CHAPTER 11I

THE EQUITVALENCE BETWEEN THE CATEGQORY C OF CROSSED

MODULES AND THE CATEGORY DA' OF SPECIAL DOUBLE

ALGEBROIDS WITH CONNECTIONS

0. INTRODUCTION:

R.Brown and C.B.Spencer [B-5-1] have defined a functor
(crossed modules over groups) -+ (double groupoids) , and they
showed that this gives an equivalence between the category of
crossed modules over groups and the category of special double
groupoids with special connections and one vertex . The
structure of connection on a double groupoid was shown in
[B-H-1] to be equivelent to a structure of thin squares , and
a convenient notation for thin squares was later developed and
exploited by R.Brown [Br-2] . Also [S-1] proved an equivalence
between 2-categories and double categories with connections .
Thin structures on double categories were exploited in
[S-W-1] . Finally , it was proved in [B-H-2] that crossed
modules over groupoids are equivalent to double groupoids with
connections ; indeed this is a special case of an equivalence
between crossed complexes (over groupoids) and w-groupoids .

Our programme is to prove results pa;allel to the above in
the context of algebroids rather thanm groupoids ; that is we
would like to prove that there exist an equivalence between

Ww-algebroids and crossed complexes (over algebroids ) .
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Rather than move to the general case immediately , we give
in this chapter the case n = 2 , that is , for double
algebroid . This will familiarise the reader with the
techniques
involved . Also some of our lemmas for mn = 2 will be applied
the genéral case , and the complications of their proof makes
it easier to give the case n = 2 when the notation is simpler

9 than in general
As explained in the Introduction , in this thesis we do
not acheive the general result , but we do obtain a lot of
information on the_general situation and complete results for
n=2,3,4.

1. THIN STRUCTURES AND CONNECTIONS:

We will use the example which was given in chapter 2 § 3
4 in order to define the extra structure needed later (we should
mention that the example of OB given before is analogous to
the example of double category due to Ehresmann [Eh-1]) . But
before that we start to define a special double algebroid

Definition 3.1.1: Let D be a double R-algebroid . We say that

D is a special double R-algebroid if D; = D, .

Refering to the definition (2.1.9) , a morphism (¥g,¥;,¥s)

of double algebroids such that ¥; = ¥, is called a morphism of

@
special double algebroids '

Suppose given a special double algebroid D . Then there
will be squares of D with commuting boundaery , that is , with
edges given by
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a d
b
and for which ab = c¢d . Examples of such squares are
degenerate squares :
X tg X X 8 Y
a c.a | a R 1, €;a|ly
y T, Y X—— ¥

Among the others there seems no way to distinguish any one
from another . We therefore impose on D an additional
structure of "thin" squares .

Definition 3.1.2: Let D be a special double algebroid . A thin

structure on D is a morphism e :0D; —-——+ D of special double

algebroids such that e is the identity on D, . Hence

c c c
de(a d) = (a d) . An element e(a d) is called thin , and
b b b
C
is often written simply (a d) , when e is clear from the
b
context

Remark 3.1.3: Because © is a morphism any composite of thin
squares is thin ; any sum of thin squares is thin ; any scalar
multiple of a thin square is thin . Thin squares should be
thought of as generalisations of identify elements €,a , €oa
in a special double algebroid .

Instead of thin structures , one can use an alternative
further structure on D , namely a connection (I , [’) . This
will be important later for generalisation to higher
dimensions
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Definition 3.1.4: Let D be a special double algebroid . We

define a connection on D to be a pair of functions

r, ' : D -+ D such that

(3.1.4)(i) for any a € Dy(x,y) , themn T'a , [’a have edges
given bg
X g y X 1 b4
a| la 1 , 1| I’a |a
® ]
b4 1 Yy X a y

(Clearly these two squares are commutative)
We assume the following axioms: for all a,b € D, such that ab
is defined
I''a ¥, Ta = €,4a
(3.1.4)(ii)
['a ¥; Ta = €,a
[’(ab)=(C’a* cqa)*(c a% "a)=T"ak,(ca *,[’b)

(3.1.4)(iii)
T(ab)=(Ta %; €,b)*,(c,b *, [b)=(Ta *; €.b)*,Ib

=]
(3.1.4)(iv) Let «,B,» € D have boundaries given by
C c 01
dx = (a d) , 38 = (a, d;) , 3¥ = (a d) ;
b b b,
then we have
I"(ata,) %, (x +; B) %, [(d+dy) = (T’a ¥, @ ¥, ['d) +,
(r’ai *2 ﬁ *2 rdi)
(3.1.4)(v) Let r € R and « € D with boundary given by
o - ;
dx = (a d) ; then we have
b
C’'ra ¥, (r .; « ¥, Ird = r ., (I’a %, « ¥, I'd) .
These axioms make sense in terms of boundaries , as shown in
the diagrams below :
let a:x -» y , biy - z for x,y,z € Do ; then the axiom
(3.1.4)(ii) can be pictured as
&
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X X 2 X a y
Il Ta l ra (1 = 1 c.a |1
x 1|r 1Y x———v
X . X
I T’a §a x 1 X
X = y = a| €,a |a ,
o j Ia 1 v I v
1 b4
The axiom (3.1.4)(iii) is pictured as
X - X 1 X
x 1 X 1] Da a €oala
1{T’ab |ab = X a y 1 ,
X' ab z 1} €¢4a & I''b P
s X a A Y z
X 8 b Z
x &b Z a [la 1 €,b |1
ab| Tab |1 = VI 1 i b " .
z ] z bi €,b é I'b 1
z 1 L 1 z
The axiom (3.1.4)(iv) , is pictured as
5 c d+d xCd+Cd1z 5 cd 2 cdy
ata,y ot B d+d: = = +5
¥ata, ¥ b ° Z  *gb+a,b> * ab ° P
x x °© d X x © o Y4
al a d + a, B |d,
X a vV p % X a, Y p 2
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The axiom (3.1.4)(v) , is pictured as ;
the left hand side is ;

c d red

ra r ., « |rd = .

