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Introduction: What is Galois Theory?

Much of early algebra centred around the search for explicit formulae for roots of polynomial
equations in one or more unknowns. The solution of linear and quadratic equations in a single
unknown was well understood in antiquity, while formulae for the roots of general real cubics and
quartics was solved by the 16th century. These solutions involved complex numbers rather than
just real numbers. By the early 19th century no general solution of a general polynomial equation
‘by radicals’ (i.e., by repeatedly taking n-th roots for various n) was found despite considerable
effort by many outstanding mathematicians. Eventually, the work of Abel and Galois led to a
satisfactory framework for fully understanding this problem and the realization that the general
polynomial equation of degree at least 5 could not always be solved by radicals. At a more
profound level, the algebraic structure of Galois extensions is mirrored in the subgroups of their
Galois groups, which allows the application of group theoretic ideas to the study of fields. This
Galois Correspondence is a powerful idea which can be generalized to apply to such diverse
topics as ring theory, algebraic number theory, algebraic geometry, differential equations and
algebraic topology. Because of this, Galois theory in its many manifestations is a central topic
in modern mathematics.

In this course we will focus on the following topics.

e The solution of polynomial equations over a field, including relationships between roots,
methods of solutions and location of roots.
e The structure of finite and algebraic extensions of fields and their automorphisms.

We will study these in detail, building up a theory of algebraic extensions of fields and their
automorphism groups and applying it to solve questions about roots of polynomial equations.
The techniques we will meet can also be applied to study the following some of which may be
met by people studying more advanced courses.

e Classic topics such as squaring the circle, duplication of the cube, constructible numbers
and constructible polygons.

e Applications of Galois theoretic ideas in Number Theory, the study of differential
equations and Algebraic Geometry.

There are many good introductory books on Galois Theory, some of which are listed in the
Bibliography. In particular, [2, 3, 8] are all excellent sources and have many similarities to the
present approach to the material.

(©A. J. Baker (2004)
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CHAPTER 1

Integral domains, fields and polynomial rings

Basic notions, convention, etc

In these notes, a ring will always be a ring with unity 1 # 0. Most of the rings encountered
will also be commutative. An ideal I < R will always mean a two-sided ideal. An ideal I < R in
aring R is proper if I # R, or equivalently if I & R. Under a ring homomorphism ¢: R — S,
leRissentto 1€ S, ie, (1) =1.

1.1. DEFINITION. Let ¢: R — S be a ring homomorphism.
e o is a monomorphism if it is injective, i.e., if for r1,ry € R,

o(r1) =¢(rs) = ri=ry,

or equivalently if ker p = {0}.

e  is an epimorphism if it is surjective, i.e., if for every s € S there is an r € R with
p(r) = s.

e  is an isomorphism if it is both a monomorphism and an epimorphism, i.e., if it is
invertible (in which case its inverse is also an isomorphism).

1.1. Recollections on integral domains and fields

The material in this section is standard and most of it should be familiar. Details may be
found in [3, 5] or other books containing introductory ring theory.

1.2. DEFINITION. A commutative ring R in which there are no zero-divisors is called an
integral domain or an entire ring. This means that for u,v € R,

w=0 — wu=0orv=0.

1.3. ExaMPLE. The following rings are integral domains.

(i) The ring of integers, Z.

(ii) If p is a prime, the ring of integers modulo p, F, = Z/p = Z/(p).

(iii) The rings of rational numbers, Q, real numbers, R, and complex numbers, C.

(iv) The polynomial ring R[X], where R is an integral domain; in particular, the polynomial
rings Z[X], Q[X], R[X] and C[X] are all integral domains.

)
)

1.4. DEFINITION. Let I < R be a proper ideal in a commutative ring R.
e [ is a prime ideal if for u,v € R,

wel — welorvel.

e [ is a maximal ideal R if whenever J < R is a proper ideal and I C J then J = I.
e [ <R is principal if
I=(p)={rp:reR}

for some p € R. Notice that if p,q € R, then (¢) = (p) if and only if ¢ = up for some
unit u € R. We also write p | z if = € (p).

e p € R is prime if (p) < R is a prime ideal; this is equivalent to the requirement that
whenever p | xy with z,y € R then p | x or p | y.

e Ris a principal ideal domain if it is an integral domain and every ideal I<R is principal.

1.5. EXAMPLE. Every ideal I<Z is principal, so I = (n) for some n € Z which we can always
take to be non-negative, i.e., n > 0. Hence Z is a principal ideal domain.

1



2 1. INTEGRAL DOMAINS, FIELDS AND POLYNOMIAL RINGS

1.6. PROPOSITION. Let R be a commutative ring and I < R an ideal.
(i) The quotient ring R/I is an integral domain if and only if I is a prime ideal.
(ii) The quotient ring R/I is a field if and only if I is a mazimal ideal.

1.7. EXAMPLE. If n > 0, the quotient ring Z/n = Z/(n) is an integral domain if and only if
n is a prime.

For any (not necessarily commutative) ring with unity there is an important ring homomor-
phism n: Z — R called the unit or characteristic homomorphism which is defined by

l4-+1 ifn>0,
——
n
—nl={—(1+-+1) ifn<0
n(n) =n (I4+---+1) ifn ,

—n

0 ifn=0.

Since 1 € R is non-zero, kern < Z is a proper ideal and using the Isomorphism Theorems we
see that there is a quotient monomorphism 7: Z/kern — R which allows us to identify the
quotient ring Z/ kern with the image nZ C R as a subring of R. By Example 1.5, there is a
unique non-negative integer p > 0 such that kern = (p); this p is called the characteristic of R
and denoted char R.

1.8. LEMMA. If R is an integral domain, its characteristic char R is a prime.

Proor. Consider p = char R. If p = 0 we are done. So suppose that p > 0. The quotient
monomorphism 77: Z/ kern — R identifies Z/ ker n with the subring im7 = im 7 of the integral
domain R. But every subring of an integral domain is itself an integral domain, hence Z/ ker n is
an integral domain. Now by Proposition 1.6(i), ker n = (p) is prime ideal and so by Example 1.7,
p is a prime. O

1.9. REMARK. When discussing a ring with unit R, we can consider it as containing as a
subring of the form Z/(char R) since the quotient homomorphism 7: Z/(char R) — R gives
an isomorphism Z/(char R) — imm, allowing us to identify these rings. In particular, every
integral domain contains as a subring either Z = Z/(0) (if char R = 0) or Z/(p) if p = char R > 0
is a non-zero prime. This subring is sometimes called the characteristic subring of R. The rings
Z and Z/n = Z/(n) for n > 0 are often called core rings. When considering integral domains,
the rings Z and F), = Z/p = Z/(p) for p > 0 a prime are called prime rings.

Here is a useful and important fact about rings which contain a finite prime ring [,

1.10. THEOREM (Idiot’s Binomial Theorem). Let R be a commutative ring with unit con-
taining Fy, for some prime p > 0. If u,v € R, then
(u+0v)P =uP + P,
Proor. We have pl =0 in R, hence pt = 0 for any t € R. The Binomial Expansion yields
(1.1) (u+ )P =uP + <]19> uP~ o + <]2)> wP~2% 4 ( P 1)uvp1 + vP.
p—
Now suppose that 1 < 7 < p—1. Then we have
—1)! —1)!
G)ZQ@ N = DE
i) it =) it (p = J)!
There are no factors of p appearing in (p — 1)!, j! or (p — j)!, so since this number is an integer
it must be divisible by p, i.e.,

(1.22) o1 (7).

or equivalently

(1.2b) <P> =0 (mod p).
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Combining the divisibility conditions of (1.2) with the expansion of (1.1), we obtain the
required equation in R,

Hence in R we have

(u+v)P = uP + P O
1.11. DEFINITION. Let R be a ring. An element v € R is a unit if it is invertible, i.e., there
is and element v € R for which
uwv =1 = vu.
We usually write u~! for this element v, which is necessarily unique and is called the (multi-

plicative) inverse of v in R. We will denote the set of all invertible elements of R by R* and
note that it always forms a group under multiplication.

1.12. DEFINITION. A commutative ring k is a field if every non-zero element u € k is a unit.
This is equivalent to requiring that k* =k — {0}.

The familiar rings Q, R and C are all fields.
1.13. EXAMPLE. If n > 1, the quotient ring Z/n is a field if and only if n is a prime.
1.14. PROPOSITION. FEvery field is an integral domain.

PRrROOF. Let k be a field. Suppose that u,v € k and uv = 0. If u # 0, we can multiply by
u~! to obtain

1

v=u "uv =0,

hence v = 0. So at least one of u,v must be 0. U

A non-zero element p € R is irreducible if for u,v € R,
p=wuv = worwvisa unit.

1.15. LEMMA. Let R be an integral domain. If p € R is a non-zero prime then it is an
1rreducible.

PROOF. Suppose that p = uv for some u,v € R. Then p | u or p | v, and we might as well
assume that u = tp for some ¢t € R. Then (1 — tv)p = 0 and so tv = 1, showing that v is a unit
with inverse t. ]

Now let D be an integral domain. A natural question to ask is whether D is isomorphic to
a subring of a field. This is certainly true for the integers Z which are contained in the field of
rational numbers Q, and for a prime p > 0, the prime ring [, is itself a field.

1.16. DEFINITION. The fields Q and [F, where p > 0 is a prime are the prime fields.

Of course, we can view Z as a subring of any subfield of the complex numbers so an answer
to this question may not be unique! However, there is always a ‘smallest’ such field which is
unique up to an isomorphism.

1.17. THEOREM. Let D be an integral domain.

(i) There is a field of fractions of D, Fr(D), which contains D as a subring.
(ii) If p: D — F is a ring monomorphism into a field F', there is a unique homomorphism
¢: Fr(D) — F such that ¢(t) = p(t) for allt € D C Fr(D).
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PrOOF. (i) Consider the set
P(D) = {(a,b) : a,b € D, b# 0}.
Now introduce an equivalence relation ~ on P(D), namely
(', V) ~ (a,b) <<= abl =db.

Of course, it is necessary to check that this relation is an equivalence relation; this is left as an
exercise. We denote the equivalence class of (a,b) by [a,b] and the set of equivalence classes by
Fr(D).
We define addition and multiplication on Fr(D) by
[a,b] + [c,d] = [ad + be, bd],  [a,b][c, d] = [ac, bd].

We need to verify that these operations are well defined. For example, if [a’, V] = [a,b] and
[,d'] = [e,d], then

(d'd +Vc)od = d'd'bd + b'c'bd = ab'd'd + b'bed = (ad + be)b'd,
and so (a'd + V', b'd") ~ (ad + be,bd); hence addition is well defined. A similar calculation
shows that (a'c,b'd") ~ (ac,bd), so multiplication is also well defined. It is now straightforward
to show that Fr(D) is a commutative ring with zero 0 = [0, 1] and unit 1 = [1, 1]. In fact, as we
will soon see, Fr(D) is a field.

Let [a,b] € Fr(D). Then [a,b] = [0,1] if and only if (0,1) ~ (a,b) which is equivalent to
requiring that a = 0; notice that for any b # 0, [0,b] = [0,1]. We also have [a,b] = [1, 1] if and
only if a = b.

Now let [a,b] € Fr(D) be non-zero, i.e., a # 0. Then b # 0 and [a, b], [b, a] € Fr(D) satisty

[a,b][b,a] = [ab,ba] = [1,1] =1,

so [a,b] has [b,a] as an inverse. This shows that Fr(D) is a field.
We can view D as a subring of Fr(D) using the map

j: D — Fr(D); j(t) =]t 1]

which is a ring homomorphism; it is easy to check that it is a monomorphism. Therefore we
may identify t € D with j(¢) = [t, 1] € Fr(D) and D with the subring im j C Fr(D).
(ii) Consider the function

®: P(D) — F;  ®(a,b) = p(a)p(b) "

If (a/,V) ~ (a,b), then

O(a',b') = p(a)p(t') ™" = p(a")p(b)p(b) (b)) !
p(0)"e(d)
ab')p(t') " Hp(b)
a)p(t) (V') p(b) ™
(@)p(b) ™" = ®(a,b),
so ® is constant on each equivalence class of ~. Hence we may define the function

5 Fr(D) — Fi 3([a,b]) = B(a, ).

It is now easy to verify that ¢ is a ring homomorphism which agrees with ¢ on D C Fr(D). O

The next three corollaries are left as an exercise.
1.18. COROLLARY. If F' is a field then F' = Fr(F).

1.19. COROLLARY. If D is a subring of a field F', then Fr(D) C Fr(F) = F and Fr(D) is
the smallest subfield of F' containing D.
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1.20. COROLLARY. Let D1 and Dy be integral domains and let p: D1 — Ds be a ring
monomorphism. Then there is a unique induced ring homomorphism p,: Fr(Dy) — Fr(Da)
which satisfies . (t) = p(t) whenever t € D1 C Fr(Dy).

D Dy

linc linc

Fr(Dl) W FI“(DQ)

Moreover, this construction has the following properties.
e Ifp: Dy — Dy and 0: Dy — D3 are monomorphisms between integral domains then
0. 0 . = (0 0 ). as homomorphisms Fr(Dy) — Fr(Ds).
e For any integral domain D, the identity homomorphism id: D — D induces the
identity homomorphism (id), = id: Fr(D) — Fr(D).

¥ 0 id

Dy Dy D3 D D
i inc i inc i nc l inc i inc
FI'(Dl) W FI'(DQ) T* FI'(D?)) Fr(ng:idFr(D)

1.21. REMARKS. (a) When working with a field of fractions we usually adopt the familiar
notation
% = a/b=[a,b]

for the equivalence class of (a,b). The rules for algebraic manipulation of such symbols are the
usual ones for working with fractions, i.e.,

o1 G2 mabytash a1 0y 010y

by by bibo 7 by by by by biby
The field of fractions of an integral domain is sometimes called its field of quotients, however as
the word quotient is also associated with quotient rings we prefer to avoid using that terminology.

(b) Corollary 1.20 is sometimes said to imply that the construction of Fr(D) is functorial in the
integral domain D.

1.2. Polynomial rings

Let R be a commutative ring. We will make frequent use of the ring R[X] of polynomials
over R in an indeterminate X. This consists of elements of form

p(X)=po+p1X + - +pp X"
where m > 0 and pg, p1,...,pm € R; such p(X) are called polynomials. Addition and multipli-
cation in R[X] are defined by
(Po+p1X + - +pX™) + (@0 + @ X 4+ + g X™) =
(po + o) + (p1 + @)X + -+ + (pm + gm) X™,

and

Po+1 X+ + X))@+ X+ + ¢ X™) =
(poqo) + (Poqr + P190) X + - + (PoGm + P1@m—1 + - + Pm—1q1 + Pmqo) X >™.

Then R[X] is a commutative ring with the constant polynomials 0 and 1 as its zero and unit.
We identify r € R with the obvious constant polynomial; this allows us to view R as a subring
of R[X] and the inclusion function inc: R — R[X] is a monomorphism.
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More generally, we inductively can define the ring of polynomials in n indeterminates
X1,..., X, over R,
R[X1,..., X, = R[X1,..., Xn-1][X0]
for n > 1. Again there is an inclusion monomorphism inc: R — R[X1,..., X,] which sends

each element of R to itself considered as a constant polynomial.
These polynomial rings have an important universal property.

