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Abstract

Deformation quantization on varieties with singularitiesoffers perspectives
that are not found on manifolds. The Harrison component of Hochschild co-
homology, vanishing on smooth manifolds, reflects information about singu-
larities. The Harrison 2–cochains are symmetric and are interpreted in terms
of abelian∗–products. This paper begins a study of abelian quantization on
plane curves overC, being algebraic varieties of the formC2/R, whereR is a
polynomial in two variables; that is, abelian deformationsof the coordinate al-
gebraC[x,y]/(R). To understand the connection between the singularities of a
variety and cohomology we determine the algebraic Hochschild (co-)homology
and its Barr–Gerstenhaber–Schack decomposition. Homology is the same for
all plane curvesC[x,y]/R, but the cohomology depends on the local algebra of
the singularity ofRat the origin.
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Mathematics Subject Classifications (2000):53D55, 14A22, 16E40, 16S60, 81S10

1 Introduction.

Deformation quantization is a term coined by Moshe Flato, who suggested that any
nontrivial associative deformation of an algebra of functions should be interpreted
as a kind of “quantization”. Deformation quantization is [2] the study of associative
∗–products of the formf ∗g = f g+ ∑n>0 h̄nCn( f ,g), whereh̄ is a formal parameter.
This concept has gained wide currency and has been intensively developed in recent
years, but almost exclusively in the context of smooth Poisson manifolds [4, 14, 15].
In that case it is natural to consider deformations “in the direction of the Poisson
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bracket” (Drinfel’d); that is, takingC1( f ,g) = { f ,g}, which is of course antisym-
metric. But even if more general deformations were to be considered, independent
of the symplectic structure, antisymmetry ofC1 entails no essential loss of gener-
ality for quantization on a smooth (finite dimensional) manifold. A famous result
of Hochschild, Kostant and Rosenberg [13] implies that any∗–product on a regu-
lar, commutative algebra is equivalent to one with antisymmetric C1. For a related
‘smooth’ result, see [23].

It would seem, therefore, that the time has come to study deformation quantiza-
tion on varieties with singularities. The cohomological implication of singularities
should be interesting.

The Hochschild complex of any commutative algebra decomposes into smaller
complexes; in the case of an algebraA generated byN generators, intoN subcom-
plexes [1, 5, 11]. The topology of a smooth manifold is related to the restriction of the
Hochschild complex to alternating mapsA∧→ A, dual to simplicial homology, and
the only component with non-vanishing cohomology. But on varieties with singulari-
ties other components of the Hochschild complex come into play, which suggests the
use of cohomological methods for the study of singularities.

Examples of quantization on singular varieties had been known in connection
with geometric quantization (and∗–quantization) on coadjoint orbits of Lie algebras,
but the cohomological implications had not been recognized. (See [2, 6, 7].) The
connection between singularities and cohomology was studied by Harrison [12], who
was the first to describe the component of Hochschild cohomology that has become
known, if not widely known, as Harrison cohomology. The 2–cochains of this com-
plex are symmetric. On a commutative algebra every exact Hochschild 2–cochain
is symmetric, so that triviality is not an issue ifC1 is antisymmetric. But it is an
important consideration in the case of abelian∗–products.

The BGS idempotents.
The p–chains of the Hochschild homology complex of a commutativealgebraA

are thep–tuplesa = ∑a1⊗·· ·⊗ap ∈ A⊗p, and the differential is defined by

da= a1a2⊗a3⊗·· ·⊗ap−a1⊗a2a3⊗a4 · · ·⊗ap+ · · ·+(−)pa1⊗·· ·ap−2⊗ap−1ap.

The p–cochains are mapsA⊗p→ A, and the differential is

δC(a1, · · · ,ap+1) = a1C(a2, · · · ,ap−1)−C(da)− (−)pC(a1, · · · ,ap)ap+1.

After the pioneering work of Harrison [12] and Barr [1], the complete decomposition
of the Hochschild cohomology of a commutative algebra was found by Gerstenhaber
and Schack [11]. The Hochschild cochain complex splits intoan infinite sum of
direct summands. (If the algebra is generated byN generators then there are onlyN
nonzero summands.) The decomposition is based on the actionof Sn on n–cochains,
and on the existence ofn idempotentsen(k), k = 1, · · ·n, in CSn, ∑k en(k) = 1, with

2



the property thatδ ◦en(k) = en+1(k)◦δ . Thus we have Hochn = ∑n
k=1 Hn,k, Hochn =

∑n
k=1 Hn,k with Hn,1 =Harrn andHn,1 = Harrn.

A generating function was found by Garsia [8],

n

∑
k=1

xken(k) =
1
n! ∑

σ∈Sn

(x−dσ )(x−dσ +1) · · · (x−dσ +n−1)sgn(σ)σ ,

wheredσ is the number of descents,σ(i) > σ(i +1), in σ(1· · ·n). 1 The simplest
idempotents are

e2(1)12 =
1
2
(12+21),

e3(1)123 =
1
6

(

2(123−321)+132−231+213−312
)

,

e3(2)123 =
1
2
(123+321)

en(n) =
1
n! ∑

σ∈Sn

sgn(σ)σ .

The Hochschild chains decompose in the same way, withd◦en(k) = en−1(k)◦d.

Summary.
Section 2 is concerned with abelian∗–products on an arbitrary plane curve. The

space of equivalence classes of first order abelian deformations of the algebra of
polynomials onC[x,y]/(R) is isomorphic to the local algebra of the singularity of
R at x = y = 0. The Harrison component Harr3 = H3,1 of Hoch3 vanishes, which
implies that there are no obstructions to continuing a first order abelian∗–product to
higher orders. In this paper the strategy that leads to the calculation of Hochschild
cohomology calls for a preparatory investigation of a homological complex that is
not strictly Hochschild, but rather its restrictionA→ A+ to the non-unital subalgebra
A+ of positive degree; this has no effect on the cohomology.

