to Argaman and Imry[ 87].

Suppose that the sample can be divided into pieces i in which the number
of particles Ni is fixed, due to electrostatic interaction. By definition,
N =

∑

i Ni and the energies are extensive: F =
∑

i Fi and Ω =
∑

i Ωi. We
can calculate the current in each box i as we did above for the canonical
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current. The current can thus be written as

Ie−e =−
∑

i

∂Fi

∂φ
|Ni

= −
∑

i

∂Ωi

∂φ
|µi(φ) (4.90)

=−∂Ω

∂φ
|ǫF

−
∑

i

∂
2Ωi

∂µi∂φ
|ǫF

(µi(φ) − ǫF ) (4.91)

In each box, the local chemical potential µi has to adjust with the flux to
keep Ni constant.

The number of particles in one box is Ni = −∂Ωi

∂µi

. Then:

Ie−e = IǫF
+

∑

i

∂Ni

∂φ
|ǫF

(µi(φ) − ǫF ) (4.92)

Using the relation δµi|Ni
= −∆δNi|µi

, averaging and neglecting 〈IǫF
〉, we

obtain:

〈Ie−e〉 = −∆

2

∑

i

∂

∂φ
〈δN2

i (ǫF , φ)〉 (4.93)

to be contrasted with the canonical current:

〈IN 〉 = −∆

2

∂

∂φ
〈δN2(ǫF , φ)〉 , N =

∑

i

Ni (4.94)

Replacing the discrete sum over the boxes by an integral, one finds (the
interaction parameter is of order 1):

〈Ie−e〉 = −∆V

2

∂

∂φ

∫

〈n2(r)〉dr (4.95)

for the current resulting from a local constraint. This current has exactly
the structure of the Hartree-Fock current (with a prefactor describing the
strength of the interaction). On the other hand, the canonical current is

〈IN 〉 = −∆

2

∂

∂φ

∫

〈n(r)n(r′)〉drdr′ (4.96)

and results from a global constraint.
It is then clear from this viewpoint that the canonical current and the

Hartree-Fock current have very similar physical origins, one resulting from
a global conservation of the particle number while the other results from a
fixed local density due to the electrostatic interaction[ 80].
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4.4. Temperature dependence

Up to now the physical quantities have been estimated at zero tempera-
ture. The extension to finite T can be easily done by using the identity:
∫

f(ǫ)g(ǫ)dǫ = 2iπT
∑

ωn
g(iωn) where f(ǫ) is the Fermi distribution and

omegan = (2n+ 1)πT . The quantities of interest (except the typical cur-
rent) have the form

∫

dE

∫

dE′Γ(E − E′)f(E)f(E′) = 4π2T 2
∑

ωn

∑

ω′

n

Γ(iωn − iω′
n) (4.97)

=

∫

π2T 2

(sinhπT t)2
Γ̃(t)dt (4.98)

so that the t-dependent integrands involved in the different expressions of
the currents should now contain the factor ( πTt

sinh πTt )
2. Since the charac-

teristic time associated with winding number m is τm = m2/Ec, it is clear
that the temperature dependence of the mth harmonics of the current is
characterized by the energy scale Tm = Ec/m

2. This is consistent with the
correlation energy which has been found in eq. 4.68, between the harmonics
of different single level currents.

5. Conductance and spectrum

The conductance of a disordered system can be derived from the Kubo
formula (see below). Its calculation requires the knowledge of both the
wave functions and the energy levels. We would like to know whether the
conductance could be also derived only from the knowledge of the spectrum
and of its correlations. For example, the average DOS does not carry any
information on the transport or on the degree of localization. But we have
already seen that the conductance can in principle be obtained from the
spectral analysis since Ec = g∆ is the characteristic energy scale at which
the RMT correlations disappear. We have also seen that Ec = g∆ drives
the flux sensitivity of the levels and that a thermodynamic quantity like the
typical persistent current is proportional to the conductance g. Therefore
the conductance can somehow be related to the two point-correlation func-
tion and its variation with an external parameter like an AB flux. A simple
relation has been first proposed in the 70’s by Thouless, which relates the
conductance to the curvature of the energy levels. We analyze now this
relation and more recent developments.
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5.1. The Thouless formula and its extensions