1.22. THEOREM (Homomorphism Extension Property). Let ¢o: R — S be a ring homomor-
phism.
(i) For each s € S there is a unique ring homomorphism ¢s: R[X| — S for which
o ps(r) =(r) for allT € R,

* ps(X)=s.
n—2.g
7
incl g, o,
R[X]
(ii)) Forn > 1 and s1,...,s, € S, there is a unique ring homomorphism
Osysn s R[X1, ..., Xp] — S
for which

® Vg ,.5,(r) = @(r) forallr € R,
® Vi sn(Xi)=s; fori=1,...,n.

¥©

R S

-

inci .
= | 7P,
R[Xy,...,X,)

PROOF. (Sketch)
(i) For a polynomial p(X) =pp + p1 X + -+ + pn X™ € R[X], we define

(1.3) 0s(p(X)) =po+pis+ -+ pps™ € 5.

It is then straightforward to check that ¢ is a ring homomorphism with the stated properties
and moreover is the unique such homomorphism.
(ii) is proved by induction on n using (i). O

We will refer to ¢s,,.. s, as the extension of ¢ by evaluation at si,...,s,. It is standard to

write

n

P(s1, -5 8n) = @sysn (P(X1, -5 X))
An extremely important special case occurs when we start with the identity homomorphism
id: R— R and ry,...,r, € R; then we have the homomorphism

Ery iy =1dp, oot R[Xy, ..., Xp] — R.

Slightly more generally we may take the inclusion of a subring inc: R — S and s1,...,s, € S;
then

Es1,sn =10Cg, o R[X1,...,Xp] — S
is called evaluation at si,...,s, and we denote its image by

R[s1,...,8n) = €5y,...5n B[ X1,...,Xp] CS.

Then R[s1,...,Sy| is a subring of S, called the subring generated by si,...,s, over R.
Here is an example illustrating how we will use such evaluation homomorphisms.
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1.23. ExaMPLE. Consider the inclusion homomorphism inc: Q — C. We have the evalu-
ation at ¢ homomorphism ¢;, for which £;(X) = i. We easily see that £; Q[ X] C C is a subring
Qli] C C consisting of the complex numbers of form a + bi with a,b € Q.

Notice that if we had used —¢ instead of 4, evaluation at —i, €_;, we would also have
e_; Q[X] = Q[i]. These evaluation homomorphisms are related by complex conjugation since

e-i(p(X)) = &i(p(X)),
which is equivalent to the functional equation
e_i=( )og;.
Notice also that in these examples we have
kere ; =kere; = (X2 4 1) aQ[X],
hence we also have
Qli] = Q[X]/(X? +1).

In fact (X2 + 1) is actually a maximal ideal and so Q[i] C C is a subfield; later we will write
Q(4) for this subfield.

1.24. PROPOSITION. Let R be an integral domain.

(i) The ring R[X] of polynomials in an indeterminate X over R is an integral domain.
(ii) The ring R[X1,...,Xn] of polynomials in the indeterminates X1, ..., X, over R is an
integral domain.

1.25. COROLLARY. Let k be a field and n > 1. Then the polynomial ring k[ X1, ..., X,] in
the indeterminates X1, ..., X, is an integral domain.

As we will make considerable use of such rings we describe in detail some of their important
properties. First we recall long division in a polynomial ring k[X] over a field k; full details can
be found in a basic course on commutative rings or any introductory book on this subject.

1.26. THEOREM (Long Division). Let k be a field. Let f(X),d(X) € k[X]| and assume that
d(X) # 0 so that degd(X) > 0. Then there are unique polynomials ¢(X),r(X) € k[X] for
which

f(X) = q(X)d(X) + r(X)
and either degr(X) < degd(X) orr(X) = 0.

In the situation discussed in this result, the following names are often used. We refer to the
process of finding ¢(X) and r(X) as long division of f(X) by d(X). Also,

f(X) = the dividend, d(X) = the divisor, q(X) = the quotient, r(X) = the remainder.

1.27. EXAMPLE. For k = Q, find the quotient and remainder when f(X) = 6X* — 6X3 +
3X?% —3X + 1 is divided by d(X) = 2X? + 1.

SOLUTION. In the usual notation we have the following calculation.
3X? - 3X
2X%24+1|6X%—6X3+3X2—-3X +1
6X*+0X3 +3X2+0X +0
—6X34+0X2-3X +1
—6X°+0X%—3X +0
1

Hence
6X1 —6X34+3X2-3X +1=(3X%-3X)2X%2+1) +1,
giving ¢(X) = 3X?% - 3X and r(X) = 1. O
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1.28. ExAMPLE. For k = Fs, find the quotient and remainder when f(X) = 10X° 4 6X* —
6X3 +3X2%2 - 3X +1is divided by d(X) = 2X2 + 1.

SOLUTION. First notice that working modulo 5 we have
f(X)=10X°+6X*—6X34+3X2-3X+1=X"+4X3+3X24+2X +1 (mod5).
Notice also following multiplicative inverses in Fs:
27'=3 (mod5), 3'=2 (mod5), 4 '=4 (mod?5).
We have the following calculation.
3X2 42X
2X2 +1] 6X4+4X3 +3X2+2X +1
6X*+0X%+3X%+0X +0
4X3 +0X2+2X +1
4X% +0X? +2X +0
1

Hence
6X*—6X34+3X2-3X+1=(3X?+2X)2X%2+1)+1 (mod5),
giving ¢(X) = 3X2% +2X and r(X) = 1. O

An important consequence of Theorem 1.26 is the following which makes use of the Fuclidean
Algorithm.

1.29. COROLLARY. Let k be a field and X an indeterminate. Let f(X),g9(X) € k[X] be
non-zero. Then there are a(X),b(X) € k[X] such that

a(X) f(X) + b(X)g(X) = ged(f(X), g(X)).

Here the greatest common divisor ged(f(X),g(X)) of f(X),g(X) is the monic polynomial
of greatest degree which divides both of f(X), g(X).

1.30. PROPOSITION. Letk be a field and X an indeterminate. Then a non-constant polyno-
mial p(X) € k[X] is an irreducible if and only if it is a prime.

PROOF. By Lemma 1.15 we already know that p(X) is irreducible if it is prime. So sup-
pose that p(X) is irreducible and that p(X) | u(X)v(X) for u(X),v(X) € k[X]. Then by
Corollary 1.29, there are a(X),b(X) € k[X] such that

a(X)p(X) + b(X)u(X) = ged(p(X), u(X)).
But since p(X) is irreducible, ged(p(X),u(X)) = 1, hence
a(X)p(X) +b(X)u(X) =1.
Multiplying through by v(X) gives
a(X)p(X)o(X) + b(X Ju(X)o(X) = v(X)
and so p(X) | v(X). This shows that p(X) | u(X) or p(X) | v(X) and so p(X) is prime. O
1.31. THEOREM. Let k be a field and X an indeterminate.

(i) Every ideal I <k[X] is principal, i.e., I = (h(X)) for some h(X) € k[X].
(ii) The ideal (p(X))<k[X] is prime if and only if p(X) = 0 or p(X) is irreducible in k[ X].
(iii) The quotient ring k[X]/(p(X)) is an integral domain if and only if p(X) =0 or p(X)
is irreducible in k[ X].
(iv) The quotient ring k[ X]/(p(X)) is a field if and only if p(X) is an irreducible in k[ X].
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PrOOF. (i) Let I <k[X] and assume that I # (0). Then there must be at least one element
of I with positive degree and so we can choose h(X) € I of minimal degree, say d = deg h(X).
Now let p(X) € I. By Long Division, there are ¢(X),r(X) € k[X] such that
p(X) =q(X)h(X) 4+ r(X) and degr(X) <dorr(X)=0.
Since p(X) and h(X) are in the ideal I, we also have
r(X) =p(X) — q(X)h(X) € I.

If 7(X) # 0, this would contradict the minimality of d, so we must have r(X) = 0, showing that
p(X) = q(X)h(X). Thus I C (p(X)) C I and therefore I = (p(X)).
(ii) This follows from Proposition 1.30.
(iii) This follows from Proposition 1.6(i).
(iv) Since k[X] is an integral domain and not a field, it is follows that if k[ X]/(p(X)) is a field
then because it is an integral domain, p(X) is an irreducible by (iii).

Suppose that p(X) is irreducible (and hence is non-zero). Then for any ¢(X) € k[X] with
q¢(X) ¢ (p(X)), by Corollary 1.29 we can find suitable a(X), b(X) € k[X] for which

a(X)p(X) + b(X)q(X) = ged(p(X), ¢(X)).
But ged(p(X), ¢(X)) = 1 since p(X) is irreducible, so
a(X)p(X) + b(X)g(X) = 1.

This shows that in the quotient ring k[X]/(p(X)) the residue class of ¢(X) has the residue class
of b(X) as its inverse. O

1.32. REMARK. In connection with Theorem 1.31(i), notice that if p(X) € k[X], then pro-
vided d = deg p(X) > 0, we have for some pg # 0,
P(X) =po+p1X + - +paX? = paq(X),
where
q(X) =p;'po+py' 11X + -+ pylpaa X+ X7
This easily implies that as ideals of k[X], (p(X)) = (¢(X)). So we can always find a monic

polynomial as the generator of a given ideal, and this monic polynomial is unique.

1.33. PrOPOSITION (Unique Factorization Property). Every non-constant polynomial f(zx) €
k[X] has a factorization

f(x) = epr(X) - pr(X),

where ¢ € k, and p1(X),...,pp(X) € k[X] are irreducible monic polynomials. Moreover, ¢ is
unique and the sequence of polynomials p1(X),...,pr(X) is unique apart from the order of the
terms.

PROOF. (Sketch)
Existence is proved by induction on the degree of f(X) and begins with the obvious case
deg f(X) = 1. If deg f(X) > 1, then either f(X) is already irreducible, or f(X) = f1(X)f2(X)
with both factors of positive degree, and therefore deg f;(X) < deg f(X). This gives the
inductive step.

To prove uniqueness, suppose that

p1(X) - pr(X) = i (X) -+ - qo(X)

where p;(X),q;(X) € k[X] are irreducible monic polynomials. Then by Proposition 1.30, each
pi(X) is prime, hence divides one of the ¢;(X), hence must equal it. By reordering we can
assume that p;(X) = ¢;(X) and k < ¢. After cancelling common factors we obtain

Qrer1(X) - qe(X) =1,
and so we see that k = /. O
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1.34. COROLLARY. Suppose that f(X) € k[X] factors into linear factors
f(X) =X =) (X — ua),
where uy,...,uq € k. Then the sequence of roots uq, ..., uq is unique apart from the order. In
particular, if vy, ...,v, are the distinct roots, then
J(X) = (X —v)™ - (X — o)™,
where m; > 0 and this factorization is unique apart from the order of the pairs (v;, m;).

1.35. COROLLARY. The number of distinct roots of a non-constant polynomial f(X) € k[X]
is at most deg f(X).

1.36. DEFINITION. If k is a field and X an indeterminate, then the field of fractions of k[ X]|
is the field of rational functions, k(X). The elements of k(X ) are fractions of the form
ao + a1 X + -+ apX™
bo + 01X + -+ b X™
with a;,b; € k and by + b1 X + -+ + b, X" # 0.

1.3. Identifying irreducible polynomials

When k is a field, we will need some effective methods for deciding when a polynomial in
k[X] is irreducible.

Let us consider factorisation of polynomials over Q. If f(X) € Z[X] then we can also consider
f(X) as an element of Q[X]. If R =Z or Q, we say that f(X) has a proper factorisation over
Rif f(X) = g(X)h(X) for some g(X),h(X) € R[X] with degg(X) > 0 and deg h(X) > 0.

1.37. PROPOSITION (Gauss’s Lemma). Let f(X) € Z[X]. Then f(X) has a proper factori-
sation over Z if and only it has a proper factorisation over Q.

So to find factors of f(X) it is sufficient to look for factors in Z[X]. Our next result is a
special case of the Fisenstein Irreducibility Test. The version here is slightly more general than
the more usual one which corresponds to taking s = 0.

1.38. PROPOSITION (Eisenstein Test). Let f(X) € Z[X] and s € Z. Choose a; € Z so that
fX)=ao+ar(X —s)+ -+ ag_1(X — )" +ag(X — ),

where d = deg f(X). Suppose that p > 0 is a prime for which the following three conditions
hold:

e a; =0 (mod p) fork=0,...,d—1;

e ap £ 0 (mod p?);

e ag 0 (mod p).
Then f(X) is irreducible in Q[X] and hence also in Z[X].

1.39. EXAMPLE. Let p > 2 be a prime. Then the polynomial
p(X) =1+ X+ + X" € Z[X]
is irreducible in Q[X] and hence also in Z[X].
Proor. Working in Z[X],
Oy X)X —1)=(1+ X4+ XPH(X -1)
=XP -1
=14+ (X-1)r-1
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() = w5

®,(X) = (X -1’1 (mod p)

since by (1.2a), p divides

when k=1,...,p— 1. Hence

Also,
py 2
(1) =r#0 (moas?)
giving
(1.4 @)(X) = (X = 1P 4 epa(X = 1)/ 2 oo er(X — 1) + o
with ¢, =0 (mod p) and ¢y = p. So the Eisenstein Test can be applied here with s = 1 to show
that ®,(X) is irreducible in Z[X]. O

1.40. EXAMPLE. As examples we have the irreducible polynomials
Py(X)=1+X,
P3(X) =1+ X + X%
P5(X) =1+ X+ X2+ X3+ x4
Pr(X) =1+ X+ X>+ X+ X+ X5+ X6,
Py (X) =1+ X+ X2+ X3+ X+ X5+ X0+ X7+ X8 4+ X% 4+ X0,

These are examples of the cyclotomic polynomials ®,(X) € Z[X] which are defined for all
n =1 by

(1.5a) X" —1=[]ouX),
din

where the product is taken over all the positive divisors of n. For example,

X?—1=(X-1)(X +1) =01 (X)Da(X),

XP—1=(X - 1)(X?+ X +1) = & (X)P3(X),

X' —1= (X - 1)(X +1)(X*+1) = &1 (X)Pa(X)Py(X),

XP—1=(X-DX*"+ X3+ X +1) = 0 (X)D5(X),

X0 1= X-1D)X+1D)X?+ X +1D(X2 =X +1) = 01 (X)D(X)P3(X)Pg(X),

X2 1=X-1D)X+D)X*+X+DX2+D(X2 - X +1)(X* - X% +1)
= D1 (X) P2 (X)P3(X)P4(X)P6(X)P12(X).

Cyclotomic polynomials can be computed recursively using Equation (1.5a). If we know @ (X)
for k < n, then

X" -1
1.5b (X)) = —
(1.5b) (X) [ %0

din

d<n

The degree of ®,,(X) involves a function of n probably familiar from elementary Number Theory.
1.41. DEFINITION. The Euler function ¢: N — N is defined by
¢(n) = number of k =1,...,n for which ged(n, k) =1
= |[(Z/n)*| = number of units in Z/n
= number of generators of the cyclic group Z/n.