In Section 3 the Hochschild homology is calculated for the case of a plane curve,
with its BGS decomposition. In Section 4 the Hochschild cohomology is investi-
gated; the result in Theorem 4.9. Section 5 contains a detailed calculation of the BGS
decomposition for the singularity ofxn = 0 atx = 0.

The Appendix, by Maxim Kontsevich, explains in modern mathematical lan-
guage a way to calculate Hochschild and Harrison cohomologygroups for algebras
of functions on singular planar curves etc. based on Koszul resolutions.

1Example:σ(1234) = 3142 has one descent, from 2 to 3.
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2 Associative∗–products and cohomology.

2.1 Formal∗–products.A formal, abelian∗–product on a commutative algebraA is
a commutative, associative product on the space of formal power series in a formal
parameter̄h with coefficients inA, given by a formal series

f ∗g = f g+ ∑
n>0

h̄nCn( f ,g). (2.1)

Associativity is the condition thatf ∗ (g∗h) = ( f ∗g)∗h, or

k

∑
m,n=0

h̄m+n
(

Cm( f ,Cn(g,h))−Cm(Cn( f ,g),h))

)

= 0, (2.2)

whereC0( f ,g) = f g. This must be interpreted as an identity inh̄; thus

k

∑
m,n=0

δm+n,k

(

Cm( f ,Cn(g,h))−Cm(Cn( f ,g),h))

)

= 0, k = 1,2, · · · . (2.3)

The formal∗–product (2.1) is associative to orderp if Eq(2.3) holds fork = 1, · · · p.
A first order abelian∗–product is a product

f ∗g = f g+ h̄C1( f ,g), C1( f ,g) = C1(g, f ), (2.4)

associative to first order in̄h, which is the requirement thatC1 be closed,

δC1( f ,g,h) := fC1(g,h)−C1( f g,h)+C1( f ,gh)−C1( f ,g)h = 0.

Suppose that a formal∗–product is associative to orderp ≥ 1; this statement
involvesC1, · · · ,Cp only, and we suppose these cochains fixed. Then the condition
that must be satisfied byCp+1, in order that the∗–product be associative to order
p+1, is

p

∑
m,n=1

m+n=p+1

(

Cm( f ,Cn(g,h))−Cm(Cn( f ,g),h))

)

=−δCp+1( f ,g,h). (2.5)

The left hand side is closed, and thus it is seen that the obstructions to promote
associativity from orderp to orderp+1 are in Hoch3.

There is an important difference between the two cases of symmetric and anti-
symmetricC1. If C1, · · · ,Cp are symmetric, then the left hand side of (2.5) has the
symmetry of the idempotente3(1) (a Harrison cochain) and it is the symmetric part
of Cp+1 that is relevant, while the antisymmetric part ofCp+1 must simply be closed.
Symmetry of the∗–product can therefore be maintained to all orders. IfC1 is anti-
symmetric, andp= 1, then the left hand side has the symmetry ofe3(1)+e3(3). The
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first part must be balanced on the right hand side by means of the symmetric part of
C2; the second part must vanish, and this condition is the Jacobi identity forC1.

The obstructions against continuing a formal, first order, abelian ∗–product to
higher orders are in Hoch3; more precisely, they are inH3,1 = Harr3(A,A).

A formal ∗–product is trivial if there is an invertible mapE : A→ A, in the form
of a formal seriesE( f ) = f + ∑n>0 h̄nEn( f ) such thatE( f ∗g) = E( f )E(g). A first
order, abelian∗–product is trivial if there is a 1–cochainE1 such that

C1( f ,g) = δE1( f ,g) = f E1(g)−E1( f g)+E1( f )g.

2.2. Deformations on a curve.In view of the theorem of Hochschild, Kostant and
Rosenberg [13] cited earlier, there can be no nontrivial, abelian ∗–products on a
smooth manifold. It is natural to turn to varieties with singularities, and especially
algebraic varieties. It is the aim of this paper to explore the phenomena, with elemen-
tary methods of calculation, in the case of plane curves overC, M = C

2/R, whereR
is aC–polynomial. The algebras of interest are the coordinate algebra

A = C[x,y]/(R), (2.6)

with generatorsx,y and a single polynomial relationR. The polynomialR can be
transformed, by a linear change of variables, to either of the formsR= xm−P(x,y)
or R = yn−Q(x,y), where the polynomialP is of order less thanm in x and the
polynomialQ is of order less thann in y. Either form gives rise to a Poincaré–Witt
basis forA, for example,xiy j , i = 0,1, · · ·∞, j = 0,1, · · · ,n−1.

The deformed algebra has a Poincaré–Witt basis of the same form. LetW be
the map that takes a∗–monomial of this basis to the same ordinary monomial of the
original basis. LetRh̄ := W(R∗) and letMh̄ := C

2/Rh̄. Then, morally, the∗–product
is trivial if there is a bijectionE : Mh̄→M such thatRh̄ 7→ R. However, sincēh is a
formal parameter, the following definition is preferred.

2.3. Definition. A∗–product, as defined in this section, is trivial if there is a mapping
by a formal power series in̄h, E = Id+ ∑n>1 h̄nEn, such that R̄h 7→ R.