* ra - b * ¥ rab =
The other side is ;
c - d o % cd P
r ., a d = r .,
b a y b Z Z X ab 2
x rcd 2
= » Thus the boundaries are equal .
¥ “rab

Remark 3.1.5: The axioms (3.1.4)(i,ii,iii) are essentially the
axioms for connection on a double category givem in [S8-1] .,
These axioms involve only the composition and not the
additions or scaler multiplications of the algebroid
structure . But the axioms (3.1.4)(iv,v) give relations
between (I',I'’) and the additions and scalar multiplications
These axioms are equivalent to conditions on the folding
operation given later in $3.2 and are not  used until that
section .

We go back to define a morphism between two special double
algebroids with connections

Definition 3.1.6: A morphism ¥ :D -+ E of special double

algebroids with connections (I,T’) , (A,A') is =aid to

preserve the connections if and only if

A"Pz:"l’orgA"'P2=q"or'o
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Such morphisms form the morphisms of the category of special
double algebroids with connections , denoted by DA' -

We gave in proposition (2.2.1) a functor from double
algebroids to crossed modules (over algebroids) , associating
to D thg crossed module (A,M,u) with A = D, and M consisting

m
of squares with boundary of the form (1 . 1) . We have a
forgetfaul functor DA' (special double algebroids with
connection) -—- (double algebroids) . The composite functor
DA! ——» ¢ (crossed modules) will be written as y .

Notice that in a special double algebroid , a thin

structure implies a connection satisfying (3.1.4)(i,ii,idii)
a 1
where I'(a) = e(a 1) , T'(a) = (1 a) . To complete the
1 a
equivalence between these two structures , we prove first
that in a special double =algebroid a thin structure may be
recovered from a connection satisfying only (3.1.4)
(i,ii,iii) . This result leads us to use connections instead
of thin  structures . The idea particularly in higher
dimensions has been given in [B-H-1] in the double groupoid
case , and partially in [S-1} , [S§-W-1] , for double
categories . |
As mentioned above , the proof of the following theorem

does not involve axioms (3.1.4)(iv,v) on connections .

Theorem 3.1.7: Let D be a special double algebroid with

connection I' , ' . Then there is a morphism of special double
algebroids ©:0D; —» D , which is the identity omn D,
a 1

and such that Ta = &(a 1) , [’'a = (1 b)
1 b
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Proof: For any a,b,c,d € D, satisfying cd = ab , define
functions €, , @, : OD; -—-- D by

c
8,(a d)
b

"

c
65(a d}
b

(c,a %, [’b) %, (Fc *; €,d)

The two definitions make sense in terms of boundaries ;
Appendix I give diagrams for these definitions and for the
proof of the next lemma .

Lemma 3.1.8: The two definitions e, , ®, are equivalent , that

Proof: Let a,b,c,d € D; be such that cd = ab , then
c

e,(a d) = (cyc ¥, [’d) *¥; (Ta *, €£4b)
b

(eqc %, I''d) %, €,ab ¥, (Ta ¥, €,b) by the identity rule

@ = (c,c ¥, I'’d) *; ([’ab *; Ccd) *; (Fa ¥, €,b)
by (3.1.4)(ii) and c¢d = ab
= (€,c ¥, I'’d) ¥, {[ [’a ¥, (€a ¥; [’b) ] %5 [(Fc ¥, €,d) *,
rd]} *, (Fa %, €,b) by (3.1.4)(1ii)
= (cq4c %5, I'd) *1 {[[’a %, (ca %X; [’b) *, (Ic ¥, €od)] %,
rd} %, (Fa *, c;b) by associativity
= {{c,c x, [T’a %, (€58 ¥; ['b) *, (Tc *; €,d)]} *,
(C*’d x, Id) ¥, (Ta %, c4b) by (2.1.6)(ii)
= [eyec %4 [ T'a %, (€2a ¥, T’b) %, (Tc *ky €,d)]] *,
(Ca %, €,b) by (3.1.4)(ii)
= £4c %3 {{[’a ¥, [(€a ¥; [’b) ¥, (Fc ¥, €,d)]} *1
(Ta ¥, €.b) by associativity
= €,c %, {(F’a ¥, Fa) %, [[(€a ¥, T’b) *, (Fc %, €pd)] ¥,

€,b1}} by (2.1.6)(ii)
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(e, %, I’b) %, ([c %, €£od) by the identity rule

c
e-(a d) . This is the complete proof of the lemma

It

Now we continue to prove theorem (3.1.7) , that is , we

prove B satisfies the following :

1 1 a a
i) e(a a) = (a a) , (1 1) =(1 1) ;
1 } a a

ii) e(a 1) = (a 1) , e(1 a) (1 a) ;
1 1 a a

c - e
iii) e(a d) +, e(a, dy) = e(ata, d+d,) ;
b b b

c cq c+cy

iv) e(a d) +, o(a d) = e(a d)
b b b+b,

c c
v) r .., e{a d) = e(ra rd) ;
b b

¢ rec
vi) T ., 8(a d) = e(a d) ;
b rb

c c? ce’

vii) e{a d) %, e(d e) = e(a d) ;
b b’ bb’
c : b c
viii) e(a d) ¥, e(a’ d?’) = e(an’ dd*®)
e e
The proof of (i) , (ii) are easy . To prove (iii) , we use the

interchange law (2.1.6)(iii) , distributive law , (2.1.7) and

& C
b

[(cpa, ¥; [’b) %, (Tc *; €d,)]

—-38-




[(cza ¥; T'b) +; (cpay *¥; I’b)] *, [(Fc *; €.d) +,

(Tc %, €pd;)] by (2.1.6)(iii)

[(cza +, €,2,) %; T’b] %, [Tc %1 (€pd +; €5d,)]

by distributivity

(cz(afal) ¥; O'b) ¥, (Tc *; €.(d+d,y)) by (2.1.7)

C
e,(ata, d+d,) .
b

o To prove (iv) , we use (2.1.7),(2.1.6)(iv) , distributivity ,
and 8 = 8, ;
c C1
b b,

[(C!Cz *2 r’d) *1 (ra *2 Clbl)J

(Fa %, €4by)] by (2.1.8)(iv)

[(eyc +; €4c4) %, [’d] *, [Fa ¥, (€4b +, £,b,)]