In particular, if p > 2 is a prime then ¢(p) = p — 1. Of course, ¢(1) = 1.
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It can be shown that for each natural number n,
(1.6) > (d) =n.
dln

Notice that we can inductively determine ¢(n) using this equation. For example, if p and ¢ are
distinct primes, then

©(pq) = pq — (p(p) + (@) +¢(1)) =pg—(p—1)—(¢g—1)=1=(p—1)(¢g - 1).

It is also true that whenever m,n are coprime, i.e., when ged(m,n) = 1,

(L.7) p(mn) = p(m)p(n).

Thus if n = p}' - - - pl* where p; < ps < --- < p, are the prime factors of n and r; > 0, then
(1.8) p(n) =o(p1') - o(pe)-

Furthermore, if p is a prime and r > 0, then

(1.9) p(P) = (- 1p""

Notice that as a result, ¢(n) is even when n > 2.

1.42. REMARK. For those who know about the Mébius function p (which takes values 0, +1)
and Mdébius inversion, the latter can be used to solve Equation (1.6) for ¢, giving

n
1.1 = d)—.
(1.10) ol =210
Similarly, the formulae of (1.5) lead to
(1.11) o, (X) = [J(x/4 = 11D,
din
So for example, if p, g are distinct primes, then using standard properties of u,

B, (X) = (XP1 — )P0 (xPa/p _ 1)) (xPa/a _ q)u@)(xPa/pa _ 1)m(pa)
(XP4—1)(X —1)
(Xi— (X7 1)
Recall that an element ¢ of a field K is a primitive n-th root of unity if

min{k: 1 <k and ¢* =1} =n.

— (X7 - (X )T - )T (X 1) =

We think of ¢, = e*™/" as the standard complex primitive n-th root of unity. Then every
complex n-th root of unity has the form Q’f = e2mk/n for k=0,1,...,n— 1.

1.43. THEOREM. For each n > 1, the cyclotomic polynomial ®,,(X) is irreducible in Q[X]|
and hence in Z[X]. The complex roots of ®,(X) are the primitive n-th roots of unity,

¢k =e2mk/n (0 <k <n—1, ged(k,n) =1).
and the number of these is deg ®,(X) = ¢(n). Hence,

o,(x)= [ x-¢b.

ProOOF. We will give a reformulation and proof of this in Theorem 6.2. O

1.44. EXAMPLE. For n = 6 we have

A . 1
C6 = 627r7,/6 _ e7rz/3 _ 5 + \égl
Then ¢(6) = 2 and

Dg(X)=X>— X +1=(X—)(X—).

It is also worth recording a related general result on cyclic groups.
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1.45. PROPOSITION. Letn > 1 and C = (g) be a cyclic group of order n and a generator g.
Then an element g" € C is a generator if and only if gcd(r,n) = 1; the number of such elements

of C is p(n).
This leads to a useful group theoretic result.
1.46. LEMMA. Let G be a finite group satisfying the following condition:

e For each n > 1, there are at most n solutions of " =1 in G.

Then G is cyclic and in particular is abelian.

PROOF. Let O;(d) denote the number of elements in G of order d. By Lagrange’s Theorem,
0c(d) = 0 unless d divides |G|. Since

G=|J{geG:lgl=d},
e

Gl =" ba(d)

dl|G|
Recall the Euler ¢-function satisfies Equation (1.6), hence

Gl =" ¢(d).

dl|G]

we have

Combining these we obtain

(1.12) > fa(d) =) ¢(d).

G| |G|

Let d be a divisor of |G|. By Proposition 1.45, for each element g € G of order d, the cyclic
subgroup (g) < G has ¢(d) generators, each of order d. As there are at most d such elements g

in G, this gives 0g(d) < ¢(d). So
D 0a(d) <) eld).
dl|G]| dl|G]|
Now if 05 (d) < ¢(d) for some d, we would have a strict inequality in place of Equation (1.12).

Hence 0;(d) = ¢(d) for all d. In particular, there are ¢(|G|) elements of order |G|, hence there
must be an element of order |G|, so G is cyclic. O

The above results for polynomials over Q and Z have analogues over the field of fractions
k(T) and polynomial ring k[T'], where k is a field.

A polynomial f(X) € k[T][X] is an element of k(T)[X]. If R = k[T] or k(T"), we say that
f(X) has a proper factorisation over R if f(X) = g(X)h(X) for some g(X),h(X) € R[X] with
deg g(X) > 0 and degh(X) > 0.

1.47. PROPOSITION (Gauss’s Lemma). Let f(X) € k[T|[X]. Then f(X) has a proper fac-
torisation over K[T] if and only it has a proper factorisation over k(T').

Here is another version of the Fisenstein Test; again we state a version which is slightly
more general than the usual one which corresponds to the case where s = 0.

1.48. PrROPOSITION (Eisenstein Test). Let f(X) € k[T][X] and s € k[T]. Choose a; € k[T
so that
f(X) =ag + al(X —8)+-+ adfl(X — S)dil +aq(X — S)d,

where d = deg f(X). Suppose that p(T) € k[T is an irreducible for which the following three
conditions hold:

e a;, =0 (mod p(T)) fork=0,...,d—1;
e ag £ 0 (mod p(T)?);

e ag Z0 (mod p(T)).
Then f(X) is irreducible in k(T)[X] and hence also in k[T][X].
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1.49. EXAMPLE. Let k be a field. Then the polynomial X™ — T is irreducible in k(7")[X].

1.4. Finding roots of complex polynomials of small degree

@Io In this section we work within the complex numbers and take k C C. In practice we

will usually have k =R or k = C.
For monic linear (degree 1) or quadratic (degree 2) polynomials, methods of finding roots are
very familiar. Let us consider the cases of cubic (degree 3) and quartic (degree 4) polynomials.

Cubic polynomials: Cardan’s method. The following 16th century method of finding
roots of cubics is due to Jerdme Cardan who seems to have obtained some preliminary versions
from Niccola Tartaglia by somewhat disreputable means! For historical details see [2, 3].

A monic cubic

f(X)=X?+asX? + a1 X + ap € C[X]

can be transformed into one with no quadratic term by a change of variables X —— X — ag/3
giving

9(X) = f(X —az/3) = X* — <a1 — ;a§> X+ <ao —~ a13a2 + 2;?) e C[X].

Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X) =X +pX +q€C[X].

Suppose that z € C is a root of f(X), i.e.,

(1.13) 2® 4+ pr+q=0.
If we introduce u € C for which
T
YT
then
’ 0
(1=g0) +r(u=gg) +a=
and so
3 P’
_ £ =0
R T B
hence
6 3 P’
——==0
U+ qu 97
Solving for u® we obtain
3
3 q,1 [/, 4p
— 14 =
“ 2 TV T o

4 3
where /¢ + 2—p7 denotes one of the complex square roots of the discriminant of the quadratic
equation
3
p
U?+qU — == = 0.

T

Now if we take u to be a cube root of one of the complex numbers

4
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we obtain the desired root of f(X) as * = u — p/3u. Notice that we have a choice of 2 values
for u? and for each of these a choice of 3 values for u, differing by factors of the form w” for

r=0,1,2 where w = €2™/3 is a primitive cube root of 1. However, since
4
4p* —q— 2P
1 —q =\ + o ( q ¢+ 27)
¢ @ (A2 4p? ’
Rl s

it is easy to verify that there are in fact only 3 choices of the root x which we can write
symbolically as

3/ g 1 4p 1 4p
1.14 S (R QY £’ i M B Sy e P i
(1.14) o \/ 2 TVt +\/ VTt o7

or more precisely as
p
1
2

(1.15) x = &/— %\/

1.50. EXAMPLE. Find the complex roots of the polynomial
f(X)=X?+3X —10 € R[X].
SOLUTION. Applying the method above, we reduce to the quadratic equation
U?-10U-1=0
whose roots are 5 + /26 € R. Notice that 5+ /26 > 0 and 5 — /26 < 0; we also have

R

Now 5 + v/26 has the complex cube roots

{’/5+\/26, {’/5+\/26w, V5 + V2602

Here we have x = u — 1/u, so the 3 complex roots of f(X) are

3 1
54 V26— ———onu0 | W (r=0,1,2).
( 35+\/26>

Notice that one of these is real, namely

. _(35+\/%)2—1
V5426 U5+V26

Quartic polynomials: Ferrari’s method. The following method of finding roots of quar-
tics was publicised by Cardan who attributed it to his student Lodovicio Ferrari.
A general monic quartic polynomial

f(X) = X34+ a3X? + ag X% + a1 X + ap € C[X]

V54 V26 — O

can be transformed into one with no cubic term by a change of variables X —— X —ay/3 giving

9(X) = f(X —a3/4) =

3 1 1 1 3 1
v+ (ag — 80%) Y2+ (Sag — §a2a3 + al) Y — (magag 256(13 + 4a1a3 + a0>
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Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X)=X*+pX? +¢X +r € C[X].

Suppose that z is a root and introduce numbers ¥, z such that z = 2% +y (we will fix the
values of these later). Then
22 = 2t 4 222y + o/
= —pa® —qr —7r+22Y + 92
=2y —p)2® —qz +y* -

Now choose y to make the last quadratic expression in x a square,

(1.16) (2y — p)a? — qz + (y* —r) = (Az + B)2.
This can be done by requiring the vanishing of the discriminant
(1.17) ¢ —4(2y —p)(y* —r) = 0.

Notice that if y = p/2 then we would require ¢ = 0 and then
FX) = X4 pX? 7= (X?)? +p(X?) +7 =0
can be solved by solving
Z2+pZ+r=0.

Since Equation (1.17) is a cubic in y, we can use the method of solution of cubics to find a root
y =t say. Then for Equation (1.16) we have

(2 +t) = (Az + B)?,
whence
22 = —t+ (Az + B).
Thus taking the two square roots of the right hand side we obtain 4 values for x, which we write

symbolically as
x ==+ —t+ (Az + B).

1.51. REMARK. In the case of cubic and quartic polynomials over C we can obtain all the
roots by repeatedly taking square or cube roots (or radicals). Consequently such polynomials are
said to be solvable by radicals. Later we will see that this is not true in general for polynomials
of degree at least 5; this is one of the great early successes of this theory.

1.5. Automorphisms of rings and fields

1.52. DEFINITION. Let R be a ring and Ry C R a subring.
e An automorphism of R is a ring isomorphism o: R — R. The set of all such auto-
morphisms is denoted Aut(R).
e An automorphism of R over Ry is a ring isomorphism «: R — R for which «(r) =r
whenever r € Ry. The set of all automorphisms of R over Ry is denoted Autg,(R).

1.53. PROPOSITION. For a ring R with a subring Ry C R, Aut(R) and Autg,(R) form
groups under composition of functions.

PRrROOF. The composition aof of two automorphisms «, §: R — R is also an automorphism
of R as is the inverse of a. The identity function id = idr: R — R is an automorphism. Hence
Aut(R) forms a group under composition. The argument for Autg,(R) is similar. O

1.54. PROPOSITION. Let R be one of the core rings Z or Z/n with n > 1. Then
(i) The only automorphism of R is the identity, i.e., Aut(R) = {id}.
(ii) If S is a ring containing a core ring R and a € Aut(S), then « restricts to the identity
on R, ie., a(r) =r for all € R. Hence, Aut(S) = Autpr(95).
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PROOF. (i) For such a core ring R, every element has the form k1 for some k € Z. For an
automorphism « of R,

a(l)+-+a(l) ifk>0,

k
a(kl) =49 —(a(l) +---+a(l)) ifk <0,
—k
a(0) if k=0
1441 ifk>0,
k
—{—Q+--+1) ifk<0,
k
0 itk=0
=k1.
Thus o = id.
(ii) For v € Aut(S), a(1) =1 and a similar argument to that for (i) shows that a(r) = r for all
r € R. O

1.55. PROPOSITION. Let D be an integral domain and o: D — D be an automorphism.
Then the induced homomorphism gives an automorphism a,: Fr(D) — Fr(D).

PRrROOF. Given «, the induced homomorphism o, : Fr(D) — Fr(D) exists and we need
to show it has an inverse. The inverse automorphism a~': D — D also gives rise to an
induced homomorphism (a~!),: Fr(D) — Fr(D). Since a ! oa =id = aoa~!, we can apply
Corollary 1.20 to show that

(@), 0(a), =id = (a)s o (a™1),.
Hence (a), is invertible with inverse (a™!),. O
1.56. COROLLARY. There is a monomorphism of groups
( )s: Aut(D) — Aut(Fr(D)); ar— .

1.57. EXAMPLE. The field of fractions of the ring of integers Z is the field of rationals Q.
The homomorphism

()s: Aut(Z) — Aut(Q); a+—
is an isomorphism and hence Aut(Q) = {id}.

Combining this example with Proposition 1.54(ii) we obtain another useful result.

1.58. PROPOSITION. Let k be one of the prime fields Q or F, with p > 0 prime. If R s

a ring containing k as a subring, then every automorphism of R restricts to the identity on Kk,
ie., Aut(R) = Autk(R).

Recalling Definition 1.36, we have an example which shows that the monomorphism of
Corollary 1.56 need not be an epimorphism. Here we take D = Q[X] and Fr(Q[X]) = Q(X).

1.59. EXAMPLE. The homomorphism
()e: Aut(QIX]) — AWt(@Q(X)); a— a,
is a monomorphism but it is not an epimorphism since there is an automorphism
7: QX) — QX); ~(f(X)) = f(1/X)

which sends X € Q[X] C Q(X) to 1/X ¢ Q[X] and so does not restrict to an automorphism of
Q[X].
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Let k be a field. The group of invertible 2 x 2 matrices over k is the 2 x 2 general linear
group over k,

a a
GLQ(k) = { |:a; a;i] D Qg4 (S ]k, a11a922 — A12021 # 0}

The scalar matrices form a normal subgroup
Scaly(k) = {diag(t,t) : t € k, t # 0} <« GLa(k).
The quotient group is called the 2 x 2 projective general linear group over Kk,
PGLa(k) = GLa(k)/ Scala (k).
Notice that GLa(k) has another interesting subgroup called the affine subgroup,

AFF) (k) = {[g ﬂ cab €k, a;éO} < GLo(k).

1.60. EXAMPLE. Let k be a field and X an indeterminate. Then Auty(k[X]) and hence
Autg(k(X)), contains a subgroup isomorphic to Aff; (k). In fact, Auty(k[X]) = Aff; (k).

PROOF. We begin by showing that to each affine matrix

A= [g ﬂ € Affy (k)

there is an associated automorphism a4 : k[X] — k[X].
For this we use the element aX + b € k[X] together with the extension result of Theo-
rem 1.22(i) to obtain a homomorphism ay4: k[X]| — k[X] with a4(X) = aX + b. Using the

inverse matrix
A1 | a1t
|0 1

we similarly obtain a homomorphism «4-1: k[X] — k[X] for which
ap1(X)=a'X —a" 0.