2.4. First order∗–product on a curve.Consider a first order, associative and abelian
∗–product on the algebra (2.6), with the polynomialR in the formR= yn−Q(x,y).
A change of variables ensures that(xiy j)∗ (xkyl ) = xi+ky j+l for j + l < n and

yi ∗yn−i = Q(x,y)+ h̄Q1(x,y), 1≤ i ≤ n−1, (2.7)

The first order deformation (2.7) is trivial if there is a derivation E such that
Q1 = E(R). See Subsection 4.6.
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2.5. Example.Let A = R[x,y]/(R), R= y2− x2− r2, r2 ∈ C, decomposef ∈ A as
f = f+ +y f−, f± ∈R[x], and define a∗–product onA by settingf ∗g = f g+ h̄ f−g−.
ThenQ1 = 1 and we seekE such thatE(x2 + r2− y2) = 1. The general solution to
this equation is 2E = −1

r2 (x∂x +y∂y)+ α(y∂x +x∂y), with α ∈ A.
Of course, this breaks down ifr2 = 0, and the simple reason why there is no

solution in this case is that there is no differential operator E such that the polynomial
E(x2−y2) contains a constant term.

2.6. Proposition.Let X be the space of polynomials in x and y, of degree less thann
in y, and let DR be the gradient ideal of R. As vector spaces, X coincides with A and
DR consists of all differentials of R. The space of equivalence classes of essential,
first order∗–products on A is the space X/DR, Harr2(A,A) = X/DR.

2.7. Example.Let M = C
2, R= y2− x3. A full set of representatives ofX/DR is

a+ bx, a,b ∈ C. The deformed algebras areAh̄ = C[x,y]/Rh̄ with Rh̄ = y2− x3−
h̄(ax+ b). Expand f (x,y) = f+(x) + y f−(x). Then f ∗ g = f g+ h̄C1( f ,g), where
C1( f ,g) = (ax+b) f−g−.

3 Homology.

This section deals with the homology of a modified Hochschildcomplex. The strat-
egy that is used in this paper, to calculate the Hochschild cohomology ofA, begins by
a determination of the homology of the algebraA+, the subalgebra with positive de-
gree ofA. Then–chains of this homology ofA+ aren–tuplesa= a1⊗a2⊗·· ·an, ai ∈
A+, i = 1, · · ·N.

3.1. 2–chains.Every ‘Hochschild’ 2–chain is homologous to a 2–chain of theform
x⊗ a+ y⊗ b. It will be convenient to re-label the generators,x,y 7→ x1,x2, then
a≈ ∑xi ⊗ai , ai ∈ A+, i = 1,2 . It is closed if∑xiai = 0. We shall suppose thatR
has no constant term and no linear terms, thena has the representation

a≈∑xi ⊗x jε i j b+
2

∑
i=1

xi⊗Ric,

whereε i j = −ε ji ,ε12 = 1, ∑xiRi = R and whereb,c are in the unital augmentation
A of A+. The first term is exact ifb∈ A+, the second term is exact ifc∈ A+ and (a
section of)H2 = Z2/B2 is spanned (overC) by the chainsx1∧x2 and ∑xi⊗Ri. The
second one is homologous to a symmetric chain that is a basis for Harr2 = H2,1.

3.2. Example. If R = y2− xn, then Harr2 has dimension 1 and every symmetric,
closed 2–chain is homologous to aC–multiple ofx⊗xn−1 +xn−1⊗x−2y⊗y.
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3.3. 3–chains.Every 3–chain is homologous to one of the forma = ∑xi ⊗b j ⊗ ci j .
If a is closed it takes the forma≈ ∑xi ⊗ x jε i j b⊗b′+ xi ⊗Ric⊗ c′, b,c∈ A which
is homologous toa≈ ∑xi ⊗ x jε i j ⊗ bb′+ xi ⊗Ri ⊗ cc′, with x2bb′+ R1cc′ = 0 and
−x1bb′+R2cc′ = 0. A simple case-by-case study shows that we then have:

bb′ = αR1 + βR2, cc′ =−αx2 + βx1,

with α ,β in A. Thus any closed 3–chain is homologous to one of the form
(

(x1∧x2)⊗R1c1−∑xi ⊗Ri⊗x2c1

)

−

(

(x1∧x2)⊗R2c2 +∑xi⊗Ri⊗x1c2

)

.

(3.1)
The first (second) term is exact unlessc1(c2) is in C. Adding an exact, alternating
3–cycle we get an alternative section ofZ3/B3 with a basis that consists of the two
chains (the GS idempotents were defined in the introduction)

α1 = e3(2)
(

x1⊗x2⊗R1−x2⊗R1⊗x1−x2⊗x1⊗R1−x2⊗R2⊗x2
)

,

α2 = e3(2)
(

x2⊗x1⊗R2−x1⊗R2⊗x2−x1⊗x2⊗R2−x1⊗R1⊗x1
)

. (3.2)

Thus Hoch3 = H3,2 has dimension 2 and Harr3 = 0.

Another way to reach this conclusion is to differentiate (3.1). The result is
(c1x2 +c2x1)∧R, which is inZ2,2 and which implies that (3.1)∈ Z3,2.

3.4. Example. If R = y2− x2, set u = x+ y, v = x− y. The basis (3.2) is then
{u⊗ v}⊗u, v⊗{u⊗ v} and the dimension of Hoch3 is 2. More precisely, dimH3,k

is 0,2,0 for k = 1,2,3.

3.5. Example.If R= y2−x3, then the chains (3.2) become

y⊗x⊗y−x⊗y⊗y−y⊗y⊗x+x⊗x2⊗x

and
e3(2)

(

x⊗y⊗x2−y⊗x2⊗x−x2⊗x⊗y+y⊗y⊗y
)

.

It is straightforward to prove the following.

3.6. Proposition.Let P1 = {x1,x2}, Pn+1 = Pn⊗Mn, and

M2k+1 =

(

R1 −x2

R2 x1

)

, M2k =

(

x1 x2

−R2 R1

)

.

Then for n> 1 every closed n–chain is homologous to an n–chain in the linear span
of the two linearly independent polynomials in Pn.
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3.7. Example.If R= y2−x2, setu = x+y, v = x−y. The dimension of Hochn is 2;
the basis is{u⊗v⊗u· · · , v⊗u⊗v⊗u· · ·}.