® by distributivity
C+C1
b+b,
To prove (v) , we use the rule (2.1.5)(ii) and © = 6, ;
c
e,(ra rd) = (e€zra %3 I’b) ¥, (Lec %, €,rd)
b
s = (r .; €2a ¥; I’b) %, (Tc ¥; r ., €,d)
= (r ., (eza ¥; I'’b)) *, (r .4 (Tc %, €,d))
=r .y [(€pa X; T'b) ¥, (Tc *; €,d)] by (2.1.5)(ii)
c
=r ., o(a d)
b
rc c
We can prove similarly that e(a d) =r ., e(a d)
rb b
s -39-
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by using (2.1.5)(ii) and e = e,

For (vii) , we use the interchange law (2.1.6)(ii) , the
identity rule , the associativity , (3.1.4)(ii) , the equality
cdd’ = abd’ = as’e and © = 8, ;

cc’

e(a ‘e) = (€4cc’ *¥5 [Pe) ¥, (Ta ¥, €,bb’)
bb’
= (e4¢ ¥, €4¢” *, ['e) %, €,cdb’ %, (la *, ¢,b %, €,b*)
by the identity rule
= (£,c ¥, (€4c” %, ['e)) *, (€yc %, €,d *; €,b’) %,
((Ta ¥, €;b) %, T.b*) by the associativity
= [e4¢c ¥, (€4¢’ %, [’e)] ¥, [(£4c %, [’d) *, ([d ¥, €,b°)] ¥,
[(Fa %, €4b) %, €;b"] by (3.1.4)(ii)
= [(eqc %4 (€4c %, ['d)) *, ((€ ¢’ %, ['e) *; ([d ¥, €,b"))]
¥, [(Fa %3 €4b) *, €,b’] by (2.1.6)(ii)
= [(e4ec ¥, T°d) %, (Ta ¥, €;b)] *, [(£4c’ %, [’e) %,
(If'd %, €,b’) %, €,b’] by the identity rule and (2.1.6)(ii)
= [(eyc ¥ T'd) %, (Fa %, €,b)] *, [(€,c* %, [e) *,
(fd *, €5b*)] by the identity rule
c c

= e,(a d) x, e,(d e)
b

c b
We can prove similarly that e(a d) ¥, e{a’ - 4d’) =
b e
c
e(aa’ dd’) , by using (3.1.4)(ii) , the,identity rule ,
e
the interchange law (2.1.6)(ii) , cdd’ = abd’ = aa’e and
8=92.

Then © is a morphism . This is the complete proof of the

theorem . o
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We move now in the next section to construct a functor
A : € -—» DA' by using a "folding" operation , whose

definition involves the connections .

2. THE FOLDING OPERATION:

In this section , we introduce on squares of a special

? double algebroid with connections D an operation which has the
effect of "folding" all edges of « € D onto the edge 8?« .

This operation ® transforms « into an element of the
associated crossed module »D

We define ®:D ---» D in the following way ;
given « € D with boundary edges in the form

C

[——4 2
k- a o d

1

]

we define
Px = (IT''a ¥, « ¥, ['d) —5 €, ab
It is easy to check that this composition and subtraction are

defined . Simply , if « as above , then ®« has boundary in the

form
1 [ d ab cd—ab
a »
} I'’'a g o« d Id I —2 1| €qab|l = 1| ¢x |1
a b 1 ab 0
Thus a‘:wboc: cd — ab , aiw: o, a:dnx: 1, a;¢o:= 1
and hence ®x € »D
& -41-
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Proposition 3.2.1: ®x = « if and only if « is im »D . 1In

particular ¢2a = ¢x for all « € D

Proof: If ®x = « , then « has boundary edges given by

(1 1), form € Dy = D, and then « € ¥D (by the

construction given in chapter II1) . The converse is clear . 0O
We now develop relations between ® and the operations of

the special double algebroid D .

First , let 02 = €,0 € D , as in the diagram

0

1{ €50 |1

0

Proposition 3.2.2: Let a € Dy(x,y) , then

i) ®T’a = 02 , @&ra = 02 ,

ii) ¢51a = 02 N ¢Cza = 02
Proof: i) Since a € D,(x,y) , then I'’a has boundary in the
form

X 1x b4

1, I'’a |a

X & y

and then &I’a (C'ly %, I''a ¥, 'a ) — €4a

1]

= Q2
We can prove similarly that ¢fa = 02 .

ii) Since a € Dy(x,y) , then £;8 has boundary edges given by

X Yy

1y €48 |1y

X y

B 1 1, L T T




and then ®c.a = (I'’l, ¥, c;a ¥; Tly) — €ja = 02 . Similarly
we can prove that ®c,a = 02 by (3.1.4)(ii) . o

The following proposition is the main technical work
required for the proof of the equivalence of categories given
in the next sections .

Proposition 3.2.3: Let «,B € D and r € R , then the following

hold whenever each left-hand side is defined

i) @(x +; B) Px +, B,

ii) ®(x +, B) Px +, B ,

111)®(« % B)

H

1 o
(P *2 claZB) +, (5132“ *2 ®B) ,

. _ o 1
iv) ¥(x *2 B) = (C181a *2 ®B) +s (Pox *2 clalﬁ) .

r .» %« , ®(r ., @) = r ., dx .

v) &(r ., @)
(Appendix II gives diagrams for the proof of the above
proposition )} .
Proof: i) If «,B have boundaries given by

o c
dx = (a d) , 3B = (ay, d,) ,

b b
then ®(x +; B) = [I’(at+ta,;) ¥, (x +; B) *, [(d+d,)] —s

£,(ataq )b
= [(I'"a %, « ¥, I'd)+,(l’a; %, B %, I'd;)] —, [c,ab +, €,a8,b]
by (3.1.4)(iv)

= ((F'a ¥, « ¥, I'd) —, €,8b] +, [(['a, ¥, B ¥, Idy) — €,8,b]
= Px +, ®B . ‘
ii) This follows from the algebroid rules for +, , ¥, .
iii) If « , B having boundaries given by

e b

dx = (a d) , 3B = (a’ d’) , then « *¥; B has boundary
b e
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edges in the form 3(x *;, B) = (aa’ ¢ dd?’)
e

Then ®(« *; B) = (I’aa’ %, (x ¥; B) %, [dd’) —, €,aa’e

= {[T'a *; (c;a %, [’a’)] ¥, («x *; B) ¥, [(Td %, €£,d") *,
rd]j} —, cyma’e by (3.1.4)(ii)