Using the same line of argument as in the proof of Proposition 1.55 (or doing a direct calculation)
we see that ay—1 is the inverse of ayq an so ay € Autg(k[X]). It is straightforward to check
that for Al, Ay € Affy (k),

QA A = (4 O Ay,
(note the order!) hence there is a homomorphism of groups

Affy(k) — Autk(k[X]); Ar— ay1,

which is easily seen to be a monomorphism. Composing with ( ). we see that there is a
monomorphism Aff;(k) — Auty(k(X)). In fact, this is also an epimorphism and we leave the
proof of this as an exercise. O

1.61. EXAMPLE. Let k be a field and X an indeterminate. Then

(i) Autg(k(X)) contains a subgroup isomorphic to PGLy(k).
(ii) In fact, Autk(k(X)) = PGLa(k).

PROOF. (i) We begin by showing that to each invertible matrix

A= [“11 “12] € GLy(k)
a1 a2
there is an associated automorphism o : k(X) — k(X).

We begin by choosing the element (a11 X + a12)/(a21X + az2) € k(X) and then using Theo-
rem 1.22(i) to obtain a homomorphism k[X] — k(X)) that sends X to (a11 X +a12)/(az1 X +az2).
By applying ( ). to this we obtain a homomorphism (known as a fractional linear transforma-
tion) a?: k(X) — k(X) for which

X
aA(X _ auA +an

a21 X + a2



1.5. AUTOMORPHISMS OF RINGS AND FIELDS 19

Again we find that
a2 = o1 o o2,

There is an associated homomorphism of groups GLa(k) — Auty(k(X)) sending A to o™

However, this is not an injection in general since for each scalar matrix diag(t,t),
adiag(t,t) (X) _ % _ )(7

showing that ad28(t?) is the identity function.

In fact it is easy to see that Scals(k)<GLa(k) is the kernel of this homomorphism. Therefore
passing to the quotient PGLa(k) = GLa(k)/ Scala(k) we obtain a monomorphism PGLg (k) —
Auty(k(X)). There is one case where Scala(k) is the trivial group, namely k = Fa.

(ii) To show that every automorphism of k(X) is a fractional linear transformation is less
elementary. We give a sketch proof for the case of k = C; actually this argument can be modified
to work for any algebraically closed field, but an easy argument then shows the general case.

Let a € Autc(C(X)). There is an associated rational (hence meromorphic) function f given
by z — f(z), where a(X) = f(X), defined on C with the poles of f deleted. If we write

p(X)

f(X)Zm

where p(X), ¢(X) € C[X] have no common factors of positive degree, then the order of f(X) is

ord f = max{degp(X),degq(X)}.
Now let ¢ € C. Then the number of solutions counted with algebraic multiplicity of the equation
f(z) = c turns out to be ord f. Also, if degp(X) < degq(X) then the number of poles of f

counted with algebraic multiplicity is also ord f. Finally, if degp(X) > degq(X) then we can
write

f(X) =p(X) +

where po(X), p1(X) € C[X] and degpo(X) < degq(X). Then the number of poles of f counted
with algebraic multiplicity is

deg p1(X) + ord %.

Now it is easy to see that since « is invertible so is the function f. But this can only happen
if the function f is injective which means that all of these numbers must be 1, hence ord f = 1.

Thus

X
f(X)= ZX 12 # constant

and the matrix [a
c d

b} must be invertible. U
Clearly not every fractional linear transformation o : k(X) — k(X) maps polynomials to

polynomials so ( ).«: Autg(k[X]) — Auty(k(X)) is not an epimorphism.
Now we turn to a more familiar field R, the real numbers.

1.62. PROPOSITION. The only automorphism of the field R is the identity function, hence
Aut(R) = {id}.

PROOF. First we note that Q C R is a subring and if « € Aut(R) then a(q) = g for ¢ € Q
by Example 1.57.

We recall from Analysis that the rational numbers are dense in the real numbers in the
sense that each r € R can be expressed as a limit r = lim,_ . ¢, Where ¢, € Q. Then for a
continuous function f: R — R, its value at r depends on its values on Q since

f(T) = f(TLILH;O Qn) = nILH;o f(Qn)

We will show that an automorphism o € Aut(R) is continuous.
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First recall that for z,y € R,
r<y <= 0<y—x <= y—ax=1t>forsome non-zerot € R.
Now for @ € Aut(R) and s € R, we have a(s?) = a(s)?. Hence,
z <y = aly) — a(z) = a(t)? for some non-zero t € R = a(z) < a(y).

So « preserves order and fixes rational numbers.
Now let x € R and € > 0. Then we can choose a rational number ¢ such that 0 < ¢ < €.
Taking 6 = ¢ we find that for y € R with |y — x| < ¢ (i.e., =0 <y —x < J) we have

—0 =a(—9) < a(y) — a(z) < a(d) =4,

hence
la(y) — a(z)| < d <e.
This shows that « is continuous at x.

Thus every automorphism of R is continuous function which fixes all the rational numbers,
hence it must be the identity function. O

1.63. REMARK. If we try to determine Aut(C) the answer turns out to be much more

complicated. It is easy to see that complex conjugation ( ): C — C is an automorphism of C
and fixes every real number, i.e., () € Autg(C); in fact, Autg(C) = {id, ( )}. However, it is
not true that every o € Aut(C) fixes every real number! The automorphism group Aut(C) is
actually enormous but it is hard to find an explicit element other than id and ( ). Note that
given an automorphism a € Aut(C), the composition ao () oa~! is also self inverse, so there

are many elements of order 2 in the group Aut(C).

Exercises on Chapter 1

1.1. Let R be a ring. Show that
{n€eZ:n>0andnl =0} ={n€Z:n>0and nr=0 for all r € R}.
Deduce that if char R > 0 then these sets are non-empty and
char R = min{n € Z:n > 0 and nr = 0 for all r € R}.

1.2. Let R be an integral domain.

(a) Show that every subring S C R is also an integral domain. What is the relationship
between char S and char R?
(b) If R is a field, give an example to show that a subring of R need not be a field.

1.3. For each of the following rings R, find the characteristic char R and the characteristic
subring of R. Determine which of these rings is an integral domain. In (b) and (c), A is an
arbitrary commutative ring.

(a) Any subring R C C.

(b) The polynomial ring R = A[X].

(c) The ring of n x n matrices over A,

ailr] ... Qip
R = Mat,(A4) = Do, e €A
anl ... Qpn
1.4. If R is a commutative ring with unit containing the prime field IF,, for some prime p > 0,

show that the function ¢: R — R given by ¢(t) = tP, defines a ring homomorphism. Give
examples to show that ¢ need not be surjective or injective.

1.5. Let R and S be rings with unity and @) <.S a prime ideal.
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(a) If ¢: R — S is a ring homomorphism, show that
e lQ={rcR:p(r)cQYCR

is a prime ideal of R.

(b) If R C S is a subring, show that @ N R is a prime ideal of R.

(c) If the word ‘prime’ is replaced by ‘maximal’ throughout, are the results in parts (a)
and (b) still true? [Hint: look for a counterexample.]

(d) If R C S'is a subring and P < R is a maximal ideal, suppose that Q< .S is a prime ideal
for which P C (). Show that Q "R = P.

1.6. Let k be a field, R be a ring with unit and ¢: k — R a ring homomorphism. Show that
 is a monomorphism.

1.7. Consider the sets
Z(i)={u+vi:u,v€eZ} CC, Q»i)={u+vi:uveQ}CC.
(a) Show that Z(i) and Q(7) are subrings of C. Also show that Z(i) is an integral domain,
Q(i) is a field and Z(i) is a subring of Q(3).
(b) Show that the inclusion homomorphism inc: Z(i) — Q(¢) extends to a monomorphism
inc,: Fr(Z(i)) — Q).
(c) Show that inc, is an isomorphism, so Fr(Z(7)) = Q(7).

1.8. Let R be a commutative ring.

(a) If a,b € R, show that there is a unique ring homomorphism tq4: R[X] — R[X] for
which g (1) =7 if r € R and ¢4(X) = aX + 0. If ¢,d € R, determine 4 0 ¢ q. If
a is a unit, show that 1), is an isomorphism and find its inverse.

(b) Now suppose that R =k is a field and a,b € k with a # 0. Prove the following.

(i) TF £(X) € K[X], the deg o (f(X)) = deg f(X).

(i) If p(X) € k[X] is a prime then so is 1)44(p(X)).
(iii) If p(X) € k[X] is an irreducible then so is 144(p(X)).

1.9. Let k be a field and k[[X]] be the set consisting of all power series

o0
Y ap Xt =ap+a X+ +apXF 4o
k=0
with ay € k.
(a) Show that this can be made into an integral domain containing k[X] as a subring by
defining addition and multiplication in the obvious way.
(b) Show that >3, ax X" € k[[X]] is a unit if and only if ag # 0.
(c) Show that Fr(k[[X]]) consists of all finite-tailed Laurent series

o0
a0 XF = a X ap X 4 b ap X
k=t

for some ¢ € Z and ai € k.

1.10. Taking k = Q, find the quotient and remainder when performing long division of f(X) =
6X*—6X3+3X2-3X —2byd(X)=2X3+X +3.

1.11. Taking k = F3, find the quotient and remainder when performing long division of
f(X)=2X3+2X%+ X +1 by d(X) =2X3+2X.
1.12. Let p > 0 be a prime. Suppose that f(X) = ag + a1 X + -+ + a, X" € Z[X] with

p 1 an and that f(X) € F,[X] denotes the polynomial obtained by reducing the coefficients of

f(X) modulo p. If f(X) is irreducible, show that f(X) is irreducible. Which of the following
polynomials in Z[X] is irreducible?

X3 X+1, X242X+1, X3+ X -1, X°—X+1, X°+X —1, 5X°> - 10X + X2 —2.
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1.13. Find generators for each of the following ideals:
L ={f(X) €QIX]: f(i) =0}<aQIX], L ={f(X)eQX]:f(V2i) =0} <Q[X],
I={f(X) €Q[X]: f(v2) =0} <Q[X], L ={f(X)eR[X]: f(V2)=0}<R[X],
I = {f(X) e RIX]: f(V2i) = 0} <R[X],  Is={f(X) € R[X]: f(Cs) = 0} <R[X].
1.14. Consider the inclusion inc: Q — C and its extension to € 5: Q[X] — C.

Determine the image ¢ 5Q[X] C C. What is e_ 5Q[X] C C? Find kere 5<Q[X] and
kere_ 5<Q[X]; are these maximal ideals?

1.15. Let w = (=1 ++/3i)/2 € C. Consider the inclusion inc: Q — C and its extension
to g,: Q[X] — C. Determine the image ¢, Q[ X] C C. Determine kere, <Q[X] and decide
whether it is maximal. Find another evaluation homomorphism with the same kernel and image.

1.16. Consider the inclusion inc: Q — C and its extension to e4: Q[X] — C where « is
one of the 4 complex roots of the polynomial f(X) = X% —2 € Q[X]. Determine the image
£q Q[X] C C and the ideal kere, <Q[X]; is the latter ideal maximal? What happens if « is
replaced by one of the other roots of f(X)?

Repeat this problem starting with the inclusion of the real numbers into the complex num-
bers inc: R — C and ¢,: R[X] — C.

1.17. Use Cardan’s method to find the complex roots of the polynomial
f(X)=X%-9X2 421X —5.

1.18. Consider the real numbers

a_\/10+\/ﬁ+\/10—\/ﬁ 8= \/ \[ \/_\[

Find rational cubic polynomials f(X) and g(X) for which f(a) = 0 = g(8). Hence determine
these real numbers.

1.19. Prove the final part of Example 1.60 by showing that there is an isomorphism of groups
Affq (k) = Auty (k[X]).

1.20. Let k be any field. Consider the 6 automorphisms «a;: k(X) — k(X) (j = 1,...,6)
defined by
a1 (f(X)) = f(X), ax(f(X)) = f(1 - X), az(f(X)) = f(1/X),
ay(f(X)) = f(X = 1)/X),  as(f(X)) = f(1/A-X)), as(f(X))=f(X/(X—-1)).

Show that the set consisting of these elements is a subgroup I'y < Auty(k(X)) isomorphic to
the symmetric group S3. When k = [Fy, show that I'y = GLy(k).

1.21. Determine the cyclotomic polynomial ®o0(X).

1.22. Let p > 0 be a prime.
(a) Show that for k > 1, the cyclotomic polynomial @, (X) satisfies

k—1

D (X) = @p(XP )

and has as its complex roots the primitive p¥-th roots of 1.

(b) Show that @, (X) € Q[X] is irreducible

(c) Generalize part (a) to show that if n = pi* ---p;* is the prime power factorization of n
with the p; being distinct primes and 7; > 0, then

-1 rE—1

P, (X) = Ppy - (qul TP
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1.23. For n > 2, show that
XM, (X = d,(X).

1.24. Show that for n > 1, ¢, + ¢, ! = 2cos(27/n).
Find expressions for (545 Land CG+¢y 2 in terms of cos(2m/5). Hence find a rational polynomial
which has cos(27/5) as a root.
1.25. Let p > 0 be a prime and K be a field with char K = p.
(a) Show that if ( € K is a p-th root of 1 then ¢ = 1. Deduce that if m,n > 0 and p 1 n,

then every np™-th root of 1 in K is an n-th root of 1.
(b) If a € K, show that the polynomial X? — a € K[X] has either no roots or exactly one

root in K.






CHAPTER 2

Fields and their extensions

2.1. Fields and subfields

2.1. DEFINITION. Let K and L be fields and suppose that K C L is a subring. Then we
say that K is a subfield of L; L is also said to be an extension (field) of K. We write K < L or
L/Kto indicate this and K < L if K is a proper subfield of L, i.e., if K # L.

An important fact about an extension of fields L/K is that L is a K-vector space whose
addition is the addition in the field L while scalar multiplication is defined by

u-z=ur (ueK,zel).

2.2. DEFINITION. We will call dimg L the degree or index of the extension L/K and use the
notation [L : K] = dimg L. An extension of fields L/K is finite (dimensional) if [L : K| < oo,
otherwise it is infinite (dimensional).

2.3. ExAMPLE. Show that the extension C/R is finite, while R/Q and C/Q are both infinite.
SOLUTION. We have
C={z+yi:xz,yeR},

so 1,7 span C as a vector space over R. Since i ¢ R, these elements are also linearly independent
over R and therefore they form a basis, whence [C : R] = 2. The infiniteness of R/Q and C/Q are
consequences of the fact that any finite dimensional vector space over Q is countable, however
R and C are uncountable. A basis for the Q-vector space R is known as a Hamel basis. O

2.4. ExAMPLE. Consider the extension Q(v/2)/Q where
Q(V2) ={z+yv2: 2,y € Q}.
Show that [Q(v/2) : Q] = 2.

SOLUTION. The elements 1,+/2 clearly span the Q-vector space Q(v/2). Now recall that
V2 ¢ Q. If the elements 1,v/2 were linearly dependent we would have u + vv/2 = 0 for some
u,v € Q not both zero; in fact it is easy to see that we would then also have u, v both non-zero.
Thus we would have

U
\/5 = _; € Q7

which we know to be false. Hence 1, /2 are linearly independent and so form a basis for Q(v/2)
over Q and [Q(+v/2) : Q] = 2. O

If we have two extensions L/K and M/L then it is a straightforward to verify that K < M
and so we have another extension M/K.