3.8. Theorem.Hoch2k = H2k,k +H2k,k+1, each component one-dimensional overC,
andHoch2k−1 = H2k−1,k, two-dimensional overC, k = 1,2, ... .

Proof. Fork = 1, ..., p−1, Pp+1 = Pk⊗Mk⊗Mk+1⊗ ...⊗Mp and thus

dPp+1 = P1M1⊗M2⊗ ...⊗Mp+
p−1

∑
k=1

(−)kPk⊗MkMk+1⊗ ...⊗Mp.

We haveMkMk+1 = R times the unit matrix andP1M1⊗M2 = R⊗P1; consequently
dP1 = 0, dP2 = {R,0} anddPp+1 = R©shPp−1, p≥ 2. If a∈Cp,k, thenda∈Cp−1,k,
andR©sh a is homologous to someb∈Cp+1,k+1. Hence ifPp−1 ∈Cp−1,k, thenPp+1

is homologous to aCp+1,k+1 chain.The action of these maps between spaces with
cohomology is shown in the diagram.

C2,1

ւ ց
C1,1 C3,2

ց ւ
C2,2

· · ·

C2k,k

ւ ց
C2k−1,k C2k+1,k+1

ց ւ
C2k,k+1

(3.4)

A southeast arrow represents the mapa 7→ R©sh a; a southwest arrow is the action of
the differential. The projections of{P2k+1

i }i=1,2 form a basis forH2k+1,k+1 and the
projections ofP2k

1 (resp.P2k
2 ) are bases forH2k,k (resp.H2k,k+1).

4 Cohomology.

4.1. The reduction process.The chains considered in this section are restricted to
positive degree. The cochains are valued inA. A p–cochain is closed if

δC(a1, · · · ,ap+1) = a1C(a2, · · · ,ap+1)−C(da)− (−)pC(a1 · · · ,ap)ap+1 = 0. (4.1)

One may attempt to interpret this relation as fixing the valueC(da), recursively in the
degree of the argument. The obstruction to this isda= 0, but ifa is exact then (4.1) is
satisfied automatically by virtue of its being true for arguments of lower degree. (One
can show that, in this context, ifa is exact then there isb of the same degree such
thata= db.) It is enough, therefore, to verify closure for a basis of representatives of
Hochp+1.
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A closedp–cochainC is a coboundary if there is a(p−1)–cochainE such that

C(a) = a1E(a2, · · · ,ap)−E(da)+ (−)pE(a1, · · ·ap−1)ap. (4.2)

This relation can be solved forE(da), recursively by increasing degree, except for the
obstruction presented byda= 0. But if a= db thenC(a) is determined byδC(b) = 0.
So it is enough to examine (4.2) for a complete set of representatives of Hochp.

The most useful interpretation is this. Given any closedp–cochain a “gauge
transformation” is the addition of an exactp–cochain,C→C+ ∆C, with

∆C(a1...ap) = a1E(a−)+ (−)papE(a+)−E(da). (4.3)

The space Hochp is the spac of closed, gauge-invariantp–cochains.

If any BGS component Hp,k of Hochp vanishes then the corresponding component
H p,k of Hochp is zero. There are no obstructions to continuing a first order, abelian
∗–product to higher orders.

4.2. Closure for p= 1. The 2–homology is spanned byx1∧x2 andxi ⊗Ri. We shall
replace the latter bŷR= ∑Ai j xi

1⊗ x j
2, R= ∑Ai j xi

1x j
2. The relationδC(x1∧ x2) = 0

is trivial. The formulaδC(xi
1⊗ x j

2) = xi
1C(x j

2)+ x j
2C(xi

1)−C(xi
1x j

2) tells us that, ifC
is closed, then for any polynomialf , C( f ) = C(xi)∂i f . Hence (this is the result 2.6)

δC(P2
1 ) = C(xi)∂iR, δC(P2

2 ) = 0. (4.4)

For the algebraC[x,y], Z1 is the space of vector fields with coefficients in the
unital augmentation of the same algebra, but forA = C[x,y]/R, Z1 is the algebra of
vector fields that annihilateR (the algebra of vector fields tangential to the curve).

4.3. Closure for p= 2. For homology we use the basis (3.3); it is enough to examine
one of the two,

P3
1 = R̂⊗x1+x1∧x2⊗R2,

δC(P3
1 ) = x1C(R1∧x1)+x2C(R2∧x1)−R2C(x1∧x2).

The first two arguments are exact; a certain amount of calculation is needed to verify
that these terms are of the same form as the third one. We need the following simple
formula, satisfied by closed 2–cochains:C(x2∧ f ) = C(x2∧ x1)∂1 f , f ∈ A. Now it
follows easily thatδC(P3

1 ) = −C(x1∧ x2)∂2R, δC(P3
2 ) = C(x1∧ x2)∂1R. Therefore,

we can interpret the conditionδC(a) = 0 as fixing the valueC(da), provided only
thatC(P2

2 )∂iR= 0, i = 1,2. (That is satisfied ifR= x2y3, C(x∧y) = xy.)

4.4. Theorem.Closure of a p–cochain C implies that its values for exact arguments
are given recursively in the polynomial degree as in (4.1). Conversely, (4.1) can be
solved recursively for all C(da), if and only if the following conditions hold

C∈ Z2k,k+1 : C(P2k
2 )∂iR= 0, i = 1,2;
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C∈ Z2k+1,k+1 : ∑C(P2k+1
i )∂iR= 0;

C∈ Z2k,k : always.

