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1 Introduction

A groupoid should be thought of as a group with many objects, or with many identities. A precise definition is
given below. A groupoid with one object is essentially just a group. So the notion of groupoid is an extension of
that of groups. It gives an additional convenience, flexibility and range of applications, so that even for purely
group-theoretical work, it can be useful to take a path through the world of groupoids.

A succinct definition is that a groupoid G is a small category in which every morphism is an isomorphism.
Thus G has a set of morphisms, which we shall call just elements of G, a set Ob(G) of objects or vertices, together
with functions s, t : G → Ob(G), i : Ob(G) → G such that si = ti = 1. The functions s, t are sometimes called
the source and target maps respectively. If a, b ∈ G and ta = sb, then a product or composite ab exists such
that s(ab) = sa, t(ab) = tb. Further, this product is associative; the elements ix, x ∈ Ob((J), act as identities;
and each element a has an inverse a−1 with s(a−1) = ta, t(a−1) = sa, aa−1 = isa,a−1a = ita. An element a

is often written as an arrow a : sa → ta.

• a //• b //• • ab //•
sa ta = sb tb sa tb

Groupoids were introduced by Brandt in his 1926 paper [11], although he always used the extra condition
that for all x, y in Ob(G) there is an a in G such that sa = x, ta = y — such a groupoid we nowadays call
connected or transitive. Brandt’s definition of groupoid arose out of his work for over thirteen years [6-10] on
generalising to quaternary quadratic forms a composition of binary quadratic forms due to Gauss [63]. Brandt
then saw how to use the notion of groupoid in generalising to the non-commutative case the arithmetic of ideals
in rings of algebraic integers, replacing the classical finite abelian group by a finite groupoid [12]. This latter
theory has been considerably generalised and refined by a number of writers – further references may be found
in [85, 104, 128]. For a recent discussion of the quadratic form problem, see [81,91,92]. At about the same
time as Brandt’s work, Loewy [98] introduced similar ‘compound groups’ to describe isomorphisms between
conjugate field extensions. His ideas were developed by Baer in [4]. The most recent account of the use of
groupoids in classical Galois theory seems to be that by Michler in [105]. We say more later on the use of
groupoids in the Galois theory of rings1.

The topic of groupoids continued to be known through further work on the ideal theory of non-commutative
rings, and the notion of order, particularly by K. Asano (compare [85]). I have heard it remarked that Brandt’s
axioms for groupoids influenced Eilenberg and Mac Lane in their definition of a category [55]2. As categories
became generally accepted in the 1950s, interest in groupoids broadened, since the invertible elements of a
small category form a groupoid. The use of groupoids was expanded greatly by Ehresmann from 1950 in
various main areas, for example: in fibre bundle theory, with his groupoid EE−1 associated to a principal bundle
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E (this groupoid is also formulated below as G(E)); in differential geometry, with the use of the groupoid EE−1

for studying higher order connections; in foliation theory, with the groupoid of germs of a pseudo-group; in
differential topology, with groupoids of jets; and in his use of groupoids of operators for discussing species of
structures and of local structures. For an assessment of the contributions of these ideas to mathematics, the
reader should turn to Ehresmann’s Oeuvres complètes et commentées [54] and the commentaries and comments
there. Groupoid techniques in foliation theory were developed by Haefliger [70], and then many others—see the
survey [96], the bibliography [66]. This and other uses of topological groupoids are noted in the bibliographies
to [21,22]. Abstract groupoids were applied by Dedecker in a series of papers on non-abelian cohomology (see
[47]).

The situation now is that groupoids have been used in a wide variety of areas of mathematics, from er-
godic theory and functional analysis to homotopy theory, algebraic geometry, differential geometry, differential
topology and group theory. However, this wide and considerable use is not so well-known, even to those using
groupoids in their own speciality, and this has perhaps made it easier to form a dismissive attitude. It seems
timely therefore to attempt some overall survey.

A complete account of the use of groupoids is out of the question, because the ramifications are so wide.
This brief survey is written as something of a personal account, and reflects my own interests. But it does give
an opportunity for various threads of uses of groupoids to be drawn together, so that they may be followed to
entry points in the literature. I hope that this will give a starting point for readers to perceive and assess past
and current uses of groupoids, and so help them to judge the potentiality of new applications.

2 Examples

There is always room for argument about whether and how to generalise an algebraic structure, while main-
taining both the force of the original motivating examples and the character of the theory. For example, the
theories of monoids or of semigroups are dissimilar in many ways to that of groups. We would want to justify
the argument that the theory of groupoids does not differ widely in spirit and aims from the theory of groups.

In the theory of groups, two motivating examples are symmetry groups, that is, groups of automorphisms,
and groups derived from paths in a space, that is, the Poincaré or fundamental groups. We find that these
examples generalise to give ‘symmetry groupoids’ and fundamental groupoids. In the latter case, it has been
known for at least 40 years that the fundamental groupoid is convenient for handling change of base point for
the fundamental group. The recognition of the utility of groupoids for handling ideas of ‘variable symmetry’
(see Example 4 below) is more recent. Both types of groupoids give gains in flexibility over the corresponding
groups, and without any consequent loss.

The following give some of the basic ways in which groupoids arise.

EXAMPLE 1. A disjoint union G =
∐

λ Gλ of groups Gλ, λ ∈ Λ, is a groupoid: the product ab is defined if and
only if a, b belong to the same Gλ, and ab is then just the product in the group Gλ. There is an identity 1λ for
each λ ∈ Λ. The maps s, t coincide and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on X becomes a groupoid with s, t : R → X the two projections, and
product

(x, y)(y, z) = (x, z)

whenever (x, y), (y, z) ∈ R. There is an identity, namely (x, x), for each x ∈ X. (This example is due to Croisot
[42].) A special case of this groupoid is the coarse groupoid X × X, which is obtained by taking R = X × X.
This apparently banal and foolish example is found to play a key role in the theory and applications. At the
opposite extreme to the coarse groupoid X× X is the fine groupoid on X; this can be considered as the diagonal
equivalence relation on X, or alternatively as the groupoid X consisting only of identities, namely the elements
of X.

This consideration of an equivalence relation as a groupoid also suggests the utility of groupoids for study-
ing quotienting constructions, particularly in cases where the quotient set X/R cannot carry the appropriate
structure. For a discussion of this in the case of differential manifolds, see [58].

EXAMPLE 3. Let the group G operate on the set X on the right. All of us find it convenient to picture such an
operation by the diagram
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x • g //• xg g ∈ G, x ∈ X.

The arrow here is based at x and so is more accurately labelled (x, g). This suggests defining a product

(x, g)(xg, h) = (x, gh);

it is easily checked that this product gives a groupoid with object set X and s : (x, g) 7−→ x, t : (x, g) 7−→ xg.
There is no consistent terminology for this groupoid: I like the term semi-direct product groupoid, and so the
notation X o G, because this groupoid is a special case of the semi-direct product groupoid obtained from an
action of a group, or more generally groupoid, on another groupoid [16]. A term suggested by Pradines is actor
groupoid. Note that for this example, there is an identity (x, 1) for each x ∈ X. This construction is due to
Ehresmann [52].