2.5. DEFINITION. Given two extensions L/K and M/L, we say that L/K is a subextension
of M/K and sometimes write L/K < M/L.

2.6. THEOREM. Let L/K be a subextension of M /K.
(i) If one or both of the dimensions [L : K| or [M : L] is infinite then so is [M : K].
(ii) If the dimensions [L : K] and [M : L] are both finite then so is [M : K] and

[M:K]|=[M:L|[L:K].

25



26 2. FIELDS AND THEIR EXTENSIONS

ProoF. (i) If [M : K] is finite, choose a basis my,...,m, of M over K. Now any element
u € M can be expressed as

u=1timi+---+t,my,
where t1,...,t, € K; but since K C L, this means that my,...,m, spans M over L and so
[M : L] < co. Also L is a K-vector subspace of the finite dimensional K-vector space M, hence
[L: K] < oo.
(ii) Setting r = [L : K] and s = [M : L], choose a basis {1,...,¢ of L over K and a basis

mi,...,mg of M over L.
Now let v € M. Then there are elements y1,...,ys € L for which

V=Yy1mi + -+ YsMms.
But each y; can be expressed in the form
yj = a1l + -+ 2l

for suitable x;; € K. Hence,

V= Z (Z .I'Zj&) mj; = szm(glmj)a
j =1

j=1 j=1i=1

where each coefficient z;; is in K. Thus the elements {;m; (i =1,...,r, 7 =1,...,s) span the
K-vector space M.
Now suppose that for some ¢;; € K we have

Z Z ti]’ (Zlmj) =0.

j=1 i=1

On collecting terms we obtain

=1 \i=1

where each coefficient Y ;_, t;;¢; is in L. By the linear independence of the m; over L, this
means that for each j,

r
Z tijfi =0.
=1

By the linear independence of the ¢; over K, each t;; = 0.
Hence the ¢;m; form a basis of M over K and so

[M:K]=rs=[M:L][L: K] O

We will often indicate subextensions in diagrammatic form where larger fields always go
above smaller ones and the information on the lines indicates dimensions

M

\
\
\
L | [M:K]|=[M:L][L:K]
|
/
/

K

[M:L]

[L:K]

We often suppress ‘composite’ lines such as the dashed one. Such towers of extensions are our
main objects of study. We can build up sequences of extensions and form towers of arbitrary



2.2. SIMPLE AND FINITELY GENERATED EXTENSIONS 27

length. Thus, if L1/K, Lo/Ly,..., Li/Li—1 is a such a sequence of extensions, there is a
diagram

Ly,

Ly

2.2. Simple and finitely generated extensions

2.7. DEFINITION. Let F be a field and K < F. Given elements u1,...,u, € F we set
K(uy,...,uy) = ﬂ L
K<LLF
UL yeesUpr EL
which is the smallest subfield in F' that contains K and the elements uq,...,u,. The ex-
tension K (uj,...,u,)/K is said to be generated by the elements uj,...,u,; we also say that

K(uy,...,u,)/K is a finitely generated extension of K. An extension of the form K(u)/K is
called a simple extension of K with generator u.

We can extend this to the case of an infinite sequence uq,...,ur,... in F and denote by
K(uy,...,ur,...) < F the smallest extension field of K containing all the elements wu,.

It can be shown that

(2.1) K(uy,...,u,) =
{f(ul,...,uT)

eF:f(Xy,....X),9(X1,...,X,) € K[Xq,....,X;], glut,...,u) 7&0}
g(ula"'auT)

Reordering the u; does not change K(uq,...,uy,).
2.8. PROPOSITION. Let K(u)/K and K(u,v)/K(u) be simple extensions. Then
K(u,v) = K(u)(v) = K(v)(u).
More generally,
K(ui, ... up) = K(ui, ..., up—1)(up)

and this is independent of the order of the sequence uy,. .., uy.

2.9. THEOREM. For a simple extension K(u)/K, exactly one of the following conditions
holds.

(i) The evaluation at w homomorphism e,: K[X]| — K(u) is a monomorphism and on
passing to the fraction field gives an isomorphism (gy).: K(X) — K(u). In this case,
K(u)/K is infinite and u is said to be transcendental over K.

(ii) The evaluation at uw homomorphism e,: K[X] — K(u) has a non-trivial kernel
kere, = (p(X)) where p(X) € K[X] is an irreducible monic polynomial of positive de-
gree and the quotient homomorphism ,: K[X]/(p(X)) — K(u) is an isomorphism.
In this case K(u)/K is finite with [K(u) : K] = degp(X) and u is said to be algebraic
over K.
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PRrROOF. (i) If kere,, = (0), all that needs checking is that (,)« is an epimorphism; but as
u is in the image of (g,), this is obvious.
(ii) When kere,, # (0), Theorem 1.31(iv) implies that the image of €, is a subfield of K(u) and
since it contains u it must equal K (u). Hence €, is an isomorphism. Using Long Division, we
find that every element of K[X]/(p(X)) can be uniquely expressed as a coset of the form

f(X) + (p(X)),

where deg f(X) < degp(X). Hence every element of K[X]/(p(X)) can be uniquely expressed
as a linear combination over K of the d cosets

L+ (p(X)), X + (p(X)), X2+ (p(X)),..., X4+ (p(X)),

where d = degp(X). Via the isomorphism &, under which &,(X* + (p(X))) = u¥, we see that
the elements 1,u,...,u"" form a basis for K (u) over K. O

2.10. EXAMPLE. For the extension Q(v/2,v/3)/Q we have [Q(v/2,v3) : Q] =
ProOF. By Example 2.4 we know that [Q(v/2) : Q] = 2. We have the following tower of

extensions.
Q(v2,V3)
[Q(V2.V3)Q(V2 \\
Q(?2) /‘-[@(\/i,\/ﬁ):@]—2[@(x/§,x/§):@(ﬁ)]

/
Q

We will show that [Q(v/2,v/3) : Q(v/2)] = 2.
Notice that if u € Q(v/2,v3) = Q(v/2)(v/3) then u = a + b\/3 for some a,b € Q(+/2),
so 1,v/3 span Q(v/2,/3) over Q(v/2). But if these are linearly dependent then v/3 € Q(v/2).

Writing /s s
3=v+wv2

2

with v, w € Q, we find that
v+ 20 + 200V2 =3 € Q,

and hence 2vwy/2 € Q. The possibilities v = 0 or w = 0 are easily ruled out, while v,w # 0
would implies that v/2 € Q which is false. So 1,v/3 are linearly independent over Q(v/2)
and therefore form a basis of Q(v/2,v/3). This shows that [Q(v/2,v/3) : Q(v/2)] = 2 and so

[Q(v2,Vv3) : Q] = 4. O

2.11. REMARK. There are some other subfields of Q(v/2,+/3) which are conveniently dis-
played in the following diagram.

Q(v2,v3)

Q(v2) Q(v3) Q(V6)

One idea in the verification of Example 2.10 can be extended to provide a useful general
result whose proof is left as an exercise.

2.12. PROPOSITION. Let p1,...,p, be a sequence of distinct primes p; > 0. Then

VPn & QVP1, -5 V/Pr-1).
Hence [Q(\/P1, -, /Pn) : Q(\/P1,s -+ -, v/Pa1)] = 2 and [Q(\/P1,...,+/Pn) : Q] =
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2.13. EXAMPLE. For the extension Q(v/2,4)/Q we have [Q(v/2,1) : Q] = 4.

ProOOF. We know that [Q(v/2) : Q] = 2. Also, i ¢ Q(v/2) since i is not real and Q(v/2) < R.
Since i2 + 1 = 0, we have Q(v/2,4) = Q(v/2)(i) and [Q(v/2,4) : Q(+/2)] = 2. Using the formula

[Q(V2,1) : Q] = [Q(V2,i) : Q(V2)] [Q(V?2) : Q]
we obtain [Q(v/2,1) : Q] = 4. O

This example also has several other subfields, with only Q(v/2) = Q(+/2,4) N R being a
subfield of R.

C

2.14. EXAMPLE. For n > 1, let E,, = Q(2Y/") < R, where 2//" € R denotes the positive real
n-th root of 2.
(i) Show that [E, : Q] = n.
(ii) If m > 1 with m | n, show that E,, < E, and determine [E,, : E,,].
(iii) If m,n are coprime, show that E,,, = Q(Ql/m, 21/").

SOLUTION. (i) Consider the evaluation homomorphism €41/ : Q[X] — E,. Applying the
Eisenstein Test 1.38 using the prime 2 to the polynomial X" — 2 € Z[X], we find that

keresi/m = (X" —2) <Q[X],
and the induced homomorphism &51/n: Q[X]|/(X"™ — 2) — E, is an isomorphism. Hence
[En : Q] = n.
(ii) Since n/m is an integer,
21/m — (21/n)n/m € E,,
SO
E,, =Q(2Y™) C E,.
By Theorem 2.6 we have
n=I[E,:Q|=I[E,: Ey|[En:Q=m[E,: Ep],
whence [E,, : Ep,] = n/m.
(iii) By (ii) we have E,, < Ep,, and E,, < Ep,, hence Q(21/m, 21/”) < Emn. As ged(m,n) =1,
there are integers r, s for which rm + sn =1 and so

1 TmA4sn T

i
mn  mn  n o om
This shows that
21/mn _ (21/n)r(21/m)s c Q(Ql/m, 21/n)7

whence E,,, < Q(2!/™,2'/). Combining these inclusions we obtain E,,, = Q(2'/™, 21/"). O
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Exercises on Chapter 2

2.1. Let p € N be an prime. Show that the extension Q(,/p)/Q has [Q(,/p) : Q] = 2.
2.2. Let p,q > 0 be distinct primes. Show that [Q(/p,/q) : Q(/p)] = 2.

2.3. Prove Proposition 2.12 by induction on n.

2.4. Let K a field with char K # 2 and suppose that L/K is an extension. If a,b € K are
distinct, suppose that u,v € L satisfy u? = a and v? = b. Show that K (u,v) = K(u + v).
[Hint: first show that utv # 0 and deduce that u—v € K (u+v); then show that u,v € K(u+v).]

2.5. Show that [Q(7) : Q] = 2.

2.6. Show that [Q(v/3,i) : Q] = 4. Find the three subfields L < Q(v/3,4) with [L : Q] = 2 and
display their relationship in a diagram, indicating which ones are subfields of R.

2.7. Let (5 = €2™/5 € C.
(a) Explain why [Q(Gs) : Q] = 4.
(b) Show that cos(27/5), sin(27/5)i € Q((s)-
(c) Show that for t € R,

cos 5t = 16 cos® t — 20 cos® t 4 5 cost.
(d) Show that the numbers cos(2kw/5) with k = 0, 1,2, 3,4 are roots of the polynomial
f(X)=16X° —20X3 45X —1=(X —1)(4X* +2X —1)?

and deduce that [Q(cos(27/5)) : Q] = 2.
(e) Display the relationship between the fields Q, Q(cos(27/5)), and Q({s) in a suitable
diagram.

2.8. This question is for those who like lots of calculation or using Maple. Let {7 = ¢2™/7 ¢ C.
(a) Explain why [Q(¢r) : Q] = 6.
(b) Show that cos(27/7), sin(27/7)i € Q({7).
(¢) Show
cos 7t = 64 cos’ t — 112 cos’ t + 56 cos> t — 7 cost.

Show that the numbers cos(2km/7) with k£ = 0,1,...,6 are roots of the polynomial

F(X)=64XT —112X5 +56X3 —7X — 1 = (X — 1)(8X3 +4X?% —4X — 1)

and deduce that [Q(cos(27/7)) : Q] = 3.
(d) Show that sin(27/7)1i is a root of

g(X) =64XT 4+ 112X° + 56 X3 + 7X = X (64X° 4+ 112X? + 56 X2 4 7)

and that 64X+ 112X*+56X2+7 € Q[X] is irreducible. What is [Q(sin(27/7) ) : Q]?
(e) Display the relationship between the fields Q, Q(cos(27/7)), Q(sin(27/7) ) and Q((7)
in a diagram.

(f) Is i € Q(¢r)?
2.9. In this question we continue to consider the situation described in Example 2.14.
(a) Show that
. o
Autg(En) = {1d} 1 n ?s odd,
{id,7,} = Z/2 if n is even,
where 7, has composition order 2.
(b) Let E = | J E, <R. Show that Autg(E) = {id}.
n=1
(c) Display the 6 subfields of Ei2 in a diagram.
(d) Which of the subfields in part (¢) contain the element 21/2 4 21/3 7



CHAPTER 3

Algebraic extensions of fields

3.1. Algebraic extensions
Let L/K be an extension of fields. From Theorem 2.9(ii), recall the following notion.

3.1. DEFINITION. An element t € L is algebraic over K if there is a non-zero polynomial
p(X) € K[X] for which p(t) = 0.

Notice in particular that for an element ¢ € K, the polynomial p(X) = X — ¢ € K[X]
satisfies p(t) = 0, so ¢ is algebraic over K.
Theorem 2.9 allows us to characterize algebraic elements in other ways.

3.2. PROPOSITION. Lett € L. Then the following conditions are equivalent.

(i) t is algebraic over K.
(ii) The evaluation homomorphism e;: K[X] — L has non-trivial kernel.
(iii) The extension K(t)/K is finite dimensional.

3.3. DEFINITION. If t € L is algebraic over K then by Proposition 3.2,
kere; = (minpolyKyt(X)) # (0),
where minpoly . ,(X) € K[X] is an irreducible monic polynomial called the minimal polynomial

of t over K. The degree of minpolth(X) is called the degree of t over K and is denoted
degy t.

3.4. PROPOSITION. Ift € L is algebraic over K then
[K(t) : K] = degminpolyy ,(X) = degg t.
ProOF. This follows from Theorem 2.9(ii). O

3.5. REMARK. Suppose that ¢ € L is algebraic over K and that p(X) € kere; with
deg p(X) = deg minpolyx ,(X). Then minpoly  +(X) | p(X) and so

p(X) = uminpoly g ,(X)
for some v € K. In particular, when p(X) is monic,
p(X) = minpoly g ,(X).
We will often use this without further comment.
3.6. ExaMPLE. Consider C/Q. The minimal polynomial of v/2 € C over Q is
minpolyq 5(X) = X2 -2
ProOF. Clearly X? — 2 € kere_ s since (v2)? — 2 = 0. By Example 2.4,

deg minpolyq 5(X) = [Q(v2) : Q] = 2,

hence
minpolyq 5(X) = X% -2 O

3.7. ExaMPLE. Consider C/Q. The minimal polynomial of i € C over Q is X2 + 1.

PROOF. Clearly X2 + 1 € kere; since i + 1 = 0. As [Q(i) : Q] = 2, we have
minpolyg ,(X) = X241 O

31
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3.8. ExaMPLE. Consider C/Q. Find the minimal polynomial of the primitive 6-th root of
unity, (g € C over Q.