4.5. Gauge invariance for p= 1. Trivial, all 1–cochains are gauge invariant,H1 = Z1.

4.6. Gauge invariance for p= 2. We must examine evaluations on the homology
basis. To begin with,∆C(x1∧ x2) = 0, so that the evaluationC(x1∧ x2) is gauge
invariant. To examine the supplementary homology space, set R = ∑Ai j xi

1x j
2, R̂ =

∑Ai j xi
1⊗x j

2. Then we have

∑ 1

2
Ai j

(

∆C(xi
1⊗x j

2)+xi
1

j−2

∑
k=2

xk
2∆C(x2⊗x j−1−k

2 )+x j
2

i−2

∑
k=0

∆C(x1⊗xi−k−1
1 )

)

= E(xi)∂iR.

Hence, in a gauge whereC vanishes on arguments of lower degrees,∆C(R̂) ∈DR
and we have recovered Proposition 2.6.

4.7. Gauge invariance for p= 3. We have

δC(P3
1 ) = ∆C(R̂⊗x1 +x1∧x2⊗R2)

= x1E(R1∧x1)+x2E(R2∧x1))−R2E(x1∧x2) (4.5)

= ∑ 1

2
Ai j

{

x1E(xi−1
1 x j

2∧x1)+x2E(xi
1x j−1

2 ∧x1)
}

−R2E(x1∧x2).

With the help of the identity

i−1

∑
k=1

xk
1∆C(x1⊗xi−k−1

1 x j
2⊗x1) = xi

1E(x j
2∧x1)−x1E(xi−1

1 x j
2∧x1), j ≥ 1,

and another one, similar, we can reduce (4.5) to

∆C(P3
1)+

i−1

∑
k=1

Ai j x
k
1∆C(x1⊗xi−k−1

1 x j
2⊗x1)+

i

∑
k=1

Ai j x2xk−1
1 ∆C(x1⊗xi−k

1 x j−1
2 ⊗x1)

= ∑Ai j
{

xi
1E(x j

2∧x1)+xi
1E(x j−1

2 ∧x1)
}

−R2E(x1∧x2).

A similar, further reduction leads to the result that, ifδC vanishes on arguments of
lower orders,∆C(P3

1)+ ... =−(∂2R)E(x1∧x2), ∆C(P3
2 )+ ... = (∂1R)E(x1∧x2). We

recall that∆C(a) = δE(a1) and remember from Subsection 4.3 thatδE = 0 implies
that ∂iRE(x1∧ x2) = 0. The above result is thus natural; the calculation is needed
only to fix the numerical coefficients.
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4.8. Proposition. If the gauge is fixed by the condition that C(a) = 0 for arguments a
of lower degree, then the remaining gauge transformations take the following form,

∆C(P1) = 0, ∆C(P2k
1 ) = ∑Ei∂iR,

∆C(P2k
2 ) = 0, ∆C(P2k+1) = EdR∗, k > 0.

Proof (outline). (a) The statement reflects the structure of (3.4). The dimension
of H p,k, over the local algebra, more or less, coincides with the dimension ofHp,k.
‘More or less’ comes from the existence of homologies of lower orders, as the com-
plete calculation in Subsection 4.7 shows.

(b) We have

∆C(P2k
1 ) = ∑RiE(P2k−1

i )+∑xiE(Qi)+ ... ,

∆C(P2k+1
i ) = ∑εi j RjE(P2k−1

2 )+∑x jE(Si j ),

∆C(P2k
2 ) = ∑xiE(Ti).

The chainsQi,Si j ,Ti are closed and, unlessR1 orR2 is linear, exact. The reduction
exemplified in (4.4) and in (4.5) is then available. The result is

∆C(P2k
1 )+ ... = E(P2k−1

i )∂iR, ∆C(P2k+1
i )+ ... = E(P2k−1

2 )εi j ∂ jR, ∆C(P2k
2 ) = 0.

(c) The last case (P2k
2 ∈C2k,k+1) is simpler than the others and we give the details

in that case only. Letτ ∈ Sp be the reversing permutation. Garsia’s formula tells us
that the chainsCp,k correspond to the characterτ 7→ (−)k, so the projectione2k(k+
1)P2k

2 hasτ 7→ (−)k+1. Now∆C(P2k
2 ) = ∑2

i=1 xiE(ai), with ai ∈C2k−1 closed and with
the same symmetry:τ 7→ (−)k+1. The symmetry ofC2k−1,k (where the homology is)
is (−)k; thereforea1 anda2 are exact. The reduction process encounters no homology
and leads to zero.

Putting it all together we get the following result (for notations, see Propositions
2.6 and 4.8).

4.9. Theorem.Let VR be the space of vector fields, with values in A, that annihilate
R. Then as vector spaces,

H1 = VR,
H2k,k = A/DR,

H2k,k+1 = {a∈ A+,a∂1R= a∂2R= 0},
H2k+1,k+1 = VR/{AdR∗}, k > 0.
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5 Deformation of xn = 0.

Here we complete the calculation of Hochschild cohomology of the algebraA =
C[x]/xn, n≥ 2. This purely algebraic problem, though not associated with a curve, is
nevertheless very similar to that posed by curves. In the context of singularity theory
it is one of the standard forms. The chains are restricted to positive degree. This
subalgebra ofA is denotedA+.

5.1. Homology.For convenience,xxx2... shall stand for eitherx⊗x⊗x2... orx,x,x2, ... .
The spacesHp are one-dimensional forp≥ 1 and representative elements ofZp are
x, xxn−1, xxn−1x,..., or(xxn−1)k for p = 2k and(xxn−1)kx for p = 2k+1.