= {[F’a %, « %, (Id %, €©,d*)] *,; [(c.a %, ["a’) ¥, B ¥, [d’]}
—» £,88’e by (2.1.6)(ii) and the associativity

s = {[([’a ¥, « ¥, [d) %, €,d"]%,[cqa ¥, ([’'a’ ¥, B %, [d’)} —,

(cyaa’e %, €4ana’e) by the associativity and the identity rule

{[(I'a *%; o %, Td) %, €,d’] —, ¢,aa’e} *, {[c,a ¥, (['a’ E

B %, [d’)] — c,aa’e} by (2.1.8)(iv)

{[(r'a *2 & *2 I"d) *2 Cld’] -2 Ciabd’ +2 Cl(abd' - BE’E)} *2
{cia ¥, [([’a’ ¥, B x5, I['d*) —, €,a’e]} by distributivity

={{{(T"a ¥; o *, Id) —, €,ab ] %, €,d’} +, €,(abd’ — aa’e)) *,

{csa X, ®B} by distributivity
~ = [(®x ¥, €4d°) +, €,(abd’ — aa’e)] *, [€,0 +, (€4a %, P)]
by the identity rule
= [(Px ¥, €,d") *, €,0] +, [€,(abd’ — aa’e) ¥, (€ a *, ®8)]
by (2.1.6)(iv)

= (®x %, €4d’) +, (€48 *, ¥B) by the identity rule

= (0 %, cia;B) +, (cla:a X, OF)

iv) If « , B have boundaries given by
2 c c' "

dx = (a d) , 3B = (d e) ,

b b’

then « %, B has boundary edges in the form (a gg,.e)

Now we compute @(x ¥, B) = [[’a %, (x ¥, B) ¥, Te] —, €, abb’
=[(r’a *2 “) *z CEd *2 (B *2 re)] - Ciabb’

by associativity and the identity rule
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1 ]

[(T’a %, «) ¥, (T’d %, I'd) %, (B %, Te)] —, £,abb’
by (3.1.4)(i)

{[€yc *, (['a %, &)] %, ([’d *; Td) %, [(B *, Te) *, c;b’]}

—2 €4abb’ by the identity rule

= {{(€,c *, [’d) ¥, [(["a ¥, ) %, [d]} *, [(B %, Te) %,
€,b’]} —, €,abb’ by (2.1.6)(ii)

= {[€4c ¥, [’d %, B *, Te] ¥, [([’a %, « %, [d %5 €,b"]} —,

(cyabb’ x; c£,abb’) by (2.1.6)(ii) and associativity

= {[(€4c %, [’d %, B %, Te) —, €5cdd’] +, ¢4(cdb’ ~ abb’)}
¥, {[(T'a %, « ¥, I'd ¥, €,b") —, €,abb’])} by (2.1.6)(iv)

{(l’a ¥, « ¥, [d) —, €,ab) ¥, €,b’} by the identity rule

= {(€e4c %, ®B) +, Tt (cdb’ — abb’)] *; [ ®x ¥, £;b’]

= [(€4c %5 ®B) +, €4(cdb’ — abb’)] ¥, [€,0 +, (dx ¥, €4b')]

= [(cyc %, ®8) ¥, €,0] +, [€y(cdb’ — abb’) ¥, (dx ¥, €,b’)]

by (2.1.6)(iv)

(c,c %, ®B) +5 (®x ¥, €;b') by the identity rule

- 0 1
= (5131« *2 $B) +2 (Px *2 cialﬁ) r

It is clear that (v) is satisfied by using (3.1.4)(v) for

the first rule , and the algebroid laws for the second This
completes the proof of the proposition o
We are ready now to construct a functor say A from the

algebroids) to the

category € of crossed modules (over

category DA' of special double algebroids with connections .
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3.THE FUNCTOR >:C —-—-» DA':

In this section , we construct a special double algebroid
with connections from a crossed module (over an algebreid) by
using the folding operation

Let (A,M,u) be a crossed module (over an algebroid) , and
let Dg = Ag (the set of objects) , Dy = D, = A (the algebroid
of arrows of A) . Since OD; = DA is & special double algebroid
with thin structure , then the folding operation ¢ applies to

g

it and so for a € OA with boundary edges (a, -

a,) , we have

®a = a_, a  — a, a, . We let D be given by

D = {(a,8): a € DD1 , & € M such that utc = afog} . Thus we

can define the maps CJ s 8. ai , L , I (for j = 1,2 and
i =0,1) in the following way
if a, € D; , define cjay = (c€ja4,0) , where €; is defined by

(2.1.7) . Clearly £jay; € D (since ® cja; = 0%) . Also define

alt , a3

3 s D —-2 D1=D2 by : if (a,8) € D , then the boundary

edges of (a,8) are to be those of a ,i.e. 3(a,€) = 3 a .

Define a thin structure ©:0Dy —— D by €e(a) = (2,0) (here
0.0 R

0 € M(3]3%a , 3;3a).

We define now some algebraic structure on elements of D

First we define two additions ; pamely +; , +5 .
For + , let (&,8) ,(b,n) € D with 3;a = 3a,b ; then we
define (a, &) +, (b,n) = (a +, b,&+n) .

For +_ , let (a,8),(b,n) € D with agg . aig i we define
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3

| (Q: c) +2 (.b_nn) = (ﬂ +2 h ] s +n)
4 We define two scalﬁr multiplications: let (a,8) € D and reR ;
then r ., (a,8) =(r .; 8, r &) , r ., (a,8)=(r .28, r.g)

Note that these definitions make sense . Thus we have

o _ .0 o _ _
ai¢(9 +i b) = az¢§ +2 al¢g = MC + un u( + n) ,

0 _ .0 _ o < _

81¢(r ‘4 a) = 31(r - $a) = r . 31¢g r . MG u(r . &)

Next , we define two compositions

let (a,8) , (b,n) € D with 3la = alb ; then we define
RN
(_a_sl;) *1 (I_)_,n) = (_E_l_ *1 b,¢ + n) . If (_@_.C),(b,,ﬂ) €D
with B;Q = agg s+ then we define
e ah
(a, &) *2 (byn) = (a *2 b, n+4¢& 3 s

We must verify the appropriate boundary condition , we have
0 _ -0 1 e}
81¢(g *1 b) = 31[(®g *2 ciazg) + (ciazg *2 ®b )

= (3j0a *, aje alb) +, (afclagg X, 3,9b)

= (M z Tl 2 28 ¥, HR) = M n

by (1.3.1)(iii) and (1.3.2)(1) .
Thus we are ready to give the main result of this section

Proposition 3.3.1: The above structure'is a special double

algebroid with connections

Proof: First , we want to verify that (+4 5 %3 , +,) and
(+2,%5,.5) each give an algebroid structure , that is » ¥4,

X, are R-bilinear morphisms and satisfy the associative

condition . It is clear that ¥y is an R-bilinear morphism
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Thus (+4,%4,.3) an R-algebroid if %,; satisfies associativity
Let (a,4),(b,n),(c,E) € D . Then

L 20

[(a,8) %, (b,n)] %; (c,8) = [a *; b , § + nj Xy (e,y &)

| a aj(a ¥, b)
= [(a ¥4 b) ¥, ¢, (& + n) + €] .