A very important step linking the transport to the spectral properties has
been put forward by Edwards and Thouless[ 12, 13] who argued that the
electrical conductance can be related to the sensitivity of the energy spec-
trum to a change in the boundary conditions. Intuitively the more a level
is localized, the less sensitive it is to the boundary conditions. Therefore
the conductance should be directly related to a measurement of the sen-
sitivity to the boundary conditions (we have seen that this is actually the
case since the typical current is proportional to the conductance). Thouless
noticed the very similar structure between the expressions of the conduc-
tance and of the curvature of energy levels when a change in the boundary
conditions is introduced ψ(x + L) = ψ(x)eiη, or, equivalently, an AB flux:
η = 2πϕ = 2πφ/φ0. On the one hand, the d.c. T = 0K conductivity σ is
given by the Kubo formula:

σ =
πe2h̄

m2V

∑

α,β

|pαβ|2δ(EF − ǫα)δ(EF − ǫβ) (5.99)

where ǫα is a single energy level and pαβ = 〈α|p|β〉 is the matrix element
of the momentum operator along the x- direction. On the other hand, the
curvature of a given energy level α at the origin (η = 0) is easily found
from perturbation theory. It is given by:

cα = (
∂

2ǫα
∂η2

)
η=0

=
h̄2

mL2
+

2h̄2

m2L2

∑

β 6=α

|pαβ|2
ǫα − ǫβ

(5.100)

In a metallic system, i.e in the presence of moderate disorder, this curvature
is a random quantity. Thouless assumes first that the matrix elements pαβ

are not correlated with the energy levels ǫα, so that the distribution of the
curvature is roughly the distribution of the 1/(ǫα − ǫβ). Then assuming
that the energy levels are not correlated, the distribution of the curvatures
has the Cauchy form P (c) = (γ0/π)/(γ2

0 + c2) with a width γ0 given by

γ0 =
2πh̄2

m2L2

|pαβ |2
∆

(5.101)

On the other hand, assuming again that pαβ are decorrelated from the ǫα,
the Kubo formula gives for the average conductivity:

σ =
πe2h̄Ld

m2
〈|pαβ |2〉ρ2

0 (5.102)

〈...〉 represents an average over the disorder and the energy levels. Compar-
ison between the equations 5.101 and 5.102 gives a direct relation between
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the average dimensionless conductance g = σLd−2/(e2/h̄) and the width
of the distribution of curvatures, known as Thouless relation[ 13]:

g =
1

2

γ0

∆
(5.103)

The first hypothesis is reasonable and it is correct in the framework
of RMT. On the other hand, the energy levels are strongly correlated in a
metal so that the second hypothesis does not hold. Therefore the curvature
distribution may not have the Cauchy form, see sect. 6.1. The conductance
can also be related to another quantity connected to the flux sensitivity of
the levels: it has been proposed by Akkermans that the conductance could
also be related to the averaged square slope of the energy levels instead of
their curvature[ 92]. The conductance is obtained as

gd =
〈i2〉
∆2

(5.104)

where i(η) = ∂ǫα

∂η
. ... is an average on flux. A similar relation has also

been proposed by Wilkinson[ 93] and by Simons et al.[ 94, 95, 96] in the
case where the external parameter, instead of being an AB flux, does not
break any symmetry. gd measures a global, ϕ-averaged, property of the
spectrum, while g given by eq. 5.103 measures a local, ϕ →0, property. It
has been argued that these two quantities which are two different measures
of the sensitivity of the energy levels to the boundary conditions, should
actually contain the same information and should be proportional in the
diffusive regime[ 58]. This aspect will be discussed in section 6.1.