SOLUTION. Recall from Example 1.44 that (g is a root of the irreducible cyclotomic poly-
nomial
Ps(X)=X2-X +1.
Then ®4(X) € kereg, so minpolyg ¢, (X) | ®6(X). Since ®¢(X) is irreducible and monic, we
must have
minpolyq ¢, (X) = ®(X)
and so degg (s = 2. O

3.9. ExampLE. Consider C/Q. Find the minimal polynomial of v/2 4+ v/3 over Q.

SOLUTION. Notice that

C(VB-V2)(VB+V2)
N e NV, T R

So we have

ﬁ:%(wm\@)—(f—ﬂ)) €Q(V2+V3),
V3= ((V2+V3)+ (V3 VD)) eQ(vVZ+V3)

hence Q(\/i, \/3) < Q(\/i—i— \/3) Since Q(\/i—i— \/3) < Q(ﬂ, \/3) we must have
Q2 +v3) = Q(v2,V3).
Referring to Example 2.10 we see that
degg (V2 +V3) = 4.

Let us find a non-zero polynomial in kere 5, s <Q[X].
Referring to Example 2.10 or Proposition 2.12 we see that v/2 + v/3 ¢ Q(v/2), hence

One polynomial in kere 5, = AQ(v2)[X] is
(X — (V2+V3)(X - (V2-V3)) = X? —2V2X — 1.
Since this is monic and of degree 2,

minpoly g,z vayva(X) = X7 = 2v2X — 1.

Similarly,

minpolyQ(ﬁ)’iﬁJr\/g(X) =X24+2V2X — 1.
Consider

p(X) = minpolyg 3 z,5(X) minpolyg .z _z./5(X)

= (X% —2v2X —1)(X?+2V2X — 1)

= X*-10X? +1.
Then p(v/2 + v/3) = 0 so p(X) € kereg;. Since degp(X) = 4 and p(X) is monic, we have

minpolyg 5, 5(X) = X! —=10X* +1. O

3.10. DEFINITION. Let L/K be a finite extension. An element u € L for which L = K (u) is
called a primitive element for the extension L/K.

Later we will see that when char K = 0 every finite extension L/K has a primitive element.

3.11. LEMMA. Let L/K be a finite extension and uw € L. Then u is a primitive element for
L/K if and only if degyu = [L : K].
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PrROOF. K(u) C L is a finite dimensional K-vector subspace. Then K(u) = L if and only
dimg K (u) = dimg L. Since degy u = dimg K (u) and [L : K] = dimg L the result follows. [

Sometimes the minimal polynomial of an element in an extension is introduced in a different
but equivalent way.

3.12. PROPOSITION. Lett € L be algebraic over K. Then

J(t) ={f(X) € K[X]: f(t) =0} € K[X]
is an ideal which is principal and has an irreducible monic generator q(X) € K[X]. In fact,
q(X) = minpoly g ,(X).
PROOF. It is easy to see that J(t) < K[X]| and therefore J(¢) = (
generator ¢(X). To see that ¢(X) is irreducible, suppose that ¢(X) = ¢1(X)ga(X) with
degq;(X) < degq(X). Now as ¢i(t)g2(t) = 0, we must have ¢1(t) = 0 or ¢2(t) = 0, hence
q1(X) € I(t) or g2(X) € I(t). These possibilities give ¢(X) | ¢ (X ) or ¢(X) | ¢g2(X) and
so degq(X) < degq(X) or degq(X) < degqga(X), contradicting the above assumption that

deg g;(X) < degq(X).
The irreducible monic polynomial minpoly  ;(X) is in I(t) so q(X) | minpoly ,(X) and

q(X)) for some monic
)

therefore ¢(X) = minpoly  ,(X). O
The next Lemma will often be useful.
3.13. LEMMA. Let L/K be an extension and suppose that uy,...,u, € L are algebraic. Then
K(ui,...,un)/K is a finite extension.
PRrROOF. Use induction on n together with Proposition 2.8 and Theorem 2.6(ii). O

We now come to an important notion for extensions.

3.14. DEFINITION. The extension L/K is algebraic or L is algebraic over K if every element
t € L is algebraic over K.

3.15. PROPOSITION. Let L/K be a finite extension. Then L/K is algebraic.

PRrOOF. Let t € L. Since the K-vector space L is finite dimensional, when viewed as
elements of this vector space, the powers 1,¢,...,t",... must be linearly dependent over K.
Hence for suitable coefficients ¢; € K not all zero and some m > 1 we have

co+cit+ -+ emt™ =0.
But this means that ¢ is algebraic over K. O

3.16. PROPOSITION. Let M/L and L/K be algebraic extensions. Then the extension MK
1s algebraic.

PrROOF. Let u € M. Then u is algebraic over L, so there is a polynomial
p(X)=po+mX + - +pn X" € L[X]

of positive degree with p(u) = 0. By Lemma 3.13, the extension K(po,...,pm)/K is finite and
so is K(po, .-, pm,u)/K(po,...,pm). By Theorem 2.6(ii), K(po,...,pm,u)/K is finite, so by
Proposition 3.15, u is algebraic over K. O

3.17. DEFINITION. For an extension L/K, let
L8 = {t € L : t is algebraic over K} C L.

3.18. PROPOSITION. For an extension L/K, L*® is a subfield containing K and L8 /K is
algebraic.

ProoOF. Clearly K C L8, We must show that L*& < L.

Let u,v € L8, Then by Lemma 3.13, K (u,v)/K is a finite dimensional extension, hence
every element of K (u,v) is algebraic over K. In particular, u + v and uwv are in K(u,v) and if
u# 0, u"!is also in K(u,v). Therefore u + v, uv and u~! are all algebraic over K. O
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3.19. EXAMPLE. In the extension C/Q we can consider Cals < C which is called the subfield
of algebraic numbers. Similarly, in the extension R/Q the subfield

R — CaleNR < C

consists of all the real algebraic numbers. Elements of C—C?8 are called transcendental complex
numbers; examples are e and 7. The sets C?8 and R?8 are both countable, whereas C and R
are uncountable, so there are in fact many more transcendental numbers but it can be hard to
determine whether a given number is transcendental or not. A more usual notation for C&
is Q since this is the algebraic closure of Q which will be discussed later. When dealing with
algebraic extensions of Q we will usually work with subfields of Q = C?8.

We end this section with a technical result.

3.20. PROPOSITION. Let K(u)/K be a finite simple extension. Then there are only finitely
many subeztensions F/K < K(u)/K.

PRrOOF. Consider the minimal polynomial minpoly ,(X) € K[X]. Now for any subexten-
sion F/K < K(u)/K we can also consider
minpoly ., (X) = co + 1 X + -+ + 1 X1+ XF € F[X],

which divides minpoly ,(X) in F[X]. The Unique Factorization Property 1.33 implies that
minpoly  ,,(X) has only finitely many monic divisors in K(u)[X], so there are only a finite
number of possibilities for minpoly s, (X). Now consider Fy = K(co,c1,. .., c,1), the extension
field of K generated by the coefficients of minpoly ., (X). Then Fy < F' and so minpoly,(X) €
Fy[X] is irreducible since it is irreducible in F'[X]; hence minpoly ., (X) = minpoly g, ,,(X). We
have
[ (u) : F] = deg minpoly, (X) = deg minpoly p, ,(X) = [K(w) : Fy],

hence F' = Fy.

This shows that there are only finitely many subextensions F/K < K (u)/K, each of which
has the form K(ag,a1,...,ap_1), where

ag+ a1 X +---+ ag_le_l + XK (S K(u)[X]
is a factor of minpoly ., (X) in K (u)[X]. O

3.2. Splitting fields and Kronecker’s Theorem

We can now answer a basic question. Let K be a field and p(X) € K[X] be a polynomial
of positive degree.

3.21. QUESTION. Is there an extension field L/K for which p(X) has a root in L?
A stronger version of this question is the following.

3.22. QUESTION. Is there an extension field E/K for which p(X) factorizes into linear factors
in E[X]?

3.23. DEFINITION. p(X) € K[X] splits in E/K or over E if it factorizes into linear factors
in E[X].

Of course, if we have such a field E then the distinct roots wui, ..., ug of p(X) in E generate
a subfield K (uy,...,u;) < E which is the smallest subfield of FE that answers Question 3.22.

3.24. DEFINITION. Such a minimal extension of K is called a splitting field of p(X) over K
and we will sometimes denote it by K(p(X)) or K.

We already know how to answer Question 3.21.

3.25. THEOREM (Kronecker’s Theorem: first version). Let K be a field and p(X) € K[X]
be a polynomial of positive degree. Then there is a finite extension L/K for which p(X) has a
root in L.
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PrOOF. We begin by factorizing p(X) € K[X] into irreducible monic factors ¢;(X) together
with a constant factor c:

p(X) = cqi(X) - g (X).

)
Now for any j we can form the quotient field K[z]/(¢;(X)) which is a finite dimensional (simple)
extension of K and in which the coset X + (¢;(X)) satisfies the equation

3 (X + (¢;(X))) = 0+ (g;(X)).

Hence p(X) has a root in K[z]/(g;(X)).
Of course, this construction is only interesting if ¢;(X) to has degree bigger than 1 since a
linear polynomial already has a root in K. g

To answer Question 3.22 we iterate this construction. Namely, having found one root u; in
an extension L;/K we discard the linear factor X — u; and consider the polynomial

p(X)
X — U1l

pl(X): ELl[X].

We can repeat the argument to form a finite extension of L; (and hence of K) containing a
root of p1(X) and so on. At each stage we either already have another root in L; or we need to
enlarge the field to obtain one.

3.26. THEOREM (Kronecker’s Theorem: second version). Let K be a field and p(X) € K[X]
be a polynomial of positive degree. Then there is a finite extension E/K which is a splitting
field of p(X) over K.

In practise we often have extension fields ‘lying around in nature’ containing roots and we
can work inside of these. When working over Q (or any other subfield of C) we can always find
roots in C by the Fundamental Theorem of Algebra. We then refer to a subfield of C which is
a splitting field as the splitting subfield.

3.27. EXAMPLE. Find a splitting field E/Q for p(X) = X*—4 over Q and determine [E : Q).

SOLUTION. Notice that
p(X) = (X?—2)(X? +2),

so first we adjoin the roots /2 of (X2 — 2) to form Q(v/2, —v2) = Q(v/2) which gives an
extension Q(v/2)/Q of degree 2.

Next consider the polynomial X2 + 2 € Q(v/2)[X]. The complex roots of X2 + 2 are ++/2i
and these are not real, so this polynomial is irreducible in Q(v/2)[X]. Hence we need to consider

Q(v2,v2i) = Q(v/2,i) and the extension Q(v/2,7)/Q(v/2) which has degree 2.
C

QWVE, i)

adjoin roots of X2 +2| 2

Q(v2)

2

adjoin roots of X2 — 2

Q

Thus the splitting subfield of p(X) over Q in C is Q(v/2,4) and [Q(v/2,i) : Q] = 4. O
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Of course we could have started by first adjoining roots of X2 + 2 and then adjoining roots
of X? — 2, thus giving the tower

C
-
Q(v2,1)
adjoin roots of X2 — 22

Q(v2i)

adjoin roots of X2 4+ 2|2

Q

An important point is that if a splitting field exists inside of a given extension field F//K, it is
unique as a subfield of F'.

3.28. PROPOSITION. Let F/K be an extension field and p(X) € K[X]. If E1,Ey < F are
splitting subfields for p(X) over K then Ey = Es.

PROOF. Let uq,...,ur € F be the distinct roots of p(X) in F. By definition, K (uq, ..., ux)
is the smallest subfield containing K and all the u;. But K(uy,...,u;) must be contained in
any splitting subfield, so £} = K(uq,...,u;) = Es. O

Since we will frequently encounter quadratic polynomials we record a useful result on roots
of such polynomials. Recall that p(X) = aX? + bX + ¢ € K[X] is quadratic if a # 0 and its
discriminant is

A=b —4dace K.
The proof of the next result is the standard one which works provided 2 has an inverse in K,
i.e., when char K # 2.
3.29. PROPOSITION. Let K be a field of characteristic different from 2. Then the quadratic
polynomial p(X) = aX? + bX + ¢ € K[X] has
e no roots in K if A is not a square in K;
e one root —b/(2a) = —(2a)~'b if A = 0;
e two distinct Toots
—-b+4d
2a
if A = 62 for some non-zero § € K.

(20) (b +9), 2= (20) (b 9),

In particular, the splitting field of p(X) over K is K if A is a square in K and K (§) otherwise,
where 4 is one of the two square roots of A in some extension of K such as the algebraic closure
K which we will introduce in Section 3.4.

3.30. ExAMPLE. Find a splitting field E/Q for p(X) = X3 —2 over Q and determine [E : Q).

SOLUTION. By the Eisenstein Test 1.38, p(X) is irreducible over Q. One root of p(X) is

V2 € R so we adjoin this to Q to form an extension Q(+/2)/Q of degree 3. Now
p(X) = (X — V2)(X? + V2X + (V2)?)

and the second factor has the non-real complex roots /2 (3, v/2 (2 lying in the extension
Q(V/2,¢3)/Q(3/2) of degree 2. So the splitting subfield of X3 — 2 in C over Q is Q(v/2,(3)
with [Q(V/2,(3) : Q] = 6.

An alternative strategy would have been to adjoin one of the other roots /2 (3 or \3@@
first. We could also have begun by adjoining (3 to form the extension Q((3)/Q, but none of
the roots of p(X) lie in this field so the extension Q(3/2,(3)/Q((3) of degree 3 is obtained by

adjoining one and hence all of the roots.
Figure 3.1 shows all the subfields of the extension Q(v/2,¢3)/Q. O
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C

FIGURE 3.1. The subfields of Q(v/2,(3)/Q

3.3. Monomorphisms between extensions

3.31. DEFINITION. For extensions F/K and L/K, let Monog (L, F') denote the set of all
monomorphisms L — F which fix the elements of K.

3.32. REMARK. We always have Aut g (F) € Monog (F, F') and Monog (F, F') is closed under
composition but is not always a group since elements are not necessarily invertible. If F/K is
finite, then we do have Monog (F, F') = Autg (F') since every injective K-linear transformation
is surjective and so invertible.

We will also use the following notation.
3.33. DEFINITION. Let F'/K be an extension and p(X) € K[X]. Set
Roots(p, F') = {u € F : p(u) = 0},

the set of roots of p(X) in F. This is always a finite set which may of course be empty (this
happens precisely when p(X) has no root in K).

Suppose that p(X) € K[X] is an irreducible polynomial which we might as well assume is
monic, and let F'//K be an extension. Then if ¢ € F is a root of p(X), the evaluation homomor-
phism &;: K[X] — F factors through the quotient monomorphism ¢;: K[X]/(p(X)) — F
whose image is K (t) < F. Of course, there is one such monomorphism for each root of p(X) in
F. If we fix one such root to and identify K[X]/(p(X)) with K (ty) via £,, then each root of
p(X) in F gives rise to a monomorphism ¢; = &, o}f;)l: K(ty) — F for which ¢(tg) = t.

= =1
Pt —EtOEtO

K (to) = K[X]/(p(X))

F

Notice that if ¢: K[X]/(p(X)) — F is any homomorphism extending the identity function
on K, then the coset X + (p(X)) must be sent by ¢ to a root of p(X) in F, hence every such
homomorphism arises this way. This discussion is summarized in the following result.