On the other hand ;

| e o

(2,&) *; [(B,n) *; (c,8)] = (a,8) *; [(b ¥, ¢) , n 2 + £]
altb x, o 3% ale 3%

=[a %1 (b ¥, ¢) , & ° t + (¥ o+ FTe)

Clearly (a *%; b) ¥; ¢ = a ¥, (b *; c) . To prove that

i o] 1 1
b d.a 3d_c d_(a ¥ b) da_(b *x_c¢)
(c 2 + Zn) 2 4 1 g =c 2 ; 8 +
3ja ajc ab
(n + €) , we start with the right hand side ;
1 0 1 0 2]
_ (b %, 9,a d.¢ 9,2 d9.b c s
=L + ( n) + ( €) by (1.3.1)(i,iii)
a;_ a;_ agg a;g agg ag_
= (¢ ) + ( n) + ( g€) by (1.3.1)(i,iii)
a;g a:_ a;_ 35(a ¥, b)
= (& + n) + =4 by (1.3.1)(i,1iii)

left hand side . Then

[(a,8) *; (b,m)] *; (c,®) = (a,8) *; [(b,n) *; (c,8)] . The
verification of the associativity with respect to %, is
similar to that of *; . Thus (+, , ¥, , fz) is an

R-malgebroid . So we get algebroid structures for each of these
two kind of operations .

Next , we want to verify the relations between these

operations , and the rules for connections
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For the rules (2.1.3) , (2.1.4) the proofs are obvious ,
since D; = D, . Now we verify the rule (2.1.5)(i-iii).
Let (a,6),(b,n) € D , then (a,&) +z (b,n) = (a +, b,&+n) and
hence r ., (a + b,6+n) = (r .4 (8 +2 b) , r .; (&+n))
= [(r.ya+zr .4 b) , ((r .8 + (r.n)]
= ((r .g8), (r.6)) +2 ({r .y b) , (r . n))
=r . (a, € +2r .y (b, n
We prove similarly that
r.[(a, 8) + (b, )] =r.x(a, &) +;r .2 (b, ),
if (a , €) +; (b , n) is defined . Thus the rule (2.1.5)(i) is
satisfied .

For (2.1.5)(ii) , suppose given (a,8) , (b,n) such that
(a,8) *¥, (b,n) is defined . Then

o

2% alp
r . [(a, &) *5 (b,n)] = r .1 [(a X, b) , n + & ]
S
=(r .4 (a ¥ b) , r . ( n + & ))
a° alb

a b
=((r ., 8 ¥,r .4 b),(r . n + (r. &% )) by (1.3.1)(iv)

3% . a) ai(r . b)

=[((r .4 a)¥(r .4 b)), ( (r . M)+x(r . 6)

by bilinearity
=(r .,a, r . &) %, (r .4 b, r . n)

= (r .4 (a,8)) %5 (r .4 (b,n)) . Similarly for the second part

of (2.1.58)(ii).

Finally , for (2.1.5)(iii) , given (a,8) € D , then

r .- [s .5 (8,8)] r ., [s .;a, s . g]

= [r .o(s .5a), r . (s.8)]=1[s .4 (r.8),8. (. 8]
=8 ., [ r .8, r .80 =s .4 (r ., (8,¢8))
_49_.
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Next , we want to verify the interchange laws (2.1.6)(i-iv)
For (2.1.6)(i) , let (a,&),(b,n),(c,&),(d,¥) € D such that
(a,8) +4 (byn) , (a,8) +; (e,8) , (b,n) +, (d,¥) ,

(c,8) +; (d,¥) are defined , then

[(a,8) +; (byn)] +, [(c,8) +4 (d,¥)] = (a +; b, &+ n) +;
(e + i—- €+ ¥)

b) +2 (¢ +4 d) , (&6 + n) + (8 + ¥)]

n
—
~
|

+
[y

c) +y (b +d) , (&€ + E) + (n+ ¥)]

Il
Lo |
N
|

+
N

(a 4+ ¢ , 6+ E) +; (b +,d , n+ ¥)

n

((a,€) +5 (c,8)) +4 ((b,n) +, (4d,¥)) .

For (2.1.6)(ii) , let (a,&),(b,n),(c,8),(d,¥) € D such that
(a,t) ¥, (b,n), (a,8) ¥, (c,8), (b,n) *, (d,¥), (&,8) ¥, (d,¥)
are defined , then

((a,8) *; (b,n)) ¥, ((c,8) *; (d,¥)) =

i o] 1

RN b ala 3%
(a ¥, b , & + n) %, (¢ ¥, d, & + p) =
aj(a %1 b) ad ac
[(a ¥; b) ¥, (c *; d) , (€ + v) +
i o} i
ab  3ja 3j(c*, D
(¢ + n) ]
aja a3 a3
= [(a %, ¢) ¥, (b ¥2 d) , (€ + v) +
1 e} 1
azg azg a.d
(¢ + n) ]
aja a;d  3jadlec
= [(a *5 ¢) *¥; (b *, d) , ( g) + Y+
1 b § (o] i
a'patd aa  al4q
e Y+ FmlTy by (1.3.1)(i,iii)

On the other hand ;

{(a,8) *, (c,8)] *,4 [(E’n)_*z (d,¥})] =
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WU

3la aic afg aig
[a ¥, ¢ , £ + ¢ ] ¥; [b x; d , Y + n 1 =
3ja ajc ay(b ¥, d)
[(a ¥ ¢) % (b %3 d) , ( £ + ¢ ) +
Lo} o] 1
az(E *2 c) Lt ed
( ¥ + n )] o=
aja ayd ale aid
[(a ¥, c) *¥; (b %5 d) ,( g) + (C ) +
a%a 3} aja ald
( ¥) o+ (n ') by (1.3.1)(i,iii)