Thus we find that a set X, a group G, and an action of G on X, can all be considered as examples of groupoids.
This common viewpoint is found to be convenient in a variety of areas of mathematics.

EXAMPLE 4. Groups occur naturally as automorphism groups, or symmetry groups, of various structures; and
this is a fundamental observation behind Klein’s famous Erlangen Programme: study a geometry by means of
its group of automorphisms. It has more recently been found fruitful to consider not just one geometry, or
one structure, but indexed families E = {Ex}x∈B of structures, often thought of as constituting a ‘bundle’ E

over B, with projection p : E → B, and with Ex = p−1(x). The ‘symmetry’ of such a gadget is appropriately
expressed by the groupoid G(E), with object set B, and with elements consisting of all isomorphisms Ex → Ey

for all x, y ∈ B. For x in B, the group G(Ex) of automorphisms of Ex expresses the ‘symmetry’ of Ex. These
‘varying symmetries’ are encompassed in the groupoid G(E). An isomorphism Ex → Ey allows one to define an
isomorphism G(Ex) → G(Ey) of groups, and so gives ‘transport of symmetry’. Perhaps G(E) should be called a
symmetry groupoid3.

This idea is at the root of many applications of groupoids pioneered by Ehresmann in differential geometry
[54]. If p : E → B is a principal bundle with group H, then G(E) is to consist of the admissible maps Ex →
Ey, x, y ∈ B, that is, the homeomorphisms commuting with the action of the group H. If p : E → B is locally
trivial, then the trivialisations determine a topology on G(E), or even, in the differentiable case, a differential
structure. For references to the literature in this area, see [21,22,99].

The use of groupoids for studying order-disorder structures in crystals [48,59] suggests further possibilities
for the general analysis of ‘variable symmetry’ – see [60] for a recent article.

Another application occurs in the theory of formal groups and is due to Landweber [95]. For any augmented,
supplemented, commutative algebra A over a field k, the set of isomorphisms of formal groups over A forms a
groupoid FGL(A). This defines a functor FGL from the category Algk of such algebras over k to the category of
groupoids. It is important that this functor is representable:

FGL(A) ∼= Algk(P,A).

The fact that FGL(A) is a groupoid gives the algebra P the structure of Hopf algebroid. The term is due to H.
Miller, and the book [122] gives a good account of the uses in stable homotopy theory, also developed by Morava
[108]. In fact a more descriptive term would be ‘Hopfoid algebra’ since it is the diagonal map A → A ⊗ A of
the usual Hopf algebra which is generalised from a cogroup to a cogroupoid structure ([122, pp. 306-307]).
Further, their term ‘algebroid’ has also been used by B. Mitchell since 1972 for an ‘algebra with many objects’-for
a recent paper see [106].

A recent application of groupoids is in combinatorics by Joyal [86] using species (French: espèces, German:
Gattungen) of structure. The term is due to Bourbaki [5]; its aim is to give a general description of the kind
of structures which occur in mathematics, so there are species of structure of order, of topology, of vector
space, of complex analytic manifold of dimension n, and so on. In particular, if E is a set then there is a set
M(E) of structures of a given species M on E. An important property of species of structures is transportability
– if t : E → F is a bijection of sets, then t induces a bijection M(E) → M(F) of the structures of a given
species. This idea is abstracted by Ehresmann [52] using the notion of a category operating on a set. Joyal [86]

3A recent use of groupoids is by M. Golubitsky and I. N. Stewart, ‘Nonlinear dynamics of networks: the groupoid formalism’, Bull. Amer.
Math. Soc., 43 (2006) 305–364.
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follows the spirit of Ehresmann’s work, but in less generality, and defines a species to be simply an endofunctor
M : B → B, where B is the groupoid of finite sets and bijections between them. He defines two generating
series for a species, and relates constructions on such generating series such as product, sum and substitution,
to categorical constructions on species. The point is that in combinatorics one often wants to compute the
number of structures of species M on the standard set [n] = {1, ..., n}. However, in carrying out an argument the
standard set [n] may appear in a non-standard way, for example as X = {xl, ...xn}. A relation between M(X) and
M([n]) is determined by a non-canonical bijection X −→ [n]. The use of species enables one to keep track of all
these non-standard forms of the standard set, together with their labellings. For further work, see also [109].

EXAMPLE 5. The fundamental, or Poincaré, group π1(X, x) of a space X with base point x is well-known.
However, there are several pressures to replace the base point x by a set A of base points in X, where A could
be X itself, and so obtain the fundamental groupoid π1(X,A) on the set A. The identities of this groupoid
correspond to the elements of A, and an ‘arrow’ x → y is a homotopy class, relative to the end points, of paths
(I, 0, 1) → (X, x, y), with product induced by the usual composition of paths:

x

y

z

3 Applications of the fundamental groupoid

My own introduction to the use of groupoids came with this last example, in 1965. I was writing a topology text
[14], which was to include the Van Kampen Theorem on the fundamental group of a union of spaces. I wanted
a version of this theorem which would imply the determination of the fundamental group of the circle, and was
dissatisfied with the length and tedium of my then current exposition, using nonabelian cohomology. I came
across the paper [76] of P.J. Higgins which defined presentations and also free products with amalgamation of
groupoids. This suggested inserting an exercise on expressing the fundamental groupoid π1X = π1(X,X) as a
free product of the groupoids πlU,π1V, amalgamated over πlW, when X is the union of open sets U, V with
intersection W. It then seemed desirable to write out a solution to the exercise; to my surprise, the solution
had the qualities of clarity and concision which I had hoped for, but had been unable to obtain, in my previous
version!