5.2. Closed cochains.A p–cochainC is closed if

δC(a1...ap+1) := a1C(a−)+ (−)p+1ap+1C(a+)−C(da) = 0, (5.1)

with a− = a2 ...ap+1, a+ = a1 ...ap. We interpret this relation, in the first place, as
a recursion relation that determines the cochainC on exact arguments, in terms of
its values on arguments of lower degree. For example, if the 1–cochainC is closed,
thenC(xk) = kxk−1C(x), k = 2, ...,n. HenceC(xk) is determined fork = 2, ...,n−1
by C(x), andC(x) ∈ A+ (thus restricted to positive degree).

The obstruction to this interpretation of (5.1) isda= 0; in this case closure re-
quires the relation

δC(a) = a1C(a−)+ (−)p+1ap+1C(a+) = 0. (5.2)

But if a = db, then this last relation is automatic, since

δC(db) = b1b2C(b3...)−b1C(db−)+ (−)p+1bp+2C(db+)−bp+1bp+2C(b1...bp)

= b1b2C(b3...)−b1

(

b2C(b3...)+ (−)p+1bp+2C(b2...bp+1)

)

−bp+1bp+2C(b1...bp)+bp+2

(

(−)p+1b1C(b2...bp+1)+ bp+1C(b1...bp)

)

= 0.

The real obstruction is thus the presence of homology. Whena = xxn−1x... , then
(5.2) reduces to

p = 2k : xC(xn−1...x−x...xn−1) = 0, (5.3)

p = 2k−1 : xC(xn−1...xn−1)+xn−1C(x...x) = 0. (5.4)

5.3. Proposition. The obstructions to interpreting the closure condition (5.1) as
recursively fixing the value of C(da) in terms of values of C on arguments of lower
degrees are:2

p = 2k : none, p = 2k−1 : xn−1C(x...,x). (5.5)

2From now on dots indicate a sequence in whichx andxn−1 alternate.
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Homology selects the argument here also. The truth of the Proposition is obvious
except for the possibility of accidental cancellations. Here, nevertheless, is a direct
proof.

Proof of Proposition 5.3, case p= 2k. For p = 2k andm = 1,2, ...,α , α = k(n−
2)+1, let

φm := ∑
1≤ p1, ... , pk ≤m

p1 + ...+ pk = k+m−1

xxp1xxp2...xxpkx. (5.6)

It may be shown by induction that

dφα−1 = xn−1...x−x...xn−1, dφm = φm+1
− −φm+1

+ , m< α−1.

PosingδC(φm) = 0 for m< α , we find that the left hand side of (5.3)vanishes iden-
tically:

xC(xn−1...x−x...xn−1) = xC(φα
− −φα

+) = xC(dφα−1) = x2C(φα−1
− −φα−1

+ ) = ... .

Iteration ends withxnC(aα+1−n
− −aα+1−n

+ ) = 0.

Proof of Proposition 5.3, case p= 2k−1. Form= 1,2, ...α = k(n−2)+1, set

ψm := ∑
1≤ p1, ... , pk ≤m

p1 + ...+ pk = k+m−1

xxp1xxp2...xxpk . (5.7)

Thendψα−1 = xn−1...xn−1 = ψα
− and form< α−1, dψm = ψm+1

− −φm+1, and

(xl ψα−l
p+1)⊗ψα−l

+ = xn−1⊗φα+2−n, l = 0,1, ...n−2. (5.8)

If δC(ψm) = 0, m< α , then the left hand side of (5.4) is

xC(xn−1...xn−1) + xn−1C(x...x)
= xC(dψα−1 +xn−1C(φα+2−n)
= x2C(ψα−1

− )+2xn−1C(φα+2−n) = ...
= xn−1C(ψα+2−n

− )+ (n−1)xn−1C(φα+2−n)
= xn−1C(dψα+1−n+ φα+2n)+ (n−1)xn−1C(φα+2−n)
= nxn−1C(x...x).

The proof of Proposition 5.3 is complete. The implication isthat, if a(2k−1)–
cochainC is closed, thenC(x...x) ∈ A+.

5.4. Exact cochains.Exactp–cochains have the form

C(a1...ap) = a1E(a−)+ (−)papE(a+)−E(da). (5.9)
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The obstruction to interpreting this relation as a recursion relation to determine the
E(da) is da= 0. Here too, the real obstruction, whenC is closed, is the existence
of homology. The most useful interpretation is this. Given any closedp–cochain a
“gauge transformation” is the addition of an exactp–cochain,C→C+ ∆C, with

∆C(a1...ap) = a1E(a−)+ (−)papE(a+)−E(da). (5.10)

The spaceH p is the space of gauge invariant evaluations of closedp–cochains.
To illustrate, here is the situation for 2–cochains, whenn = 3. Closure,

δC(xxx) = C(xx2)−C(x2x) = 0, δC(xx2x) = xC(x2x−xx2) = 0.

Gauge transformation

∆C(xx) = 2xE(x)−E(x2), ∆C(xx2) = xE(x2)+x2E(x) = ∆C(x2x),

By means of gauge transformations we can, for example, reduceC(xx) to zero. Co-
homology is the existence of the gauge invariant objectC(xx2) + xC(xx) Mod x2.

5.5. Theorem. The space of the gauge-equivalent evaluations, and the associated
cohomology spaces on Zp(A,A) are as follows

p = 0 : A
H0(A,A) = span{1,x, ...,xn−1}, dim. = 1;

p = 1 : C(x)
H1(A,A) = span{x, ...,xn−1}, dim. = n−1;

p = 2k−1 :
n−2

∑
l=0

xlC(φα−l ) (k > 1)

H2k−1(A,A) = span{x, ...,xn−1}, dim. = n−1;

p = 2k :
n−2

∑
l=0

xlC(ψα−l ) Mod Cxn−1

H2k(A,A) = span{1,x, ...,xn−2}, dim. = n−1.

Proof. By a direct and straightforward calculation we obtain, forp = 2k,
∑n−2

l=0 xl ∆C(ψα−l) = nxn−1E(x...x), and forp = 2k−1, ∑2
l=0 xl ∆C(φα−1) = 0.