In order for these to be equal , we need ;

aiga;g azgafg afgazg a;gaig

g + g = ¢ + &

3 cald a;ga:g afgagg a°ga:g

i.e. € - ¢ & P — v
atcald - a'pald 3%3% — 3%3%
2 2= 1 2 2 i

i.e c = ¥
0 1 0 1 o] 1 (v} 1

a,da d — 3yda d 3jadle — ;83,2

i.e. & = L 4

The last equation {follows from the crossed module

(1.3.2)(ii) , since both sides are € % ¢ .

rule

For (2.1.6)(iii) , let (a,&),(b,n),(c,8€),(d,¥) € D such that

(a,8) *; (b,n) , (c,8) X, (d,¥) , (a,8) +, (c,8) ,
(b,n) +, (d,¥) are defined , then

[(a,8) ¥ (b,n)] +, [(c,8) *5 (d,¥)]

%1 1b d.c

1t
—
o
k.3
N
i=a
g |
+
[y
I
—
=4
[
—
[g)
*
N
[=H
€
+
m
-
I
eyt

a b c d
[(a %, b) + (c ¥pd) , ( “n+& )+ ( " ¢+8l)]
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c b a
= [(a+y3¢) ¥, (b +,d) , ( *n+ 9+ (et +e'

a
= [(a +, ) *, (b +, d) , (N + @) + (& +8) ')

3l (at c) a:<h+,g>]

d) TR+ )+ (& + 8)

= {(a +4 ¢) *; (b +,
=[a+t,¢c, C+8] ¥, [b +; d , n+ ¢] .
We can use a similar argument to verify (2.1.6)(iv)

It is clear that £ satisfy the rule (2.1.7) , and ®
satisfy the conditions (3.1.4)(i-v) . This completes
the proof . 8]

Thus any crossed module {(over an algebroid) gives a
special double algebroid with connections . If (A,M,u) ,
(A’,M” ,u’) are two crossed modules {(over algebroids) and
(x,B) :(A,M,u) ——» (A’ ,M’,u’) is a morphism , then there exist
a morphism (}e«,€B,I):(D,Dy,D5,Dp) --» (D*,D,’,D5’,Dp’) (since
A=D, =D, , A’ =D,* = D2’ , Ay = Dg , Ag® = Dy’ and D,D’
have been constructed from (A,M) , (A’,M') respectively)

Thus there exist a functor X from the category of crossed
modules (over algebroids) C to the category of special double
algebroids with connections gﬁi , that is we have a functor

A : C ———=> DA!

4, THE EQUIVALENCE OF CATEGORIES:

In this section , we want to prove the main result , which

is the equivalence of the two categories C , DA' .

Theorem 3.4.1: The functors Y , A defined previously form an

adjoint equivalence
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PORILEN S
Proof: First s, we want to prove that YA is naturally
equivalent to the identity , that is , »x = 1

Let (A,M,u) be an object of C and let (A’ ,M',u’) =
YA(A,M,u) . Then Ay = Ay” and A = A’ . It is clear that M’ is

defined on the same set of objects Ay, . Define a map g:M--M’

by
Hm
g(m) = (m; 1 1) , and let I:A —> A’ be the identity map
0
We want now to prove that (I,g):(A,M,u) —— (A',M',u") is
a crossed module mdrphism , that is Iu = u’g and g preserves

the actions . Clearly I,g are algebroid morphisms and u'g = Iu
So it is enough to show that (I,g) preserves the actions

Take m:x —» ¥y € M(x,y) and let b:y —» z € A(y,z) . Thus

(um)b
g(mb) = (mb;1 1) by (1.3.2)(i)
0
AMm Mm
= (m;1 1) %, €,b = (m;1 1)b = g(m)b
0 0

We prove similarly that g(bm) = bPg(m)

We define now a map (I,f):(A* ,M’,u’') --- (A,M,Hd) such that
(1,g) , (I,f) are inverse to each other . Let I:A' --+ A be
the identity map and define f:M’ --- M by

Mm
f(m;1 1) =m . .

0
Clearly I,f are algebroid morphisms and uf = @' . Thus (I,f)
is a crossed module morphism if it preserves the action , that
is ,

M
let (m;1 1) € M’ and b € A’ . Then
0
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m Lim (um)b
f[(m;1 1)P) = f[(m;1 1) ¥, £,b] = f[(mb;1 1)]
0 0 0
w(mb) Um
= f(mb;1 1) = mb = [f(m;1 1)1b .
0 0

It is clear that (I,g),(I,f) are inverse to each other
Therefore »» is pnaturally equivalent to the identity .

Second , we want to show that Ay is naturally equivalent
to the identity , that is , 1 2 Ay .
Let D be an object of DA! and let E = Ay(D) . Then Dg = Eg ,
Dy = D = E; = E; . We define n:D --=» E to be the identity on
Do and Dy = D, and on D as follows
let «x € D , define n{(«) = (dx , ®x) . First we prove ;

Lemma 3.4.1: The map n is a morphism of double R-algebroid

with connections (I',I’)
Proof: It suffices to prove that n preserves +, , +, , ¥, ,
¥ , «4 5, +2 , and the connection I' , I’

For +; , let «,B € D such that « +; B is defined , then

L]

n(e +; B) = [3(ex +; B) , ®(x +; B)] = (3x +; 3B , dx + BE)
(since ®a,PB € ¥(D))

= (8x , ®x) +, (3B, ®B) = nx +,; NE .

We can prove similarly that n{(« +, B) = nx +, ng , if « +, B
is defined |

For %, , let o, B € D such that «,8 have boundaries in the

[

form (a © d) , (a’ P d’) respectively , then
b e
n(« ¥y B) = [A(x ¥; B) , o(x ¥; B)]
= (3x ¥; 3B , (®a)d’ + 2(0R)) by (3.2.3)(iii) .
On the other hand ;

nx ¥; ng = (Jdx , dx) *; (38, ¢B)

~54—




e A R T T

= (3x ¥, 3B, (¢x)d’ + 8(®B)) = n(x ¥, B)

We prove similarly that n(x %, B} = no ¥, nB , if « ¥, B is
defined .