The problem addressed by Van Kampen in 1935 [143] would be expressed in modern form as follows. The
space X is given to be the union of open sets U, V with intersection W: determine the fundamental group π1(X, x)
in terms of information on U,V ,W and the inclusions W → U,W → V. Notice that Van Kampen did not assume,
as did Seifert in an earlier result for simplicial complexes, that U, V, W are connected; so a typical diagram for
the situation could be as follows, where the shading indicates U and V:
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The difficulty is: where should we put the base point x? It seems reasonable to take x in W, but in which
of the many components of W should x lie? One way of coping with such a problem of decision is to avoid it
altogether. So we choose a set A of base points, one point in each component of W, and attempt to compute
the fundamental groupoid π1(X,A)4. This strategy of avoiding decision turns out to be optimal: the groupoid
π1(X, A) is the free product of the groupoids π1(U, A) and π1(V, A) amalgamated over π1(W, A). From this, one
can in principle compute the group π1(X, x), by choosing trees in each component of π1(U,A) and of π1(V, A).
These choices lead to the particular formulae written down by Van Kampen (compare [13; 14, p. 289, Exercise
4]5). Also, the proof [14: 6.7.2] of the determination of π1(X,A) is simpler than previous proofs of the ‘Van
Kampen Theorem’ for U,V ,W connected. So one obtains a simpler proof of a more powerful theorem; which
can’t be all bad. The most general formulation to date of this theorem on the fundamental groupoid is in [36].
Other texts which have followed this approach are [39,78,160]. Somewhat earlier, Crowe1l and Fox in [43,
p. 153] took the view that a few definitions ‘like that of a group, or a topological space, have a fundamental
importance for the whole of mathematics that can hardly be exaggerated. Others are more in the nature of
convenient, and often highly specialised, labels which serve principally to pigeonhole ideas. As far as this book
is concerned, the notions of category and groupoid belong in this latter class. It is an interesting curiosity that
they provide a convenient systematisation of the ideas involved in developing the fundamental group.’ It is this
kind of viewpoint, emphasising the algebra we know rather than that which might evolve, which perhaps has
led people to fail to see properly the advantages of an algebra which models the geometry more appropriately
than the usual algebra of groups. However, the earliest use of the term ‘fundamental groupoid’ which I have
been able to find is in Fox’s paper [61]. The difficulty there can be in seeing that the groupoid approach
provides not only a conceptual tool, but one which guides specific calculations, is shown in some remarks from
A. Grothendieck’s discursive venture towards a non-abelian cohomology theory, from which it is worth quoting
at length ([68, p. 194-195]):

From Y. who looked through a lot of literature on the subject, it strikes me (agreeably of course) that
nobody yet hit upon ‘the’ natural presentation of the Teichmüller groupoids, which kind of imposes
itself quite forcibly in the set-up I let myself be guided by. Technically speaking (and this will rejoice
Ronnie Brown I’m sure !), I suspect one main reason why this is so, is that people are accustomed
to work with fundamental groups and generators and relations for these and stick to it, even in
contexts when this is wholly inadequate, namely when you get a clear description by generators and
relations only when working simultaneously with a whole bunch of base-points chosen with care-or
equivalently working in the algebraic context of groupoids, rather than groups. Choosing paths for
connecting the base points natural to the situation to one among them, and reducing the groupoid
to a single group, will then hopelessly destroy the structure and inner symmetries of the situation,
and result in a mess of generators and relations no one dares to write down, because everyone
feels they won’t be of any use whatever, and just confuse the picture rather than clarify it. I have
known such perplexity myself a long time ago, namely in Van Kampen type situations, whose only
understandable formulation is in terms of (amalgamated sums of) groupoids. Still, standing habits
of thought are very strong, and during the long march through Galois theory, two years ago, it took
me weeks and months trying to formulate everything in terms of groups or ‘exterior groups’ (i.e.
groups ‘up to inner automorphism’), and finally learning the lesson and letting myself be convinced
progressively, not to say reluctantly, that groupoids only would fit nicely. Another ‘technical point’ of
course is the basic fact (and the wealth of intuitions accompanying it) that the Teichmüller groups
are fundamental groups indeed,-a fact ignored it seems by most geometers, because the natural
‘spaces’ they are fundamental groups of are not topological spaces, but the modular ‘multiplicities’
Mg,ν – namely topoi! The ‘points’ of these ‘spaces’ are just the structures being investigated (namely
algebraic curves of type (g, ν)), and the (finite) automorphism groups of these ‘points’ enter into the
picture in a very crucial way. They can be adequately chosen as part of the system of basic generators
for the Teichmüller groupoid Tg,ν The latter of course is essentially (up to suitable restriction of base-
points) just the fundamental groupoid of Mg,ν. It is through this interpretation of the Teichmüller
groups or groupoids that it became clear that the profinite Galois group GalQ/Q operates on the
profinite completion of these and of their various variants, and this (it turns out) in a way respecting

4Our picture suggests an even wider choice for the set A, with π1(X,A) defined as homotopy classes rel end points of paths in X
joining points of X∩A.

5Full details of this computation are given the later editions of this book.
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the manifold structures and relationships tying them tightly together.

Another use of the groupoid π1(X,A) is due to P. J. Higgins and J. Taylor [80]. Let the discrete group G

act on the space X. The problem is: compute the fundamental group π1(X/G,X) of the orbit space X/G. As an
example, let X be the unit circle of complex numbers z with |z| = 1, let G = Z2, and let the action be reflection
z 7→ z̄. Then the orbit space X/G is essentially a semicircle, so that π1(X/G, 1) = 1. However, π1(X, 1) = Z,
with action n 7→ −n, so that the quotient of Z by this action is Z2, and not 1. Why has this approach given the
wrong answer?

Notice that in this example we chose as base point the complex number 1. But the geometry of the action
makes no distinction between +1 and −1, and these are the only fixed points. So we had better avoid a
decision, and, using the induced action of Z2, consider the quotient not of the group π1(X, 1) but of the groupoid
π1(X, {±1}). This quotient groupoid does have trivial vertex groups, as required.

More generally, for ‘reasonable’ actions of a group G on a CW-complex X, we have an isomorphism

π1(X,A)/G ∼= π1(X/G, A/G),

provided that A is G-invariant, so that A/G is defined, and that A meets each component of the fixed point set
of each element of G [80].

The ‘orbit groupoid’ π1(X,A)/G of the groupoid π1(X, A) with the action of the group G is, of course,
obtained from the groupoid π1(X, A) by imposing the relations α.g = α for all α ∈ π1(X, A), g ∈ G. This
makes sense because presentations for groupoids can be defined in a similar manner to presentations of groups
[76]. An explicit construction of this orbit groupoid is more complicated [80]—it is a quotient groupoid of the
semi-direct product π1(X, A)oG6.

Another application to group actions is for a proof of a theorem of Macbeath and Swan giving an exact
sequence of the form

1 → N → π1(X, x) → Γ → G → 1.

Here G is a group acting on the space X, which is assumed to have a path-connected open set V containing x

whose translates by G cover X (thus V is a fundamental domain for the action). The group Γ has generators [g]
for g ∈ G such that V ∩ gV 6= ∅, and relations [gh] = [g][h], whenever g, h ∈ G and V ∩ gV ∩ hgV 6= ∅. The
papers [1,123] show that this theorem is related to a description of the fundamental groupoids of the nerve and
of the classifying space of the cover {gV : g ∈ G} of X.

There is a subtle question of the description of an orbit space of a manifold under the action of a pseudo-
group, and the definition of a suitable concept of ‘geometric’ fundamental group, different from the generally
uninteresting topological one. This is discussed by van Est in [58]. The role of the fundamental groupoid in
this situation is emphasised in [58] and [118]. The latter paper characterises the fundamental groupoid by
a suitable universal property among the groupoids which are ‘locally coarse’, there called ‘Galois groupoids’.
Related work is in [144].