5.6. Proposition. The BGS‘decomposition’ for k≥ 1 is

H2k = H2k,k, H2k+1 = H2k+1,k+1.
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Proof. The elementx...xn−1 ∈ Z2k lifted to Z2k(C[x],C[x]), is

d(xxn−1)k = xn©sh(xxn−1)k−1.

If (xxn−1)k−1 is of typeH2k−2,k−1, then the right hand side is of typeH2k−1,k, and
(xxn−1)k is of type H2k,k. Sincexxn−1 is indeed of typeH2,1 the result follows by
induction. Similarly,d(xxn−1)kx = xn©sh(xxn−1)k−1x, and the same argument applies
mutatis mutandi.

Appendix

Hochschild and Harrison cohomology of complete intersections

I will explain here a way to calculate Hochschild and Harrison cohomology
groups for algebras of functions on singular planar curves etc. based on Koszul reso-
lutions. This calculation is standard and definitely known to specialists.

A1. Reminder on complete intersections and Koszul resolution

Results of this section can be found e.g. in the classical textbook [18].
Suppose that we are given a system of polynomial equations (say, over the field

of complex numbersC, one can replace it by an arbitrary field):

f1(z1, . . . ,zn) = 0, . . . , fm(z1, . . . ,zn) = 0

Denote byA the quotient algebraP/( f1, . . . , fm) whereP denotes the ring of
polynomialsC[z1, . . . ,zn].

We say that we have a complete intersection if the dimension of the set of solu-
tions of the system above isn−m. A sufficient condition for this is thatf1, . . . , fm
form a regular sequence inP, i.e. for anyk≤ n elementfk is not a divisor of zero in
the quotient ofP by the ideal generated byf1, . . . , fk−1.

Theorem 1 Assume (in the previous notations) the condition of the complete inter-
section. Let us considerZ≤0–graded supercommutative superalgebra

Ã := P⊗∧({α j} j=1,...,m)

where subalgebra P is in degree0 and generatorsα j are in degree−1, endowed with
differential

dÃ := ∑
j

f j
∂

∂α j
.

Then cohomology of this differential is zero in negative degrees and isomorphic to
P/( f1, . . . , fm) in degree0.
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In the above theorem one can replaceP = C[z1, . . . ,zn] by the algebra of func-
tions on arbitrary smoothn–dimensonal affine algebraic variety. Complex(Ã,dÃ)
is called the Koszul resolution ofA. Slightly abusing notations we will writẽA =
C[z1, . . . ,zn;α1, . . . ,αm] meaning that(αi) are fermionic (odd) variables. Here and
later variables denoted by Latin (resp. Greek) letters are even (resp. odd).

A2. Generalities on Hochschild and Harrison cohomologicalcomplexes for dif-
ferential graded algebras

In what follows all complexes will beZ–graded with the differential of degree
+1. A morphism of complexes is called a quasi-isomorphism iffit induces an iso-
morphism of cohomology groups. A vector space can be considered as a complex
concentrated in degree 0 and endowed with zero differential.

Definitions of homological and cohomological Hochschild complexes extend im-
mediately to the case of differential graded algebras (dga in short), the same for Har-
rison (co-)homological complexes in the graded commutative case. The underlying
Z–graded space for the cohomological Hochschild complex fora dgaF with co-
effcients in a dg bimoduleM is defined as the infinite product (in the category of
Z–graded spaces)

C•(F,M) := ∏
n≥0

Hom(F[1]⊗n,M)

whereHom is inner Hom–space in tensor category ofZ–graded spaces,

(Hom(U,V))k := ∏
n∈Z

Hom(Un,Vn+k)

andF[1] denotes the complex obtained fromF by the shift of the grading,F[1]k :=
Fk+1. The formula for the differential inC•(F,M) is the sum of a super-version of
the formula for the differential in the an ordinary algebra (in degree 0), and a term
arising from the differential inF itself (see e.g. section 5.3 from [17] for a similar
case of the homological Hochschild complex).

Lemma 1 If φ : F̃→F is a quasi-isomorphism between two dga’s, then the corre-
sponding cohomological Hochschild complexes C•(F,F) and C•(F̃, F̃) are quasi-
isomorphic.

Proof: An algebraF can be considered as a differential graded bimodule overF̃ via
the homomorphismφ : F̃→F. Let us consider three complexes and natural homo-
morphisms between them:

C•(F̃, F̃)→C•(F̃,F)←C•(F,F)
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All three complexes carry complete decreasing filtrations with the associated quo-
tients (and maps between them)

Hom(F̃[1]⊗k, F̃)→Hom(F̃ [1]⊗k,F)←Hom(F [1]⊗k,F)

We see that associated quotients are quasi-isomorphic, andapplying spectral se-
quences we conclude thatC•(F̃, F̃) andC•(F,F) are quasi-isomorphic.Q.E.D.

For a graded supercommutativeF one can define the Hodge decomposition for
Hochschild cochains, and Harrison cohomology in the same way as in the usual non-
graded case. In the above lemma the quasi-isomorphism between Hochschild co-
homology of the resolution and of algebra itself is manifestly compatible with the
Hodge decomposition.