5.2. Universal Conductance Fluctuations

b)

r1

r’1

r2

r’2

r2r1 r’1r’2

a)

Fig. 13. Schematic view of the paths contributing to conductance fluctuations.

An important signature of the coherent nature of quantum transport is
the phenomenon of Universal Conductance Fluctuations[ 17, 97]. When
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a physical parameter is varied, such as the Fermi energy, the magnetic
field or the disorder configuration, the conductance fluctuates around its
average value. These fluctuations are reproducible and are the signature of
the interference pattern associated to a given impurity configuration. The
width of the distribution is universal and of the order of e2/h[ 97]. As seen
in section 1, the origin of this universality is related to the spectral rigidity
of the spectrum[ 17]: the conductance g is equal to the number of levels
N(Ec) in a strip of size Ec. The spectral rigidity implies that var[N(Ec)] ∼
1 so that var[g] ∼ 1. This variance can be calculated more precisely directly
from the Kubo formula[ 17, 97]. The averaged square of the conductance
contains terms of the form 〈GR(r1, r

′
1)G

A(r′1, r1)G
R(r2, r

′
2)G

A(r′2, r2)〉 (for
clarity we omitted the gradients). As shown on fig. 13, two contractions
are possible: r′1 = r1, r

′
2 = r2 and r2 = r1, r

′
2 = r′1. The first term a) is

proportional to
∫

GR(r1, r1, t)G
A(r2, r2, t)dtdr1dr2. For the same reason as

in section 3.2, r1 and r2 belong to the same orbit of length vF t. Therefore
integration on r2 gives a factor proportional to vF t and the corresponding
contribution to the conductance fluctuation has the form:

〈δg2〉
〈g〉2 ∝

∫ ∞

0

tP (t)dt (5.105)

This term has exactly the same structure as the two-point correlation func-
tion of the DOS. It describes the contribution of the DOS fluctuations of
the conductance fluctuations[ 17, 98]. The second term b) is propor-
tional to

∫

P (r, r′, t)P (r′, r, τ)dtdτdrdr′. It can be also rewritten in the
form

∫

tP (t)dt. It describes the contribution of the fluctuations of the dif-
fusion coefficient to the conductance fluctuations[ 17, 98]. The integral
5.105 scales as τ2

D ∝ 1/〈g〉2. One then concludes that the fluctuations are
universal.

6. Parametric correlations

6.1. Curvatures distribution

Thouless assumed that the levels are uncorrelated and found a Cauchy
distribution for the curvatures. As we know from the RMT, levels are
actually strongly correlated and repel each other. This repulsion must
affect the curvature distribution P (c). It is actually easy to find the tail of
the distribution P (c). When two levels are very close in energy s→ 0, one
can isolate this pair and treat it in a perturbative way. The distance s(λ)
where λ is the perturbation parameter, varies as

√
s2 + λ2 ∼ s+ λ2/2s so
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that for s→ 0, the curvature c varies as 1/s. Since P (s) ∝ sβ one concludes
that P (c) → 1/c2+β for c → ∞, in contradiction with the Cauchy form[
99].

The problem of the curvature distribution has been solved recently. In
the case of pure symmetry, i.e. the perturbation parameter λ does not
break any symmetry ( for example a step potential in the GOE case or an
AB flux in the unitary case where there is already a magnetic field), the
curvature distribution is given by:

Pβ(c) =
Nβ

(γ2
β + c2)(β+2)/2

(6.106)

Nβ is a normalization coefficient. This form has first been guessed by
Zakrzewski and Delande[ 100] to fit numerical calculations on various model
exhibiting chaotic spectra: the kicked-top model[ 101], random matrices,
the kicked rotator and the stadium billiard[ 102], the hydrogen atom in
a magnetic field. The width γβ of the distribution is proportional to the
average square of the level velocities[ 99, 100]:

γβ = πβ
〈i2(λ)〉

∆
(6.107)

where i = ∂ǫα

∂λ
. Afterwards, this curvature distribution has been proven

analytically by Von Oppen[ 103] for random matrices of the form H(λ) =
H + λK where H and K are random matrices belonging to the same sym-
metry and λ is the perturbation parameter. Recent numerical calculations
have shown that this distribution is also characteristic of metallic spectra
when the perturbation parameter is an AB flux φ[ 74](see fig. 14). In
particular, in the limit where φ→ 0, the distribution is still the GOE dis-
tribution (β = 1 in eq. 6.106)[ 74]. This has been proven analytically by
Fyodorov and Sommers who also found that there are no corrections of
order 1/g[ 104].

In the literature, the coefficient γ entering the Thouless relation is some-
times taken as the typical curvature. This cannot be the case because, due
to the 1/c3 tail, the distribution has no second moment. Instead, one can
choose as a definition of the conductance[ 105, 106, 74, 107]:

gc ≡ 〈|c|〉
∆

(6.108)

For pure symmetry cases, eq. 6.107 leads to universal relations between gc

and gd[ 106]:

GOE 〈|c|〉 = γ1 and γ1 = π
〈i2(λ)〉

∆
⇒ gc = πgd (6.109)
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Fig. 14. After rescaling the distribution of curvatures becomes universal. (8×8×8 with
w = 4, 5, 6)

GUE 〈|c|〉 =
2

π
γ2 and γ2 = 2π

〈i2(λ)〉
∆

⇒ gc = 4gd (6.110)

The case of an AB flux has been studied recently numerically[ 74] and
analytically with the supersymmetry method[ 104]. The result is that

gc = 2πgd (6.111)

This relation can be simply understood: the distribution of curvatures
in zero flux is characteristic of the GOE symmetry so that 〈|c|〉 is equal to
the width γ of the GOE (β = 1) distribution (eq. 6.109). But there is a
finite current only when ϕ 6= 0, i.e. when the the symmetry has become
GUE, so that the relation between γ and 〈i2(η)〉 is the relation of the GUE
(β = 2) symmetry (eq. 6.110). Combining these two relations, one gets
gc = 2πgd.

When ϕ≫ ϕc, the curvature distribution becomes the one of the unitary
case with a 1/c4 tail, and the second moment now converges. In the cross-
over regime, it has been found numerically that the curvature distribution
is quite different than in the pure cases, with a Gaussian tail. The typical
curvature in the cross-over regime has been found to diverge logarithmically
at small flux [ 74, 105]:

〈c2(ϕ)〉 ∝ g2 ln(1/gϕ2) (6.112)

6.2. Parametric correlations

We have seen in section 3 that the transition between the GOE and GUE
symmetries in the diffusive regime is a universal function of the combination
of parameters Ecϕ

2 or gϕ2.
Another quantity has been recently introduced by Altshuler et al. to

characterize the motion of the energy levels[ 108, 94]. It is the auto-
correlation of the current for a given level. It is defined as C(ϕ−) =
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1
∆2 〈i(ϕ)i(ϕ+ ϕ−)〉, where ... is an average on flux. Since the flux drives a
transition between different symmetries, the product 〈i(ϕ)i(ϕ+ ϕ−)〉 de-
pends on both ϕ and ϕ−. It would be translation invariant (independent
of ϕ) in the case where the parameter ϕ does not break any symmetry.
Here, one has to average on ϕ so that the correlation function is only a
function of ϕ−. One can use the same method as in the previous sections
to calculate this correlation function. From the definition of the current
and following the same lines as for the calculation of the typical current,
one finds[ 108]

C(ϕ−) = − ∂
2

∂ϕ2
−

∫ ∫

Kcl(ǫ, ǫ
′,
ϕ−
2

)dǫdǫ′ (6.113)

By Fourier transform and using the relation between K̃(t) and P (t), one
deduces[ 109]:

C(ϕ−) =−2
∂

2

∂ϕ2
−

∫

K̃(t, ϕ−/2)

t2
dt

=− 1

2π2

∂
2

∂ϕ2
−

∫

P (t, ϕ−/2)

t
dt (6.114)