4 The category of groupoids

It is now time to say more about the formal, algebraic properties of groupoids.
A homomorphism of groupoids G,H is essentially a functor, that is, it consists of a pair of functions f : G →

H, Ob(f) : Ob(G) → Ob(H), preserving all the structure. So one obtains a category Gpd of groupoids and
homomorphisms. If G is a groupoid, and x, y ∈ Ob(G), then we write G(x,y) for the set of elements a in G

with sa = x, ta = y, and we write G(x) for G(x, x). The product on G restricts to a group structure on G(x),
and this group is called the object group or vertex group of G at x. The groupoid G is transitive or connected if
G(x,y) 6= ∅ for all x,y in Ob(G). In this case, the groups G(x) are all isomorphic, and indeed are conjugate, in
the obvious sense, in G. In order to emphasise the topological analogy, some authors like to write π1(G, x) for
the vertex group G(x).

The definition of subgroupoid presents no problem and we assume it is understood. A subgroupoid need
not contain all objects and indeed may be empty. This contrasts with the usage for subgroups. The maximal,
transitive subgroupoids of a groupoid G are called the components of G. The set of components of G is often

6Full details are also in the 2006 edition, ‘Topology and Groupoids’, of [14].
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written π0G. Note that in the case of the groupoid X o G of Example 3, the vertex groups are essentially the
groups of stability of the action, and the components are essentially the orbits of the action.

The classification of groupoids up to isomorphism was early on found to be reducible to the classification
of groups. First, any groupoid G is clearly the disjoint union of its components. Second, if G is transitive, and
x ∈ Ob(G), then there is a non-canonical isomorphism of G to the product of the group G(x) and the coarse
groupoid on Ob(G):

G ∼= G(x)× (Ob(G)×Ob(G)). (*)

Such an isomorphism is obtained by choosing elements τy ∈ G(x, y) for all y ∈ Ob(G) and then sending

a 7→ (τyaτ−1
z , (y, z)),y, z ∈ Ob(G), a ∈ G(y, z).

The isomorphism (*) gives also a retraction G → G(x); the existence of (*) is a basic fact on groupoids.
The isomorphism (*) should not lead mathematicians to draw the moral that ‘groupoids reduce to groups’.

Indeed, it can be pointed out that we have long passed the day when the classification of objects up to isomor-
phism could be considered the sole purpose of mathematics. For example, finite dimensional, real vector spaces
V are classified up to isomorphism by the number n = dimV . This does not mean that the term ‘real vector
space’ can be conveniently excised from the mathematical literature! As one illustration of this, the classification
of real vector spaces with p endomorphisms is interesting for p = 1, difficult for p = 2, and unsolved for p = 3.
(I am grateful to A. Heller for this trenchant expression of view.)

In a similar manner to the use of vector spaces, one finds that it is in studying morphisms of groupoids,
and the relationships between various groupoids, that the theory of groupoids obtains its power and flexibil-
ity. One of the features of groupoids is the variety of types of homomorphisms. For groups, we have basically
monomorphisms, epimorphisms, isomorphisms. For groupoid homomorphisms we have similar terminology to
that for functors, namely faithful, full, representative, and also a variety of other types such as quotient, univer-
sal, covering [78], fibration, and discrete kernel [15]. See [45] for a discussion of congruences in groupoids. It
may disturb people to learn that the first isomorphism theorem fails for groupoids. But in fact these apparent
difficulties and complications lead to a theory richer than that of groups, and with wider uses.

To determine the fundamental group π1(X, x), x ∈ A, in the Van Kampen situation considered above, one
has to use the isomorphism (*) on each component of π1(U,A), and of π1(V, A), and analyse the effect of all
the choices that have been made. This technique of making various appropriate choices of isomorphisms of the
type of (*) is a basic tool in P. J. Higgins’s applications of groupoids to subgroup theorems in group theory [78].
(Similar methods were used earlier by Hasse [72].) For example, in the proof that a subgroup of a free group
G on X is free, the isomorphism (*) is obtained from the choice of a maximal tree in a generating graph X̃ for
a free groupoid G̃ covering G (see below); the choice of this tree in X̃ is equivalent to the classical choice of a
Schreier transversal.

It seems fair to suggest that these methods give the first real applications of a theory of groupoids – the
earlier applications to the arithmetic of ideals seem by contrast only descriptive, and once the groupoid of
ideals has been obtained, not too much is done with it.

Consider again the coarse groupoid X × X, and the particular case when X = {0, 1}. The groupoid I =
{0, 1}x{0, 1} has two objects 0 and 1, and non-identity arrows ι : 0 → 1 and ι−1 : 1 → 0, say. Its vertex groups
are trivial. So we can think of I as consisting of two distinct but trivial groups, and the unique isomorphism ι

between them! Note that if a is an element of a groupoid G, then there is a unique homomorphism: f : I → G of
groupoids such that f(I) = a; so I plays for groupoids the role that the infinite cyclic group Z plays for groups.
Homomorphisms I → G, for G a finite cyclic group, give easy examples of the failure of the usual isomorphism
theorems of group theory.

Another feature of I is that, with the two inclusions {0} → I, {1} → I, it has properties analogous to the
unit interval in the homotopy theory of spaces. So it is easy to write down a corresponding homotopy theory
for groupoids, with notions of homotopy equivalence, covering morphism, fibration, exact sequence, and so
on [15,88,89]. As an application, the basic results on covering spaces can be summarised as saying that for
reasonable spaces X there are equivalences of categories (compare [62, Appendix 1; 15])
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(covering spaces of X) ∼ ( covering groupoids of π1X)

∼ ( operations of π1X on sets )

∼ ( functors π1X → ( sets )).

(These last two equivalences are essentially due to Ehresmann – compare [54, Partie II-l Comment 129.2].)
Indeed the construction of covering spaces is nicely expressed in terms of the problem of topologising the object
set of a covering groupoid G of the fundamental groupoid π1X [14]. Fibrations of groupoids [15] occur naturally
in a number of ways in group or group action theory; the resulting exact sequences give results on the original
group theoretic situation [74,25,26]. We should also refer to the neglected paper by P. A. Smith [137] where a
covering morphism is called a regular homomorphism.

One of the irritations of group theory is that the set Hom(H,K) of homomorphisms between groups H, K
does not have a natural group structure. However, homotopies between homomorphisms of groupoids H, K
may be composed to give a groupoid HOM(H, K) with object set Hom(H, K). It is easily checked that for any
groupoids G,H, K, there’is a natural bijection

Hom(G×H, K) ∼= Hom(G, HOM(H, K)).

This bijection is part of a groupoid isomorphism

HOM(G×H, K) ∼= HOM(G, HOM(H, K)).

This isomorphism is useful even when G, H,K are groups. It has a generalisation to the case of groupoids over
a given groupoid [40,84].

An application of this generalisation is pointed out in [24], as follows. Let f : A → B be an epimorphism of
groups. Suppose B has a presentation B = colimλ Bλ as a colimit over a connected diagram. Let Aλ → A be the
pullback of the canonical map Bλ → B by f. Then the canonical map colimλ Aλ → A is an isomorphism. It is
not easy to see how this result can be proved within the framework of group theory.

