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ALGEBRAIC TOPOLOGY FOUNDATIONS OF SUPERSYMMETRY AND

SYMMETRY BREAKING IN QUANTUM FIELD THEORY AND QUANTUM
GRAVITY.

I. C. BAIANU, J. F. GLAZEBROOK AND R. BROWN

Abstract. A novel Algebraic Topology approach to Supersymmetry (SUSY) and Symmetry Break-

ing in Quantum Field and Quantum Gravity theories is presented with a view to developing a wide

range of physical applications (such as, controlled nuclear fusion and other nuclear reactions stud-

ies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller

effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems,

molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin

glasses, quantum phase transitions, supergravity, and so on). This approach requires a unified con-

ceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functo-

rial representations of non–Abelian higher dimensional structures pertinent to quantized spacetime

topology and state space geometry of quantum operator algebras. The relevance of our approach

to extended quantum symmetries and their associated representations in locally covariant General

Relativity theories that are consistent with nonlocal quantum field theories will also be discussed.
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We will explain these difficulties by looking first at the case of a finite group where this whole
procedure presents no problems at all. If G is a finite group, the C*-algebra C0(G) is the *-algebra
C(G) of all complex functions on G with pointwise operations. It is of course finite-dimensional so
that it suffices to look at the algebraic tensor product C(G)�C(G). The multiplier algebra is also
defined by this algebraic tensor product. In particular, the comultiplication Φ is a comultiplication
in the ordinary, algebraic sense on the algebra C(G). The properties

ep = pe = p

and
p−1p = pp−1 = e

for all p, become in terms of ε and κ as follows:

(ε⊗ ι)Φ(f) = (ι⊗ ε)Φ(f) = f

and
m(κ⊗ ι)Φ(f) = m(ι⊗ κ)Φ(f) = f∑

where ι denotes the identity map , and where m is the multiplication defined as a map from the
tensor product C(G)� C(G) to C(G) defined by m(f ⊗ g) = fg. This means that (C(G),Φ) is a
Hopf algebra. In fact, it is a Hopf *-algebra if we let

f∗(p) = f(p)

. Let us recall the definition of a Hopf *-algebra (see e.g. [22]) :
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