3.34. PROPOSITION. Let F/K be a field extension. Let p(X) € K[X] be an irreducible
polynomial with to € F be a root of p(X). Then there is a bijection

Roots(p, F) «— Monog (K (t), F)
given by t «—— p, where pi: K(tg) — F has the effect ¢i(to) = t.
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3.35. EXAMPLE. Show that Monog(Q(v/2), C) has two elements.

SOLUTION. We have Q(v/2) = Q[X]/(X?2 — 2) where X2 — 2 is irreducible over Q. Hence
the Q-monomorphisms we want send v/2 to ++v/2 which are the complex roots of X2 — 2. In
fact both possibilities occur, giving monomorphisms id, a:: Q(v/2) — C, where

ala+bv2) =a—bV2.
We can replace C by Q(v/2) to obtain
Monog(Q(v3), €) = Monog(Q(v), Q(v)) = Autg(Q(v3)).

We will see that this is not always true. O

3.36. EXAMPLE. Show that Monog(Q(+/2),C) has 3 elements but Monog(Q(+/2), Q(+/2))
contains only the identity function.

SOLUTION. Here mimpolyQ %(X) = X3 — 2 and there are 3 complex roots v/2, /2,

V2¢2. As two of these roots are not real, Monog(Q(+/2), Q(+/2)) contains only the identity
since Q(v/2) < R.

Each of the above roots corresponds to one of the subfields Q(v/2), Q(¥/2(3) or Q(+/2¢2)
of C and there are 3 monomorphisms ag, a1, az: Q(3/2) — C given by

ag(a+bV2 + ¢(V2)?) = a+ bv2 + ¢(V/2)%,
a1(a+bV2+¢(V2)?) = a+bV2¢ + c(V2)2 G,
ag(a+bV2 4 ¢(V2)?) = a+bV2¢2 + ¢(V2)? (3.
These mappings have images
20Q(V2) = Q(V2), aiQ(V2)=Q(V2¢), 22Q(V2) =Q(V2). 0

3.37. PROPOSITION. Let F'//K and L/K be extensions.

(i) For p(X) € KI[X], each monomorphism «a € Monog (L, F) restricts to a function
ap: Roots(p, L) — Roots(p, F') which is an injection.
(ii) If « € Monog (L, L), then oy: Roots(p, L) — Roots(p, L) is a bijection.

ProoOF. (i) For u € Roots(p, L) we have
ple(u)) = a(p(u)) = (0) = 0,

so a maps Roots(p, L) into Roots(p, F'). Since « is an injection its restriction to Roots(p, L) C L
is also an injection.

(ii) From (i), oyp: Roots(p, L) — Roots(p, L) is an injective function from a finite set to itself,
hence it is also surjective by the Pigeon Hole Principle. Thus ay,: Roots(p, L) — Roots(p, L)
is a bijection. O

Part (ii) says that any automorphism of L/K permutes the set of roots in L of a polynomial
p(X) € K[X]. This gives us a strong hold on the possible automorphisms. In the case of finite,
or more generally algebraic, extensions it is the key to understanding the automorphism group
and this is a fundamental insight of Galois Theory.

3.38. EXAMPLE. Determine Monog(Q(v/2, (3),C).

SOLUTION. We have already met the extension Q(+/2, (3)/Q in Example 3.30 and we will
make use of information from there. We build up the list of monomorphisms in stages.

First consider monomorphisms that fix ¥/2 and hence fix the subfield Q(4/2). These form
the subset

MonoQ(%)(Q(%, (3),C) € Monog(Q(V/2, (3),C).
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We know that Q(v/2, (3) = Q(+v/2)(¢3) and that (3 is a root of the irreducible cyclotomic
polynomial ®3(X) = X2+ X +1 € Q(+/2)[X]. So there are two monomorphisms id, ag fixing
Q(¥/2), where g has the effect
(& = )
O[O . 2 .
3 — (3

Next we consider monomorphisms that send /2 to /2 (3. This time we have 2 distinct ways to
extend to elements of Monog(Q(V/2, ¢3), Q(v/2, (3)) since again we can send (3 to either (3 or
(2. The possibilities are

ar: (\375 — \3@(3> o - (\W — 57543)

G o— G ) U\ — G

Finally we consider monomorphisms that send /2 to /2 (2. There are again two possibilities

e (V2 26 (82— V2

P\G — G ) T\ — g )
These are all 6 of the required monomorphisms. It is also the case here that

MODOQ(Q(\S/i C3)7C) = MOHOQ(Q(%v C3)>Q(\3f27 C3)) = Ath(@(\s/i C3))7

so these form a group. It is a nice exercise to show that Autg(Q(V/2, ¢3)) = S3, the symmetric
group on 3 objects. It is also worth remarking that | Autg(Q(V/2, (3))| = [Q(V/2, ¢3) : Q. O

We end this section with another useful result.

3.39. PROPOSITION. Let L/K be an extension and o € Monog (L, L). Then « restricts to
an automorphism a®8: L& — [21g

PROOF. Suppose that u € L8 say p(u) = 0 for some p(X) € K[X] of positive degree.

Then
pla(u)) = a(p(u)) = a(0) =0,

SO v maps L?8 C [ into itself and therefore gives rise to a restriction a?lg: 28, 1218 which
is also a monomorphism. We must show that a8 is a bijection by showing it is surjective.

Let v € L& and suppose that ¢(v) = 0 for some ¢(X) € K[X] of positive degree. Now
Roots(q, L) # 0 since it contains v, and it is also finite. Then «,: Roots(q, L) — Roots(g, L)
is a bijection by Proposition 3.37(ii), hence v = a,(w) = a(w) for some w € Roots(g, L) C L.
This shows that v € im a and so o' is surjective. O

3.4. Algebraic closures

An important property of the complex numbers is that C is algebraically closed.

3.40. THEOREM (Fundamental Theorem of Algebra for C). Every non-constant polynomial
p(X) € C[X] has a root in C.

3.41. COROLLARY. Ewvery non-constant polynomial p(X) € C[X] has a factorization
p(X) =c(X —w) - (X —ua),
where c,u1,...,uq € C and this is unique apart from the order of the roots u;.
It is natural to pose the following question.
3.42. QUESTION. Let K be a field. Is there an algebraically closed field F' containing K7
By taking F2!8 we might as well ask that such a field be algebraic over K.

3.43. DEFINITION. Let K be a field. An extension F'/K is called an algebraic closure of K
if F' is algebraic over K and algebraically closed.

3.44. THEOREM. Let K be a field.
(i) There is an algebraic closure of K.
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(ii) Let Fy and Fy be algebraic closures of K. Then there is an isomorphism ¢: Fi — F
which fizes the elements of K.

K

N

Fyooo Lo > I

Hence algebraic closures are essentially unique.

PROOF. See [3] for a proof using Zorn’s Lemma (see Axiom 3.48) which is logically equiva-
lent to the Aziom of Choice. g

Because of the uniqueness we usually fix some choice of algebraic closure of K and write K
or K&l referring to it as the algebraic closure of K. We are already familiar with the example
C = C. There are some immediate consequences of Theorem 3.44. We will temporarily write
E; = E» to indicate that for extensions Ej/K and Es/K there is an isomorphism E; — E»
fixing the elements of K.

3.45. PROPOSITION. Let K be a field.

(i) If L/K is an algebraic extension, then L = K.
(i) If L/K is an extension, then so is L/K and (L)¥® = K.

ProoOF. (i) By Proposition 3.16, every element of L is algebraic over K. Since L is alge-
braically closed it is an algebraic closure of K.
(ii) Every non-constant polynomial in (L)*#[X] has a root in L; indeed, by Proposition 3.16,
all of its roots are in fact algebraic over K since (L)% is algebraic over K. Hence these roots

lie in ()28, which shows that it is algebraically closed. O

For example, we have Q = C?8 and R = C.

There is a stronger result than Theorem 3.44(ii), the Monomorphism Extension Theorem,
which we will find useful. Again the proof uses Zorn’s Lemma which we state below. First we
need some definitions.

3.46. DEFINITION. A partially ordered set (X, <) consists of a set X and a binary relation
=< such that whenever z,y,z € X,

o XU,
o if z X yand y < z then x X z;
o if x <X yand y < x then x = y.

(X, ) is totally ordered if for every pair z,y € X, at least one of x < y or y < x is true.

3.47. DEFINITION. Let (X, <) be a partially ordered set and Y C X.

e y € X is an upper bound forY if for every y €Y, y 7.
e An element x € X is a mazximal element of X if

rxy — y=m=w.

3.48. AXiOM (Zorn’s Lemma). Let (X, <) be a partially ordered set in which every totally
ordered subset has an upper bound. Then X has a mazimal element.

3.49. THEOREM (Monomorphism Extension Theorem). Let M/K be an algebraic extension
and L/K < M/K. Suppose that po: L — K is a monomorphism fixing the elements of K.
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Then there is an extension of @ to a monomorphism p: M — K.

L

K K

PROOF. We consider the set X consisting of all pairs (F, ), where F//L < M /L and 0: F —
K extends . We order X using the relation < for which (Fy,01) < (Fy,6s) whenever [} < Fy
and 6y extends ;. Then (X, <) is a partially ordered set.

Suppose that Y C X is a totally ordered subset. Let

Then F/L < M/L. Also there is a function §: F — K defined by

O(u) = 6(u)
whenever u € F for (F,0) € Y. It is straightforward to check that if u € F’ for (F',¢') € Y
then

0'(u) = 0(u),
so 0 is well-defined. Then for every (F,0) € Y we have (F,0) < (F,0), so (F,f) is an upper
bound for Y. By Zorn’s Lemma there must be a maximal element of X, (Mj, 6y).

Suppose that My # M, so there is an element u € M for which u ¢ My. Since M is algebraic
over K it is also algebraic over My, hence u is algebraic over My. If
minpoly s, ,(X) = ao +--- + a1 X" X"
then the polynomial
f(X) = 90(@0) + -+ Qo(an_l)Xn_l + X" e (eoMo)[X]

is also irreducible and so it has a root v in K (which is also an algebraic closure of 6yMy <
K). The Homomorphism Extension Property 1.22 of the polynomial ring My[X] applied to
the monomorphism 6y: My — K yields a homomorphism 6): My[X] — K extending 6
and for which 6y(u) = v. This factors through the quotient ring Mq[X]/(minpoly,, ,(X)) to
give a monomorphism ) : My(u) — K extending 6y. But then (My,0y) < (Mo(u),6)) and
(Mo, 00) # (Mo(u), (), contradicting the maximality of (Mp,6p). Hence My = M and so we
can take ¢ = 0. O

3.50. EXAMPLE. Let u € K and suppose that p(X) = minpoly,(X) € K[X]. Then for
any other root of p(X), v € K say, there is a monomorphism ¢, : K(u) — K with ¢, (u) = v.
This extends to a monomorphism ¢: K — K.

3.51. DEFINITION. Let u,v € K. Then v is conjugate to u over K or is a conjugate of u
over K if there is a monomorphism ¢: K — K for which v = p(u).

3.52. LEMMA. Ifu,v € K, then v is conjugate to u over K if and only if minpoly  ,(v) = 0.
PROOF. Suppose that v = o(u) for some ¢ € Monog (K, K). If
minpoly s ,,(X) = ap + a1 X + -+ + ag_1 X+ x4

then
ap 4+ aru + -+ ag_ut u? =0
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and so
ag + a1v + - -- +ad_1vd_1 —|—Ud = (p(ao +aju+--- +Gd_1ud_1 +ud) —0.

The converse follows from Example 3.50. O

3.5. Multiplicity of roots and separability

Let K be a field. Suppose that f(X) € K[X] and v € K is a root of f(X), i.e., f(u) =0.
Then we can factor f(X) as f(X) = (X — u)f1(X) for some f1(X) € K[X].

3.53. DEFINITION. If fi(u) = 0 then w is a multiple or repeated root of f(X). If fi(u) # 0
then u is a simple root of f(X).

We need to understand more clearly when an irreducible polynomial has a multiple root
since this turns out to be important in what follows. Consider the formal derivative on K[X],
i.e., the function 0: K[X] — K[X] given by

O(f(X)) = f1(X) = a1+ 202X + -+ + dag X",
where f(X) =ap+ a1 X +as X2+ -+ agX®* with aj € K.
3.54. PROPOSITION. The formal derivative 0: K[X| — K[X] has the following properties.

(i) 0 is K-linear.
(ii) 9 is a derivation, i.e., for f(X),g(X) € K[X],

A(f(X)g(X)) = 0(f(X))g(X) + f(X)I(9(X)).

(iii) If char K =0, then ker 0 = K and 0 is surjective.
(iv) If char K = p > 0, then

ker 0 = {h(X?) : h(X) € K[X]}
and im O is spanned by the monomials X* with p{ (k + 1).

PROOF. (i) This is routine.
(ii) By K-linearity, it suffices to verify this for the case where f(X) = X" and ¢g(X) = X* with
r,s > 0. But then

X)) = (r+s)X ™ =r X" IX5 4 X" X1 = 9(X")X® + X"0(X5).
(iil) If f(X) = ap + a1 X + a2 X%+ -+ + agX? then
f(X)=0 <= a1=2a3=---=dag=0.

Sod(f(X)) =0ifand only if f(X) = ap € K. It is also clear that every polynomial g(X) € K[X]
has the form ¢(X) = 9(f(X) where f(X) is an anti-derivative of g(X).
(iv) For a monomial X™, 9(X™) = mX™ ! and this is zero if and only if p | m. Using this we
see that

dao+ a1 X +asX?+ - +a9X) =0 <=  a, =0 whenever p{m.
Also, im 9 is spanned by the monomials X* for which (X**1) # 0, which are the ones with
p1(k+1). O

We now apply the formal derivative to detect multiple roots.

3.55. PROPOSITION. Let f(X) € K[X] have a root u € L for some extension L/K. Then u
is a multiple root of f(X) if and only if f(X) and f'(X) have a common factor of positive degree
in K[X] which vanishes at u.

Proor. Working in L[X], let f(X) = (X —u)fi(X). Then
F(X) = f(X) + (X = u) f1(X),

so f(u) = f1(u). Hence u is a multiple root if and only if f(X) and f'(X) have a common
factor in L[X] (and hence in K[X] by Proposition 3.12) and which vanishes at w. O
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3.56. COROLLARY. If f(X) is irreducible in K[X] then a root u is a multiple root if and
only if f'(X) = 0. In particular, this can only happen if char K > 0.

3.57. COROLLARY. If char K =0 and f(X) is irreducible in K[X], then every root of f(X)
s simple.

3.58. EXAMPLE. For n > 1, show that each of the roots of f(X) = X" — 1 in C is simple.
SOLUTION. We have f/(X) = 9(X™ — 1) = nX""!, so for any root ¢ of f(X),

71(¢) = n¢™t £ 0. 0
3.59. EXAMPLE. Show that 2i is a multiple root of f(X) = X* +8X?2 + 16.