As another application of the groupoid I, note that if A is a group, then the groupoid A× I can be regarded
as consisting of two copies of A and an isomorphism between them. An HNN-extension of groups G∗θ, where θ

is an isomorphism A → B of subgroups of G, can be described as an amalgamated sum (pushout) of groupoids

A× {0, 1}
ψ //

²²

G

²²
A× I // G∗θ

where ψ is given by (a, 0) 7→ a, (a, 1) 7→ θa..
Thus the groupoid I, which at first sight seems unworthy of notice, plays a key role in the theory of groupoids,

and in applications. A failure to extend group theory so as to include the use of I, on the grounds that I is a
trivial object of only formal interest, is analogous to failing to use the number 0 in arithmetic, a failure which in
fact held back mathematics for centuries. Of course, if you allow I, then in effect you allow all groupoids since
any groupoid is a colimit of a diagram of copies of I), in the same way as any group is a colimit of a diagram of
copies of Z.

5 Some applications

As explained above, special cases of groupoids are sets, groups, group actions and equivalence relations7. These
have wide applications! It is not so well-known how widespread are the uses of groupoids over and above these

7It follows from earlier remarks that we have notions of presentations of these structures, by free graphs of generators, and corresponding
relations.
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examples. Here we indicate some of these uses; a wider impression is given in the references. Groupoids were
brought into the Galois theory of rings by Villamayor and Zelinsky [145,146]. The following quotation is from
[145, p. 722]: ‘Our approach actually interposes between a subgroup and its associated fixed ring a certain
groupoid composed of all the isomorphisms between components of S that can be induced by automorphisms
in the subgroup. The standard group-to-algebra correspondence is split into the composite of a many-to-one
correspondence from groups of automorphisms to groupoids of isomorphisms, followed by a one-to-one corre-
spondence from groupoids to algebras. The correspondence group → groupoid is one-to-one exactly on the fat
subgroups of the automorphism group.’ See also [101,102].

The semi-direct product groupoid XoG associated to a group action of G on X arises in combinatorial group
theory, particularly for subgroup theorems. If H is a subgroup of a group G, then in general the set G/H of right
cosets has no canonical group structure. However, G operates on the set G/H and so the semi-direct product
G̃ = (G/H) o G can be formed. Its vertex group G̃(H) at the coset H is isomorphic to H. So the strategy for
subgroup theorems is to lift a presentation of the group G to a presentation of the groupoid G̃, and then to
choose a retraction G̃ → G(H), in a manner appropriate to the presentation of G̃, to obtain a presentation of
G̃(H) and so of H [44,78]. This strategy also gives results for topological groups [23, 110].

Another use of XoG is in ergodic theory. G.W. Mackey describes in [100] his route to the use of groupoids.
The starting point was the question: granted that a transitive action of a group G on a set X corresponds to a
conjugacy class of subgroups of G, what then corresponds to an ergodic action of G on X? He invented the term
‘virtual subgroup.’, and this concept or analogy was finally expressed in terms of the groupoid XoG described
above. In order for the action to be ergodic, G and X must have Borel and measure structures, and these
structures are inherited by X o G. The idea of conjugacy class, is expressed by a definition of equivalence in
which homomorphisms defined almost everywhere are also allowed. This study now has an extensive literature
of which [119,120,121,151] is a selection. Mackey told me of his work after I had given a talk on groupoids
at the British Mathematical Colloquium in 1967. This meeting suggested to me that the groupoid concept had
much more to it than I had envisaged, and so was a spur to further work.

Topological groupoids have a theory of Haar measure, or transverse measure, which was considered by my
student A.K. Seda in his 1974 Ph.D. thesis [132] and by a number of other writers (compare [124, 125]). There
is for such groupoids a notion of convolution algebra, and the resulting C∗–algebras have been powerfully
exploited by A. Connes and others [41]. For example, they lead to an index theorem for foliations, generalising
the Atiyah-Singer index theorem. The Introduction to [90] gives a succinct summary of the uses of groupoids in
Connes’ theory. J. Renault writes [127] some comments on the history of convolution algebras: ‘They seem to be
as old as operator algebras themselves. Earlier examples by von Neumann included not only group algebras but
also the group measure construction. In “Harmonic analysis on groupoids” ([148]) J. Westman makes reference
to earlier examples by Dixmier and by Glimm. In fact A. Connes likes to say that Heisenberg discovered matrix
algebra by staring at the Ritz combination principle for spectral maps-an example of groupoid composition law
in contrast with the group law of harmonics.8’

It is quite possible to have a topological groupoid G with a non-discrete topology but for which each vertex
group has the discrete topology. This is common for example with groupoids of germs with the sheaf topology.
Thus the ‘variable symmetry’ described by G with its topology is in no way encompassed by the family of vertex
groups. Also, such a groupoid need not be topologically the sum of its abstract components.

The use of groupoids runs through much of the corpus of Grothendieck’s work on algebraic geometry. See
[87] for one aspect of this, the fact that an étendue, which is a kind of generalised space, may also be described
in terms of actions of a groupoid. This is related to work of Magid [101, 102]. There are some crucial differences
between the theory of topological groupoids and that of topological groups. As one example, for a group G,
a topology on G making G a topological group is defined by a fundamental system of neighbourhoods of the
identity, satisfying suitable conditions. The reason is that in a topological group left translation by an element
maps open sets to open sets. This is no longer true in a topological groupoid G. As observed by Ehresmann
[54], it is left translation by a local section of G which maps open sets to open sets, where a local section σ

of G is a map σ : U → G where U is open in Ob(G), sσ(x) = x, X ∈ U, and tσ maps U homeomorphically to
an open set V of Ob(G). Pradines has observed (private communication) that it is this fact which leads to the
holonomy groupoid of a differential piece of a groupoid (as announced in [114], which also includes results on
monodromy groupoids). Diverse uses of differential groupoids have been surveyed by Pradines in [115] and an
account of uses in differential geometry is given by Mackenzie in [99]. For some applications of groupoids in

8An exposition of this may be found in the book A. Connes, Non Commutative Geometry, Academic Press (1994).
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the framework of synthetic differential geometry, see [93,94].
The papers [21,22] give a bibliography of over 80 papers on topological and differential groupoids. A

major area of application of topological groupoids is, following Ehresmann, to foliation theory, using either the
holonomy groupoid, or the classifying space (see below) BΓ where Γ is the topological groupoid of germs of
elements of a pseudo-group. This area deserves a complete survey of its own, but here we mention also the
Bibliography [66], [144] and the articles in [116], for example [58,71].