For ., , let x € D and r € R , then

n(r ., q) = (8(r .4 ) , ¥(r .4y x)) = (r ., 3 , r ., ®x)

by (3.2.3)(v)

= (r .4 9 , r . &) {(since ®x € ¥D)
=r .y (8, ®x) = r .4y Nx . Similarly for ., , we get
R{r .2 @) = r ., N .
Finally , for the connectiom [, [' , let a € D; = D, , so

Fa € D and then n(lfa) = (3lfa , ®fa) = (38la , 02) by (3.2.2)(i)
= Ta . Similarly for ' . This is the complete proof of the
lemma . o
We continue now to prove the theorem . First , we define
n:E — D to be the identity on E, and E; = E, and on E by
the formulae
c ab
n’(e«,8) = (1 " d) ¥, [®x +, €,ab] ¥, (a . 1) as shown below:

c cd—ab ab ab

1 ty |d %, 1 x |1 +, 1llecqab [1 ] %, a| t, 1,

cd 0 ab : b
c

whenever («,§) has boundary edges of the form (a d) and
b

-

t;,t, are abbreviations for the thin elements with boundaries
c ab

(1 d) , (a 1)
cd b

Lemma 3.4.3: The maps n , n' are inverse to each other , that

is , (i) nn’ =1 (ii) n’'n = 1

Proof: (i) Let (x,8) € E , with 3:@« = uf and « has boundary
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C
edges given by (a d) , then
b
c ab
nn’{(x,8) = n[(1 d) ¥; (®x +, £,ab) *, (a 1)1
cd b

= (&) = (3x , Ox) .

c
It is clear that « , 9« has the same boundary (a d) , and
b
H @ = puG . Thus nan’ (e, 8) = (&, 8)
[ 84
{ii) Let x € D , where « has boundary (a d) , so
b
nni{x}) = n’(dx , ®x) = « (since 9d« , « have the same

boundaries) . This is the complete proof of lemma (3.4.3) . O
This completes the proof that n:D ---E is an isomorphism
The naturality of n is clear . So we have proved the natural
equivalence 1 & Ay . 8]
We move on to give a property of these objects by using
the above theorem

5.REFLECTICON:

In this section we use the above theorem to show that

every object in DA! has a nice property called "reflection"

in a special double algebroid with connection the two
algebroid structures are isomorphic .

This property has been given in the double groupoid case
in [B-2] under the name "rotation" . Reflections in double

categories with connection have also studied in [S-1],[S-W-]
For each object (D,I',[’) € DA! , there is a reflection

© : D ——- D such that on edges p behaves as follows :

let « be a square in D , pictured as
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then px is a square in the form

and px is defined by

px =

(Tc *, £,d) ,

(€48 ¥, I'b) *,

b

a

c| px

d

as shown diagrammatically ;

[(e,ab —; ([’a %, @ ¥, [d)) +, €,cd] %,

a 1 ab
1} €4a I''b b x4 1|cgab (1 ~—,
a b ab
cd c d
gy l|eyed |1 ¥, ¢ Tc €,d
cd 1 d
a ab cd
p! b %y 1 1 - 1
ab ab ab
a ab—cd cd
=1 b %, 1+, 1
ab 0 cd
a ab cd
=1 b ¥, 1 1 %, c
ab ab d

—57—
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s
cd cd
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e

Theorem 3.5.1: The reflection p satisfies

i) e(Ta) = Ta , o(I'’a) = I''a , p(cya) = €,a , e(e,a) = €oa ,
for a € D, or D,

ii) e(x +y B) = px +, pB , p(¥ +, 8) = p¥ +, p% , whenever

« +y B, ¥ +5 § are defined .

iii) p(x *; B) = px %, pB, o(¥ %, ) = oy ¥, pS , whenever

< ¥; B, ¥ ¥, © are defined .

iv) p2 = id .

v) e(r .y &) =r . px, p(r .5 ) = r ., px , where r €¢ R .
Proof: By theorem (3.4.1) , we may assume that D is the double

algebroid arising from a crossed module u:M —— A . So if

c
X €D , we may write « = (m;a d) , where m € M ,
b
a,b,c,d € A and um = cd — ab . We calculate now p(x) as
follows
a ab cd
e(x) = (0;1 b) %, [((0;1 1) = (m;1 1)) +;
ab ab ab
cd cd
(0;1 1)] ¥4 (0;5¢ 1)
cd d
a ab -cd cd
= (0;1 b) *x; [((0;1 1) +2 (-m;1 1)) +2 (051 1)]
ab ab -ab cd
cd
¥, (0;c 1)
d
a ab cd a
=(0;1 b) ¥; (-m;1 1) ¥ (0;¢ 1) = (-m;c b) .
ab cd d d

Now we verify the relations (i-v) .
a a .
i) e(Ta) = e(0;a 1) = (0;a 1) = Fa and by similar way for
1 1

’a 3 CI.B' N Cza .
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c c
ii) Let o,B € D with boundaries (a d) , (ay d,) , then
b b

atay
e(x +4 B) = (—(m+m,); ¢ b) . On the other hand ;
d+d,
a 8, ata,
p(x) +2°e(B) = (-m;c  b) +, (-m,;c b) = (—(m+m,);c b)
d d, d+d,
= e(x +; B) . Thus p(«x +; B) = px +, PB . Also we prove

similarly that e(r +, 8) = py +; PS .

c b
iii) Let o,B € D with boundaries (a d) , (a’ d’) , then
b e
, aa’
plx %, B) = (—(mm’);c e) . On the other hand ;
dd’
a a’ aa’
P(x) ¥, e(B) = (-m;c b)) %, (-m’;b e) = (~(mm’);c e)
d a’ dd’

Thus p(x %; B)= px %, @B . Similarly for p(¥ ¥, €)= py %, p$
The calculation of (iv),(v) are easy to verify . Therefore p

satisfies the relations (i-v) . o
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APPENDIX I

Verification of Theorem (3.1.7) and Lemma (3.1.8):

i) The definition of ®; , 6,

Let a,b,c,d € D; with cd ab and « has boundary given by

c
)
a @ d
b
c
Since &,(a d) = (€,¢ ¥, I'"d) *; (Ta *, €,b) and €4c , ['d ,
b
Fa , €,b have boundaries given by
c 1 a b
1| €4 |1 , 1] I’d |d , a| Ta 1 , 1] b1
=2
’ c d 1 b
and then (€ c %, I''d) , (Ta %, ©,b) have boundaries in the
form
c 1 a b
1| e4e r’d [d , a| ra c,b |1
c d ' 1 b
Thus (€jc %, I''d) *; (Fa %, €,b) is defined (since ¢d = ab) ;
&7 namely .
-108-
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Similarly

ii) Lemma

for the definition of e,

3.