For ϕ− ≪ 1, P (t) has the diffusive form: P (t, ϕ/2) = e−4π2Ecϕ2
−

t−γt, so
that

C(ϕ−) = C(0)
1 − bϕ2

−
(1 + bϕ2

−)2
(6.115)

where b = π2C(0) and C(0) = 〈i2(ϕ)〉 = 4Ec/γ is the average single level
typical current. For large flux ϕ− ≫ ϕc = 1/

√
g, the correlation function

has a universal tail[ 108, 110]:

C(ϕ−) = − 1

π2ϕ2
−

(6.116)

This form has also been found by Berry and Keating in the case of billiards[
111]. It has the same origin, it is related to the diffusive accumulation of
the phase, even when the motion is ballistic.

The expression found for C(ϕ−) does not fit correctly the numerical
result for small flux. The reason is that the semi-classical calculation holds
when at least one energy scale is larger than ∆, which implies here Ecϕ

2 >
∆. Thus the semi-classical calculation describes only the power-law tail of
C(ϕ−), when ϕ > ϕc. On the other hand, it has been show that the small
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Fig. 15. Universal function C(ϕ−)

flux behavior of C(ϕ−) has a logarithmic correction: C(ϕ−)/C(0) − 1 ∝
gϕ2 ln 1/gϕ2[ 105, 74, 75, 112]. This is reminiscent of the logarithmic
divergence of the typical curvature near the GOE point ϕ = 0.

As the GOE-GUE transition is driven by the unique combination of
parameters Ecϕ

2, it is seen that the parametric correlation function
C(ϕ−)/C(0) is a universal function of Ecϕ

2
−. This universality has been

stressed by Simons et al. who calculated several other several parametric
functions, using the supersymmetric method[ 94, 95, 96].

7. Conclusion

In this presentation of the spectral correlations and or their dependence on
the Aharonov-Bohm flux, we have tried to unify several spectral quantities
by relating all of them to the same quantity P (t) , the return probability
for a diffusive particle. Here we summarize schematically the structure of
several of these quantities, together with the weak-localization correction
and with the universal conductance fluctuations. This description is based
on a semi-classical picture in the diagonal approximation and fails when
all energy scales become smaller than the interlevel spacing.
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K(ǫ) →
∫

tP (t)eiǫtdt

Σ2(E) →
∫ P (t)

t sin2(Et
2 )dt

〈I2〉 → ∂
2

∂ϕ2

∫ P (t)
t3 dt

〈Ie−e〉 → ∂

∂ϕ

∫ P (t)
t2 dt

〈i2〉 → ∂
2

∂ϕ2

∫ P (t)
t dt

〈IN 〉 → ∂

∂ϕ

∫ P (t)
t dt

〈∆G〉 →
∫

P (t)dt

〈δG2〉 →
∫

tP (t)dt

We have recovered in a simple way the main quantities describing the
persistent currents and the parametric correlations. In these quantities,
the flux dependence appears through the combination gϕ2, where g is the
dimensionless conductance. This combination is the typical phase accumu-
lated by a diffusive particle during the Heisenberg time τH . The observed
order of magnitude of the persistent current in the experiments is still un-
explained. A promising way could be a better understanding of the role of
e–e interaction. Several recent works have explored this direction[ 114].

In this course, we have restricted ourselves to the description of level
correlations in the diffusive regime. There has also been a recent activity
on the study of the correlations at the Metal-Insulator transition which
occurs in 3D. In the strongly insulating regime, the wave functions of two
states which are close in energy do not overlap. The statistics becomes
Poissonian. The Metal-Insulator transition is characterized by a third dis-
tribution, intermediate between Wigner and Poisson distributions[ 113].

Finally, the thermodynamic properties such as the magnetization of bal-
listic mesoscopic conductors, where the disorder is so weak that le > L
raises new interesting questions.
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