6 The classifying space of a topological groupoid

The nerve of a small category C is the simplicial set NC such that NnC is the set of functors {0, 1, . . . , n} → C,
where {0, 1, . . . , n} is regarded as the category of pairs (i, j) where i 6 j and composition is (i, j)(j, k) = (i, k).
This definition is due to Grothendieck, who also characterised simplicial sets of the form NC. If G is a groupoid,
then G is also a category, and so its nerve NG is defined. (In fact NG has more structure, namely it is a ‘simplicial
T -complex of rank 1’, as shown by Dakin, [46]. See also Ashley, [2].)

The geometric realisation |NG| of the nerve of the groupoid G is called the classifying space BG of the
groupoid G. It is a CW-complex, with one vertex for each element of Ob(G), one component for each compo-
nent of G, and the fundamental group π1(BG, x), x ∈ Ob(G) is isomorphic to the vertex group G(x). Further,
π1(BG, x) = 0, i > 1. It is well-known that if X is any CW-complex then there’is a natural bijection

[X,BG] ∼= [π1X, G]

between the set of (free) homotopy classes of maps X → BG and the conjugacy classes of homomorphisms of
groupoids π1X → G.

This formula allows for a neat proof of a result of Gottlieb [67]. Let Y be a finite CW-complex, and let (BG)Y

denote the space of (unpointed) maps Y → BG. Then for any CW-complex X there is a sequence of natural
bijections

[X, (BG)Y ] ∼= [X× Y, BG]

∼= [π1(X× Y), G]

∼= [π1X× π1Y,G]

∼= [π1X, HOM(π1, Y, G)]

∼= [X, B(HOM(π1Y, G))].

It follows that (BG)Y is of the homotopy type of B(HOM(π1Y,G)). Note that if Y is connected,G is a group and
f : Y → BG is a pointed map, then the vertex group of HOM(π1Y,G) at f∗ is the centraliser of f∗(π1(Y)) in G,
which is the result of [67].

If G is a topological groupoid, then its nerve NG becomes a simplicial space. The realisation BG = |NG| is
still defined, but is no more a CW-complex [136].

The applications of this classifying space are legion. In the case G is a topological group, BG classifies
principal bundles with group G. We mention some uses of the groupoid cases. When G is the groupoid of germs
arising from a pseudo-group Γ , BG then classifies Γ -structures (see [66,70,96]). Also, the cohomology of BΓ

gives rise to characteristic classes for foliations [66].
If G = X o H, the semi-direct product topological groupoid arising from an action of the topological group

H on the topological space X, then BG is also known as the homotopy limit of the action [140]. It is known
that BG is of the homotopy type of the space X ×H PH, where PH → BH is a universal principal H-bundle.
The equivariant cohomology of the H-space X is defined to be H∗(X ×H PH) [154], and is thus simply H∗(BG)
(compare [136, 153, 158]).

In [51] it is proved that if π is a finite p-group, and G is a compact Lie group, then HOM(π,G), with its
structure as Lie groupoid, has the property that the natural map B(HOM(π, G)) → (BG)Bπ is a strong mod
p equivalence. In [152] it is proved that B maps certain pushouts of topological groupoids or categories to
homotopy pushouts, and this result includes some classical ones, such as descriptions of ΩΣX in terms of free
topological monoids or free topological groups.
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7 Structured groupoids

We have already met groupoids with various additional elements of structure. In order to describe uniformly
these various kinds of structured groupoid, it is convenient to define a groupoid object G internal to a category
C. The definition is analogous to that given above for a groupoid in the category of sets, except that G, Ob(G)
are to be objects of C, while s, t, i, the inverse map, and the multiplication, m, are all to be morphisms of C,
where m is defined on the pull-back of s, t, which is assumed to exist. The axioms for a groupoid are expressed
in a standard way using diagrams in C. For example, one finds in [3, 64] the definition of an algebraic groupoid
as a groupoid object in the category of algebraic spaces. In fact the general notions of structured category and
structured groupoid were defined and developed as long ago as 1963 by Ehresmann [54]. See also [155, 156].

The Examples 1,2,3 of §1 will normally transfer to the structured situation. For example, a set (topological
space, differential manifold, algebraic space X gives rise to a coarse groupoid (topological groupoid, differential
groupoid, algebraic groupoid) X× X

For a structured groupoid G there is no reason for there to be an isomorphism (*) which preserves the
structure. If such exists, the structured groupoid is called trivial, in analogy with a trivial principal bundle. In
the topological and differential case, there are useful notions of local triviality but there are also lots of good
examples of differential groupoids without this property. It is usually the case that constructions for manifolds
extend to locally trivial differential groupoids, and, although they may not extend to all differential groupoids
the attempt to do so usually leads to interesting questions.

A major source of examples of structured groupoids in Ehresmann’s work was from topology and differential
topology so giving rise to topological groupoids and differential groupoids. This interest was paralleled in the
Soviet Union, though at a later date, in the work of V.V. Vagner [141,142]. They were both interested in the
relations between groupoids and what the geometers called pseudo-groups – these were called generalised groups
by Vagner; but among semigroup theorists these are called, following Petrich, inverse semigroups. An inverse
semigroup defines in a natural way a groupoid with an additional partial order structure – these were called
inductive groupoids by Ehresmann [52]. See [129] for an account of the relations between groupoids and inverse
semigroups, and [130] for a survey of the relations between abstract inverse semigroups and those arising from
sets of partial transformations.

Localic groupoids are central to topos theory. Here a localic groupoid is a groupoid object in the category of
locales, a category which generalises the category of lattices of open sets of topological spaces and the maps f−1

induced by continuous maps f. For every topos E there is a localic groupoid G such that E is equivalent to the
category of étale spaces E over Ob(G) together with a continuous action of G on E over Ob(G). If the topos has
enough points (as do most of the toposes arising in algebraic geometry, for instance), G can in fact be taken to
be a topological group. Moerdijk shows in [107] that this representation of a topos can be extended to maps of
toposes, which makes the category of toposes a category of fractions of a category of localic groupoids.

Ehresmann’s work on structured categories and groupoids also led to notions of categories structured by
categories, that is, to double categories, and so to n-tuple categories [54]. The existence of such definitions,
and the basic example of a double category, namely the double category 2C of commuting squares in a category,
were important to the writer in 1965-72 in contemplating the possibility of extending the Van Kampen Theorem
to dimension 29.

It is clear that the definition of a groupoid object makes sense in any category with pullbacks, and this
includes many standard categories of an algebraic character in the usual sense, for example such categories as
those of groups, rings (without 1), Lie algebras, and many others. So we can consider a set with two compatible
structures, one a groupoid structure, and the other, for example, a ring structure.

Here again we see a complete contrast between groups and groupoids. A group internal to the category of
groups is just an abelian group –this is a well-known fact which leads to the suggestion that a ‘higher dimensional
group theory’, based on intuitive ideas of composing squares or cubes instead of paths, cannot exist. Similarly,
a group object internal to rings is a ring with zero multiplication. In general, group objects internal to the
standard algebraic categories are ‘abelian’ in some way.