1.8

c
e,(a d)
b

c 1
d
c d
a b
1 b

= (€qc ¥, I'd) *; (Fa %, €,b) which is

diagrammatically given by

c 1

1l €,c r’‘d d
C d
a b

a| Ta €,b 1
b

(since cd = ab)

]

cd

ab

ab

ab
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1
cd
1 1 cd
ab cd
ab 1 1
ab
a 1
b




J

vy

cd

ab

cd
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V4

of

[ 1
1 1 1 d
C d
1 1 PR - d
a a c 1 1 1
d
1 b d d d 1
b 1 1
b
1 1
b
1 c 1
| d
c d
a c 1
d
b d d 1
1
1 1 1
c
c 1 )
= (Cza ¥; I''b) ¥, (Te X, €.d)
d d
1

=1 1%=
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APPENDIX 11

Verification of proposition (3.2.3) diagrammatically:

i} Let «, B €D be given by

b & W X € W [—4 2
a « d A - B d, s
b4 b b4 Yy b & 1

thus « +; B is in the form

X W
ata, ot B |d+d,
y b z

®(x +; B) = [[’(a+a,) ¥, (e +; B) x, L(d+d,)] —; €,;(a+a )b ,

" 1 x c i d+d, . » (a+a,)b 2
ata, b 2 1 2 ¥ (ata,)b 2
x c(d+d1)—(a+al)b z % cd—ab = x cd; — ayb 5
= 1 = 1 1 +2 1 1
b z X z b z
Oxz 0xz Oxz
On the other hand ;
Px +, ®B = [([’a %, « %, Id) —2 €qab] +,
1 c d ' ab
b3 X W z X z
* a Y p F ] = ¥ ab ¢
-112-



3

X s W dg  ,
1| Tay; a, B d, I'd, | 1
g Z 1 z
cd—ab cd,;—a4b
=1 1 +51
% Oxz X 0xz

asb
X 1
Cla 1b
i
aib

ii) Similarly for ®(x +, B) = ¢x +, OB .

iii) For ®(«x *1 B)

_ 1 0
= (O *2 ciazﬁ) t, (5131« *2 oB)

Let @« , B be given by
c
X W
a x d
Y b 4

and so « ¥X; B is in the form

Now ®(ax %, B)

aa

(F’aa’ *, (o« %, B) ¥, I'dd’) —, €;aa’e

b
y
y a’ B
u
e
c
X W
ok, B dd’
u v
e

is diagrammatically pictured

c

w

dd’
v

dd’ 1

as
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1 X W d z d
a d 1
a’ dl d’
a* Y v 1 v 1
€ W z d v
(04 d 1 1
b Z z d’ v
1 qd’
3 =z v
a’ d’ 1
a’ I 1 v
c d’
W z v
o d 1 1
b Z & d, v
1 d’
v z v
a’ d’ 1
e’ U v 1 v
-114-
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x 1 x ¢ w d z d’ x_abd’
1 a d 1 1 - 1
X a ¥ b 2 1 z 1 Vv X abd’
x_ 8 vy y 1 y b » d ¥
1 *2 a’ d’ 1/j—2 1
x a y Y a’ U e v 1 v
] ] 3
X cd—abd d 5 X abd’-aa’e
1 dax €4d” (1 +, 1
¥ o 2 g v ¥ abd’—an’e
0 a bd’—a’e
X v X 3
1 1 +s 1 €ya OB
5
X 0 v X " Vv 0 v
] ? ?
" (cd-ab)d 5 a(bd’-a’e)
= 1) ®x x, .41 t2 1| e;a %, 0 |1
X 0 v b 0 v

iv) For ¢(x ¥, B) =

Let «,B be given by

c
X w
a o« d .
Yy b 2

then o ¥, £ is in the form
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(ciaf« ¥, 0B) +, (0a %, C;B:B)

~



T4

ce’

al ok,B e

y bb'®

Then ®(x %, B) = (I'’a ¥2 (@ ¥, B) %, Id) —2 €;a8bb’ which is in

the form
1 ce’ e ahb?
X X - u v J[::::::;V
1 r’& ﬂ, “*zﬁ Ie fe 1 -2 1 elﬂbb’ 1
¥ a Y ppr Vo1 v Y
1 c 1 ct e abb’
X X W W u v X v
= 1{ a « d d B e —ll -2 1 1
I b % 1 2 s Vo7 o v abb® Y
1 I d e 1 1 1
= x Xx—C w—d z. bt v vV - xl—abb’ |
1 a, p d , I 1 1 ' 1
X a Y b Z 1 Z b V 1 v X abb’ Vv
xXx__ ¢ w1 w_¢c’ u e v x__abb’ v
1 ! d B e 1 - 1 1
X & W 4 Z 5 v i v ¥ abb' Vv
x_1 x C W d , x__ab z b’ o
1 a/ o d 1 — 1 1 x, 1 1
X a Y b 1 =z X ap =2 z2 TRpT v
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X _© w w 1 w e’ 43 e w db’ x cdb’—abb’,

X ¢ W d b* V1 Vv W v X cdb’—abb’'V
® 0 v X Cd—ab z Z b’ v
1} ¢,0 1 o+, (1] o« 1 %, 1 1
X 0 v X 0 Zz -4 b v
c c’e—db? cdb’—-abb?
X W W v X
1 1 %, 1 Y- 1)+, 1 1
j
! e 0 v ¥ cdb’—abb’"
0 cd—ab b’
X v X Z z v
1 €,0 1+, 1 1 %, 1 1
o R Xz 2T v
? b ]
x c - w e—db cd—ab i b v
=11 1 2 OB 1pall] o 1 %, 1
X " W w 0 v X 0 z Z b v
=2 v) The rules &(r ., « = r -2 ®x and ¥(r ., «x) = r .2 ®x are
clear
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