A3. Calculation of Hochschild and Harrison cohomology for complete intersec-
tions

The cohomological Hochschild–Kostant–Rosenberg theoremsays that the Hochschild
cohomology of the algebraOX of functions on an algebraic affine manifoldX is
the algebraT poly

X of polyvector fields onX. Moreover, there is a canonical quasi-
isomorphismT poly

X →C•(OX,OX) mapping polyvector fieldf v0∧ . . .∧vn where f ∈
OX, (vi)i=1,n are derivations ofOX, to the polylinear operator

a1⊗ . . .⊗an 7→ f ∑
σ∈Σn

sign(σ)∏
i

vσ(i)(ai)

The super-version of this theorem is also true, e.g. for supermanifoldY = Cn|m,
we haveOY = C[z1, . . . ,zn;α1, . . . ,αm] and its Hochschild cohomology is the algebra
T poly

Y :
T poly

Y = C[z1, . . . ,zn;η1, . . . ,ηn;α1, . . . ,αm;b1, . . . ,bm],

deg(zi) = 0 deg(ηi) = +1, deg(α j ) =−1, deg(b j ) = +2

Here the new variablesηi, b j have the meaning of derivations∂/∂zi , ∂/∂α j . Strictly
speaking, here we should consider not polynomials but formal power series with
respect to variablesηi ,b j , but it gives the same result in the category ofZ-graded
spaces because there are only finitely many monomials inηi ,b j in any given degree.

The dgaÃ is obtained fromOY by “switching on” the differentialdÃ. Here we
describe the corresponding HKR description of the Hochschild cohomology ofÃ,
and therefore ofH•(A,A) by lemma 1.

Proposition 1 Complex C•(Ã, Ã) is quasi-isomorphic to T:= T poly
Y endowed with

the differential

dT := ∑
i, j

∂ f j

∂zi
b j

∂
∂ηi

+∑
j

f j
∂

∂α j

The Hodge grading is given by counting variablesηi ,b j .
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Proof: The formula fordT is just the formula for the Lie derivative of a polyvector
field onY = Cn|m with respect to the odd vector fielddÃ = ∑ j f j

∂
∂α j

. It is easy to see
that the formulas from above give a homomorphism of complexes

χ : (T,dT)→C•(Ã, Ã)

We have to prove that it is a quasi-isomorphism. Let us introduceZ≥0–gradingdegα
on OY by the total number of variablesα j (incidentally, it coincides with minus the
standardZ–grading onOY). A Hochschild cochainO⊗n

Y →OY is called homogeneous
of degα degreeN ∈ Z if it is homogenous with respect to gradingdegα of degree
N. The whole Hochschild complexC•(OY,OY) is the product over allN ∈ Z of
subcomplexes consisting of degα degreeN cochains. The Hochschild differential of
algebraOY preserves the degα grading. The correction to the differential coming
from dÃ decreases this grading by 1. Finally, it is obvious that for anon-zero cochain
its degα is bounded from below (by−m). Therefore we have a convergent spectral
sequence proving thatχ is a quasi-isomorphism. The statement about the Hodge
grading is obvious. Q.E.D.

Now we introduce a smaller complex

T̃ := A[η1, . . . ,ηn;b1, . . . ,bm], dT̃ := ∑
i, j

∂ f j

∂xi
b j

∂
∂ηi

where the variables have the same grading as before,deg(ηi) = +1, deg(b j ) = +2.

Theorem 2 Under the previous assumptions the Hochschild cohomology of A is iso-
morphic to the cohomology of complex(T̃,dT̃). The Hodge grading is given by count-
ing variablesηi ,b j .

Proof: The obvious map(TF ,dT)→(T̃,dT̃) induces a quasi-isomorphism on graded
quotients for the filtration by the total number of variablesηi . Q.E.D.

The conclusion for the only non-trivial Harrison cohomology are in degrees 1 and
2 and are given by kernel and cokernel of the map

An (∂ f j/∂zi )
−→ Am

In particular, there is no obstruction for commutative deformations asHarr3(A) = 0.
It is easy to see that a miniversal commutative deformation of A is given by any
deformationf̃1(z, t), . . . , f̃m(z, t) of polynomialsf1(z), . . . , fm(z) depending on formal
parameterst1, . . . , tN whereN = rk Harr2(A), such that vectors

vk :=

(

∂ f̃1
∂ tk |t=0

, . . . ,
∂ f̃m
∂ tk |t=0

)

, k = 1, . . . ,N

18



form a basis inHarr2(A) = Am/
(

∂ f j

∂zi

)

An. The deformed algebra is

C[[t1, . . . , tN]][z1, . . . ,zn]/I

whereI is the completion with respect to the topology onC[[t1, . . . , tN]] associated
with the maximal ideal, of the ideal generated byf̃1(z, t), . . . , f̃m(z, t).

In particular, if we have only one equationf (z) = f1(z) = 0 thenHarr2(A) is the
quotientC[z1, . . . ,zn]/( f ,∂ f/∂z1, . . . ,∂ f/∂zn).

In the casen = 2 andm= 1, Hochschild cohomology groups consists of an un-
stable part in lower degrees and 2–periodically repeated block

A
(∂z1 f1,∂z2 f1)
−→ A⊕A

(∂z2 f1,−∂z1 f1)
−→ A

Finally, for n = m= 1, A = C[z]/(zk) we have

HO(A,A) = A≃ Ck, H l(A,A)≃ Ck−1 for l = 1,2, . . .

A4. Calculation of Hochschild a homology with coefficients with the diagonal
bimodule, for complete intersections

Similarly, one can calculate Hochschild homologyH∗(A,A) for complete inter-
sections. Here is the final result:

Theorem 3 In previous notations and under the assumption of complete intersection
the Hochschild homology H∗(A,A) of A is isomorphic to the cohomology of complex
Ω̃ := A[ξ1, . . . ,ξn;a1, . . . ,am] where degrees of variables are deg(ξi)=−1, deg(a j )=

−2 endowed with the differential dΩ̃ := ∑i, j
∂ f j

∂zi
ξi

∂
∂aj

. The Hodge grading is given by

counting variablesξi ,a j .

The proof is parallel to one for the cohomological complex. An example of this
calculation for the case of truncated polynomial ring can befound in [17], exercise
E.4.1.8 and Proposition 5.4.15.
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