The situation is quite different for groupoid objects. A result published in [37], but known much earlier, is
that a groupoid object internal to groups, which we call here a cat1-group, is equivalent to a crossed module,
which is a homomorphism µ : M → P of groups, together with an action (m,p) 7→ mp of P on M satisfying the
two rules:

9This was achieved in [27].
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(CM1) µ(mp) = p−1(µm)p,

(CM2) m−1nm = nµm,

for all m, n ∈ M,p ∈ P. Examples of crossed modules are:

• an ordinary P-module, when µ = 0;

• a normal subgroup, when µ is an inclusion;

• the inner automorphism map χ : M → AutM, for any group M;

• any epimorphism µ : M → P with central kernel;

• and the map of fundamental groups π1F → π1E for any (pointed) fibration F → E → B.

So there are lots of good examples of crossed modules: The notion is due to J.H.C. Whitehead [149], the name
being used in [150]. Surveys of their use and relationships with classical notions of homotopy theory and
homological algebra are given in [17,18,30,31].

The equivalence between crossed modules and cat1-groups is given as follows. Let µ : M → P be a crossed
module. Let G = P oM be the semi-direct product group, using the action of P on M, and let s, t : G → P be
the maps (p, m) 7→ p, (p, m) 7→ p(µm) respectively. Condition (CM1) on a crossed module is equivalent to t

being a homomorphism of groups. The formula g ◦ h = g(sh)−1h, when tg = sh,g, h ∈ G, defines a category
structure on G with s, t as initial and final maps. This category structure is compatible with the group structure
if and only if (CM1) and (CM2) hold. This compatibility condition is also equivalent to [Ker s, Ker t] = 1, as
shown in [97]. Conversely, given the catl-group s, t : G → P, then the restriction of t to Ker s → P can be
given the structure of crossed module. This procedure applies to other situations than groups – see [113] for a
general discussion.

If µ : M → P is a crossed module, then Ker µ is an abelian group, that is, a group internal to the category of
groups. Thus we see how the theory of groups with an algebraic structure is a pale shadow of a rich theory of
algebraically structured groupoids.

Crossed modules are also equivalent to double groupoids with connections [38]. These model well the idea
of using squares instead of paths, so that one can form compositions of the type

(**)

In this way double groupoids allow for ‘an algebraic inverse to subdivision’. It turns out that in double
groupoids with connection the composition (**) can be translated into a linear composition, but there will be
several ways of doing this. The resulting algebra will be of a more familiar kind, but the geometry will be lost. I
like to think that, for this reason, a general advance from 1-dimensional to 2- and n-dimensional algebra could
become widely significant10. This can be put in the more provocative way: n-dimensional phenomena require for
their description n-dimensional algebra. Double categories with connection are applied to homotopy theory in
[138]. One practical use of double groupoids is that they allow for a proof of a 2-dimensional Van Kampen type
theorem for crossed modules [27] which yields some new homotopy computations in dimension 2 (see also
[19]). Similar remarks apply to all dimensions, using ω-groupoids [28, 29]; these have interrelated structures
in all dimensions, with n groupoid structures in dimension n, corresponding to the gluing of n-cubes in the
n different directions. There is a fundamental ω-groupoid functor Π on filtered spaces, and this satisfies a Van
Kampen type theorem. The proof in [29] requires precisely the idea of having an algebra which appropriately

10Since this was written, the term ‘Higher dimensional algebra’ has become widely used, as is shown by a web search.
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models subdivision. As noted in [29], this generalised Van Kampen theorem implies the relative Hurewicz
theorem.

Just as a group or groupoid G has a classifying space BG [136], so also does any ω-groupoid. This functor
B : (ω-groupoids) → (spaces) gives ω-groupoids as algebraic models of certain homotopy types, and so allows
a Van Kampen theorem for ω-groupoids to yield information on homotopy types. For a survey of this area, see
[18]. One should mention here also the ‘hyper-groupoids’ of Duskin and Lawvere, which are used in [65] to
give realisations of general cohomology classes.

It turns out that ω-groupoids do not model all homotopy types. J.-L. Loday has introduced the notion of
catn-group (originally, n-cat-group [97]), which can be defined inductively as a groupoid object internal to the
category of catn−1-group, where catl-groups are defined above. So a catn-group should be thought of as a
group with n compatible groupoid structures. For such an object G, Loday has defined a classifying space BG

such that π1(BG) = 0 for i > n + 1. To anyone familiar with simplicial sets, the definition of BG will seem the
simplest possible: G has n + 1 compatible groupoid structures, one of them in fact a group structure; taking the
nerve for each structure gives an (n + 1)-simplicial set; the geometric realisation of this is BG [97]. Loday and
R. Steiner have also proved that if X is a pointed, connected CW-complex with π1X = 0 for i > n + 1, then X is
of the homotopy type of BG for some catn-group G [97, 139]. This demonstrates how complicated catn-groups
can be. Guin-Waléry and Loday have given an equivalence between the categories of cat2-groups and of crossed
squares (see [69]). Ellis and Steiner [57] give an equivalence between the categories of catn-groups and of
‘crossed n-cubes of groups’, thus giving a subtle, n-fold version of crossed modules. Loday and I have proved a
Van Kampen theorem for catn-groups [32,33], which generalises the major part11 of the Van Kampen theorem
for ω-groupoids. The case n = 2 leads to some new algebraic constructions, such as a non-abelian tensor
product M⊗N of groups M, N, each of which acts on the other. The rather tight description of catn-groups as
crossed n-cubes leads to some new computations in homotopy theory [57] and in algebraic K-theory [56].

8 Conclusion

In this last section I would like to draw some wider morals and make some possibly outrageous speculations.
First, it seems that the transition from group to groupoid often leads to a more thoroughly non-abelian theory.
This is seen in the von Neumann algebra of a measured groupoid, which has also been thought to be appropriate
for quantisation in physics [90]. It is perhaps more clearly seen, in the algebraically structured groupoids, as
above. It is clearly the key aspect of Brandt’s original examples. Another example is the non-abelian tensor
product of groups, referred to above.

Second, the concept of groupoid is a long way from being recognised as a fundamental concept in our
mathematical culture, but this reluctance is diminishing, as is shown by this survey. In due course, groupoid
methods will seem as natural as, say, principal bundles, which in fact they often conveniently replace (compare
[99]). At present, it has sometimes been recognised that groupoids form an interesting generalisation of groups.
Perhaps in another decade it will be agreed that groups are interesting examples of groupoids! Indeed F. W.
Lawvere has suggested in conversation that the word group should simply be extended to cover groupoids.

The speculations I would like to make concern the use of multiple groupoids. We have already seen that
the use of the usual groupoids allows for a more flexible and powerful approach to both fundamental groups
and ideas of symmetry. Also, higher dimensional groupoids have led in homotopy theory to new results and
calculations which seem unobtainable by other means [19,33,34,57]. In view of the fundamental nature of
our ideas of symmetry, I expect that multiple groupoids will lead to a formulation of ideas of ‘higher order
symmetry’, or ‘symmetry of symmetries’ and methods of calculation for these.

This is more a programme than a conjecture in the usual sense. It seems a little tricky, since several workers
have thought about it in terms of generalising to dimension 2 the covering space approach to Van Kampen’s
Theorem [49], without coming up with a clear answer. This last problem is important because of the rela-
tionship of covering spaces to Galois theory and problems of descent in algebraic geometry [103]. I hope the
description of ‘higher-order symmetry’12 will not take anything like the 9 years that it took of staring, off and
on, at diagram (**), before a 2-dimensional Van Kampen theorem was found! I find such attempts to bring
concepts out of the dark, even without a clear idea of applications, an attractive occupation. Also, in view of the

11The distinction is that the earlier work deals successfully with many base points.
12The paper by R. Brown and N.D. Gilbert, ‘Algebraic models of 3-types and automorphism structures for crossed modules’, Proc. London

Math. Soc. (3) 59 (1989) 51-73, is perhaps a start on this.
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‘unreasonable success of mathematics’, these conjectured higher order symmetries should prove fundamental
to further progress in our understanding of nature, for example of some physical processes.
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NOTES ADDED IN PROOF
§1.The groupoid EE−1 of a principal H-bundle is defined as the orbit groupoid (E x E)/ H, and is isomorphic to
the groupoid G(E) of §2, Example 4.
§2, Example 2, The terminology here is not standard, and X is also called the null or discrete groupoid on
X, while X × X is also called codiscrete, simplicial, or a tree. It is important to have a terminology which is
appropriate also for topological and Lie groupoids.
§2, Example 3. The groupoid X o G is also called the translation groupoid. Another possible term is affine
groupoid. The definition of XoG was essentially given in 1932, for the transitive case, on p. 28 of [159].
§3. The path-groupoid is, in effect, defined on p.107 of [159].
§6. J.-P. Meyer and M. Zisman have pointed out that B(X o H) is homeomorphic to X ×H PH. Zisman has
supplied a proof, and Meyer notes that it follows from Corollary 4.4 of [157].
§7. J. Virsik has pointed out that the book [156] is a good source for many of Ehresmann’s ideas – for example
there are chapters on inductive groupoids, and on species of structure, as well as results on quotient groupoids
and free categories and groupoids.
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complètes et commentées II 2,.627-629.
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[86] A. JOYAL, ‘Une théorie combinatoire des séries formelles’, Adv. in Math. 42 (1981) 1-82.
[87] A. JOYAL and M. TIERNEY, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc.
309 (Amer. Math, Soc., Providence, R.I., 1984).
[88] K.H. KAMPS, ‘Zur Homotopietheorie von Gruppoiden’, Arch. Math. Basel 23 (1972) 610-618.
[89] K.H. KAMPS, ‘Fundamentalgruppoid und Homotopien’, Arch. Math. Basel24 (1973) 456-460.
[90] D. KASTLER, ‘On A. Connes’ non-commutative integration theory’, Commun. Math. Phys. 85 (1982)
99-120.
[91] M. KNESER, ‘Kompositionen quadratischer Formen’, Vortrag Algebra-Tagung, Halle, 1986.
[92] M. KNESER, M.-A. KNUS, O. JANGUREN, R. PARIMELA and R. SRIOHAREN, ‘Composition of quaternary
quadratic forms’, Compositio Math., to appear.
[93] A. KOCK, ‘Combinatorial notions relating to principal fibre bundles’, J. Pure Appl. Algebra 39 (1986) 141-
151.
[94] A. KOCK, ‘On the integration for Lie groupoids’, Aarhus Math. Preprint 85/6 No. 20.
[95] P.S. LANDWEBER, ‘BP∗(BP) and typical formal groups’, Osaka J. Math. 12 (1975) 357-363.
[96] H.B. LAWSON JR., ‘Foliations’, Bull. Amer. Math. Soc. (3) 80 (1974) 369-418.
[97] J.-L. LODAY, ‘Spaces with finitely many homotopy groups’, J. Pure Appl. Algebra 24 (1982) 179-202.
[98] A. LOEWY, ‘Neue elementare Begründung und Erweiterung der Galoisschen Theorie’, S.-B. Heidelberger
Akad. Wiss. Math. Nat. Kl., 1925; Abh. 7, 1927, Abh. I.
[99] K.C.H. MACKENZIE, Lie groupoids and Lie algebroids in differential geometry (Cambridge University Press,
1987)18.
[100] G.W. MACKEY, ‘Ergodic theory and virtual groups’, Math. Ann. 166 (1966) 187-207.
[101] A.R. MAGID, ‘Galois groupoids’, J. Algebra 18 (1971) 89-102.
[102] A.R. MAGID, The separable Galois theory of commutative rings (Marcel Decker, New York, 1974).
[103] A.R. MAGID, ‘Covering spaces of algebraic curves’, Amer. Math. Monthly 83 (1976) 614-621.
[104] G. MAURY and J. RAYNAUD, Ordres maximaux au sens de K. Asano, Lecture Notes in Math. 808 (Springer,
Berlin, 1980).
[105] L. MICHLER, ‘Uber eine Verallgemeinerung des Hauptsatzes der Galoisschen Theorie’, Wiss. Z. Hochsch.
Schwermaschinenbau Magdeburg 11 (1956-7).
[106] B. MITCHELL, On the Galois theory of separable algebroids, Mem. Amer. Math. Soc. 333 (Amer. Math.
Soc., Providence, R.I., 1985).
[107] I. MOERDIJK, ‘The classifying topos of a continuous groupoid I’, Trans. Amer. Math. Soc. 310 (1988)
629–668.
[l08] J. MORAVA, ‘Noetherian localisations of cobordism modules’, Ann. of Math. 121 (1985) 1-39.

16Now available online as a reprint of Theory and Applications of Categories (2005).
17This work has been developed in the 2001 Bangor PhD Thesis of Emma Moore, Graphs of groups: word computations and free crossed

resolutions, available online.
18New edition as General Theory of Lie Groupoids and Lie Algebroids, CUP (2005).



130 RONALD BROWN

[l09] O. NAVA and G.-C. ROTA, ‘Plethysm, categories and combinatorics’, Adv. in Math. 58 (1985) 61-88.
[11O] P. NICKOLAS, ‘A Kurosh subgroup theorem for topological groups’, Proc. London Math. Soc. (3) 42
(1981) 461-477.
[111] J.S. PARK and K.H. LEE, ‘Groupoid as a covering space’, Bull. Korean Math. Soc. 21 (1984) 67-75.
[112] T. PORTER, ‘Some categorical results in the theory of crossed modules in commutative algebras’, J. Alge-
bra, 109 (1987) 415–429.
[113] T. PORTER, ‘Extensions, crossed modules and internal categories, in categories of groups with opera-
tions’, Proc. Edinburgh Math. Soc. (2) 30 (1987) 373–381.
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