SorLuTION. We have f/(X) = 4X3+16X. Using Long Division and the Euclidean Algorithm
we find that ged(f(X), f/(X)) = X244, where 2i is also a root of X2+4. Hence 2i is a multiple
root of f(X). In fact, X* + 8X? + 16 = (X2 +4)2, so this is obvious. O

3.60. EXAMPLE. Let p > 0 be a prime and suppose that L/F), is an extension. Show that
each of the roots of f(X) = X? — 1 in L is multiple.

SOLUTION. We have f/(X) = 9(XP — 1) = pXP~! = 0, so if ¢ is any root of f(X) then
1(¢) = 0. Later we will see that 1 is the only root of X? — 1. O

3.61. DEFINITION. An irreducible polynomial p(X) € K[X] is separable over K if every
root of p(X) in an extension L/K is simple. By Corollary 3.56, this is equivalent to requiring
that p/(X) # 0. If u € L is a multiple root of p(X), then the multiplicity of u in p(X) is the
maximum m such that p(X) = (X — u)™¢(X) for some ¢(X) € L[ X].

3.62. PROPOSITION. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) € K[X] has distinct roots uy,...,ux € K, then the multiplicities of the u; are
equal. Hence in K[X],

p(X) = (X =)™ (X — )™,
where c € K and m > 1.

PROOF. Let u € K be a root of p(X) and suppose that it has multiplicity m, so we can
write p(X) = (X — u)™p1(X) where p1(X) € K(u)[X] and p;(u) # 0.

Now let v € K be any other root of p(X). By Proposition 3.34, there is a monomorphism
¢yt K(u) — K for which ¢p,(u) = v. When p(X) is viewed as an element of K(u)[X], the
coefficients of p(X) are fixed by ¢,. Then

@ (X —u)"p1(X)) = (X —u)"p1(X),
and so
(X —v)"p1(X) = (X —u)"p1(X),

where p1(X) € K[X]is obtained applying ¢, to the coefficients of p1 (X). Now by Corollary 1.34,
(X — o)™ must divide p;(X) in K[X], and therefore the multiplicity of v must be at least m.
Interchanging the roles of u and v we find that the multiplicities of u and v are in fact equal. [

3.63. COROLLARY. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) € K[X] has distinct roots uy, . ..,ur € K which are all simple then in K[X],
p(X) = (X —u) - (X —up),

where ¢c € K and k = degp(X).

3.64. COROLLARY. Let K be a field and let uw € K. Then the number of distinct conjugates
of u is
deg minpoly x ,, (X)

)

m
where m is the multiplicity of u in minpoly k. ,(X).
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3.65. DEFINITION. An algebraic element u € L in an extension L/K is separable if its
minimal polynomial minpolyx ,(X) € K[X] is separable.

3.66. DEFINITION. An algebraic extension L/K is called separable if every element of L is
separable over K.

3.67. EXAMPLE. An algebraic extension L/K of a field of characteristic 0 is separable by
Corollary 3.57.

3.68. DEFINITION. Let L/K be a finite extension. The separable degree of L over K is
(L : K) = |Monok (L, K)|.
3.69. LEMMA. For a finite simple extension K(u)/K,
(K(u) : K) = |Roots(minpoly ,,, K)|.
If K(u)/K 1is separable, then [K(u) : K| = (K(u) : K).
PROOF. This follows from Proposition 3.34 applied to the case L = K. O

Any finite extension L/K can be built up from a succession of simple extensions
(3.1) K(uw)/K, K(ui,u2)/K(u1), - ,L=K(uy,...,ug)/K(ui,...,ug_1).
So we can use the following to compute (L : K) = (K (u1,...,u) : K).

3.70. PROPOSITION. Let L/K and M/L be finite extensions. Then

(M:K)=(M:L)(L:K).

PROOF. For a € Monog (M, K) let ay, € Monog (L, K) be its restriction to L. By the
Monomorphism Extension Theorem 3.49, each element of Monog (L, K) extends to a monomor-
phism M — K, so every element 3 € Monok (L, K) has the form 8 = aj for some a €
Monog (M, K). Since (L : K) = | Monog (L, K)|, we need to show that the number of such « is
always (M : L) = | Monor (M, K)|.

So given 8 € Monog (L, K), choose any extension to a monomorphism B : K — K; by
Proposition 3.39, 3 is an automorphism. Of course, restricting to M < K we obtain a monomor-
phism M — K. Now for any extension 3': M — K of 8 we can form the composition
BloB': M —s K; notice that if u € L, then

B 0B (u) = 571 (B(u) = u,

hence B*I o3 € Monor (M, K). Conversely, each v € Monoy, (M, K) gives rise to a monomor-
phism 3o~: M — K which extends 3. In effect, this shows that there is a bijection

{extensions of 3 to monomorphism a M — K} «— Mono (M, K),

so (M : L) = |Monor (M, K)| agrees with the number of extensions of 3 to a monomorphism
M — K. Therefore we have the desired formula (M : K) = (M : L)(L : K). O

3.71. COROLLARY. Let L/K be a finite extension. Then (L : K) | [L: K].

ProoF. If L/K is a simple extension then by Propositions 3.62 and 3.34 we know that this
is true. The general result follows by building up L/K as a sequence of simple extensions as
in (3.1) and then using Theorem 2.6(ii) which gives

[L : K] = [K(ul) . K] [K(ul,UQ) : K(ul)] s [K(ul, e ,uk) . K(ul, e ,uk_l)].
For each k, (K (u1,...,ux) : K(u1,...,ug_1)) divides [K(u1,...,ug) : K(ui,...,ux_1)], so the
desired result follows. O

3.72. PROPOSITION. Let L/K be a finite extension. Then L/K is separable if and only if
(L:K)=][L:K].
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PROOF. Suppose that L/K is separable. If K < F < L, then for any u € L, u is alge-
braic over F, and in the polynomial ring F[X] we have minpolyy ,(X) | minpoly s, (X). As
minpoly  ,,(X) is separable, so is minpolyp ,(X), and therefore L/E is separable. Clearly £/K
is also separable. We have (L : K) = (L : E)(F : K) and [L : K] = [L : E|[E : K|, so to
verify that (L : K) = [L : K] it suffices to show that (L : E) =[L: E] and (E : K) = [E : K].
Expressing L/K in terms of a sequence of simple extensions as in (3.1), we have

(L : K) = (K(ul) : K)(L : K(ul,...,uk,l)),

[L : K] = [K(ul) : K][L : K(ul,...,uk,l)].
Now we can apply Lemma 3.69 to each of these intermediate separable simple extensions to
obtain (L: K) = [L: K].

For the converse, suppose that (L : K) = [L : K]. We must show that for each v € L, u is
separable. For the extensions K (u)/K and L/K(u) we have (L : K) = (L : K(u)) (K(u) : K)
and [L: K] =[L: K(u)][K(u) : K]. By Corollary 3.71, there are some positive integers r, s for
which [L: K(u)] =r(L: K(u)) and [K(u) : K| = s(K(u) : K). Hence

(L: K(u)(K(u): K)=rs(L: K(u)(K(u): K),
which can only happen if r = s = 1. Thus (K(u) : K) = [K(u) : K] and so u is separable. [

3.73. PROPOSITION. Let L/K and M/L be finite extensions. Then M/K is separable if and
only if L/K and M/L are separable.

ProoF. If M/K is separable then [M : K] = (M : K) and so by Proposition 3.70,
[M:L|L:K|=(M:L)L:K).

This can only happen if [M : L] = (M : L) and [L: K] = (L : K), since (M : L) < [M : L] and
(L: K) <L :K]. By Proposition 3.72 this implies that L/K and M /L are separable.

Conversely, if L/K and M/L are separable then [M : L] = (M : L) and [L: K] = (L : K),
hence

[M:K|=[M:L|[L:K|=(M:L)(L:K)=(M:K).

Therefore M /K is separable. O

3.6. The Primitive Element Theorem

3.74. DEFINITION. For a finite simple extension L/K, an element u € L is called a primitive
element for the extension if L = K (u).

3.75. THEOREM (Primitive Element Theorem). Let L/K be a finite separable extension.
Then L has a primitive element.

PROOF. The case where K is a finite field will be dealt with in Proposition 5.16. So we will
assume that K is infinite.

Since L is built up from a sequence of simple extensions it suffices to consider the case
L = K(u,v). Let p(X), ¢(X) € K[X] be the minimal polynomials of v and v over K. Suppose
that the distinct roots of p(X) in K are u = uy,...,u,, while the distinct roots of ¢(X) are
v =1w1,...,0s. By the separability assumption, r = degp(X) and s = deg ¢(X).

Since K is infinite, we can choose an element ¢t € K for which

th =
V5 — v
whenever j # 1. Then taking w = u+tv € L, we find that w # u; + tv; whenever j # 1. Define
the polynomial (of degree r)
h(X) =pw—-tX) e K(w)[X] C L[X].
Then h(v) = p(u) = 0, but h(v;) # p(u;) = 0 for any j # 1 by construction of ¢, so none of the
other v; is a zero of h(X).

Now since the polynomials h(X),q(X) € K(w)[X] have exactly one common root in K,
namely v, by separability their greatest common divisor in K (w)[X] is a linear polynomial which

u
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must be X — v, hence v € K(w) and so u = w — tv € K(w). This shows that K (u,v) < K(w)
and therefore K(w) = K(u,v). O

3.76. COROLLARY. Let L/K be a finite separable extension of a field of characteristic 0.
Then L has a primitive element.

PROOF. Since Q < K, K is infinite and by Example 3.67 L/K is separable. O

To find a primitive element we can always use the method suggested by the proof of Theo-
rem 3.75, however a ‘try it and see’ approach will often be sufficient.

3.77. EXAMPLE. Find a primitive element for the extension Q(v/3,1)/Q.

SOLUTION. Consider v/3+i. Then working over the subfield Q(v/3) < Q(v/3,4) we find that

i ¢ Q(v3) <R and

(X — (V3+0))(X — (V3—1) = X? - 2V3X +4 € Q(v3)[X],
hence

X2 - 2V3X +4= minpolyQ(\/g)j\/gH(X).

Now taking

(X2 —2V3X +4)(X? +2V3X +4) = X* —4X? + 16 € Q[X],
we see that minpolyq g,,(X) | (X* —4X? 4+ 16) in Q[X]. Notice that

since (v3 414)7' € Q(v/3 + ). Hence
VB= (VB +i)+ (VB=1)), i=((VE+i) - (VB—i)),

are both in Q(v/3 + i), showing that Q(v/3,4) < Q(v/3 + i) and so Q(v/3,i) = Q(v/3 + ). Thus
we must have degminpolyq /5,,;(X) = 4, and so minpolyg  z,,(X) = X4 —4Xx? 4+ 16. O

There is a general phenomenon illustrated by Example 3.77.
3.78. PROPOSITION. Let u € K be separable over K. Then
minpoly ¢, (X) = (X — ai1(u)) - - (X — aq(u)),

where aq, ..., aq are the elements of Monog (K (u), K). In particular, the polynomial
(X = an(w) - (X — ag(u)) € K[X]

is in K[X] and is irreducible therein.

PROOF. Since K (u) is separable then by Lemma 3.52,

d = deg minpoly . ,(X) = [K(u) : K] = (K (u) : K). O
In Example 3.77 we have
[Q(v3,1): Q] = [Q(V3,4) : Q(V3)][Q(V3) : Q] =2-2=4.
There are four monomorphisms ay: Q(v/3,i) — Q(v/3,1) given by
a1 = id, 042:(\?3 : _?), 043:<\§§ : _;/g), gy = ({g : __\ig>
Then
ax(V3+i)=(V3—1), as(V3+i)=(—V3+1i), as(V3+i)=(—V3—1i),

" (X —V3—i)(X —V3+i)(X +V3—9)(X +V3+i)= X' —4X? +16 € Q[X].
Hence this polynomial is irreducible. So we have [Q(v/3+1) : Q] = 4 and Q(v/3 +i) = Q(V/3,4).
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3.7. Normal extensions and splitting fields

Let K be an algebraic closure for the field K and let E/K < K/K be a finite extension. If
¢ € Monog (F, K), then by Remark 3.32, pE = FE if and only if pF < E.

3.79. DEFINITION. E/K is normal if pE = E for every ¢ € Monog (E, K).

3.80. REMARK. If E/K is a normal extension then whenever an irreducible polynomial
p(X) € K[X] has a root in E, it splits in E since by Lemma 3.52 each pair of roots of p(X) is
conjugate over K and one can be mapped to the other by a monomorphism K — K which
must map F into itself.

3.81. THEOREM. A finite extension E/K is normal if and only if it is a splitting field over
K for some polynomial f(X) € K[X].

PROOF. Suppose that E/K is normal. Then there is a sequence of extensions
K <K(u) < K(uj,ug) <--- < K(up,...,up) = F
Construct a polynomial by taking
f(X) = minpob’l{ﬂu (X) minpOlyKﬂu (X)--- miﬂpOlYK,un(X)'

Then by Remark 3.80, f(X) splits in E. Also, E is generated by some of the roots of f(X).
Hence E is a splitting field for f(X) over K.

Now suppose that E is a splitting field for g(X) € K[X], so that E = K (v1,...,v), where
v1,. ..,y are the distinct roots of g(X) in E. Now any monomorphism 6 € Monog (E, K) must
map these roots to 6(v1),...,0(vr) which are also roots of g(X) and therefore lie in E (see
Proposition 3.34). Since 6 permutes the roots v;, we have

OFE = 0K (v1,...,v) = K(0(v1),...,0(v)) = K(v1,...,v;) = E. O

3.82. COROLLARY. Let E/L and L/K be finite extensions. If E/K is normal then E/L is
normal.

PrOOF. If FE is the splitting field of a polynomial f(X) € K[X] over K, then FE is the
splitting field of f(X) over L. O

These result makes it easy to recognize a normal extension since it is sufficient to describe it
as a splitting field for some polynomial over K. In Chapter 4 we will see that separable normal
extensions play a central role in Galois Theory, indeed these are known as Galois extensions.

Exercises on Chapter 3

3.1. Prove Proposition 3.2.
3.2. Finding splitting subfields £ < C over Q and determine [E : Q] for each of the following

polynomials.

p(X) = X*"—X%41, pa(X) = X0—2, ps(X)=X"42, py(X) = X 4+5X3+10X2+10X+5.
[Hint: for ps(X), consider ps(Y — 1) € Q[Y].]

3.3. Prove that Autg(Q(V/2, (3)) & S3, the symmetric group on 3 elements, as claimed in the

solution of Example 3.38. [Hint: work out the effect of each automorphism on the three roots of
the polynomial X3 — 2.]

3.4. Let k be a field of characteristic chark = p > 0 and k(T") be the field of rational functions
in T over k. Show that the polynomial g(X) = X? — T € k(T')[X] is irreducible and has a

multiple root in k(7T"). How does g(X) factor in k(7")[X]?

3.5. Find primitive elements for the extensions Q(v/5,v/10)/Q, Q(v/2,4)/Q, Q(V/3,i)/Q,
Q(v/3,4)/Q, in each case finding it minimal polynomial over Q. [Hint: look for elements of
high degree over Q, or use the method of proof of Theorem 3.75.]
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3.6. Prove the following converse of Proposition 3.20:

Let L/K be a finite extension. If there are only finitely many subextensions F/K < L/K,
then L/K s simple, i.e., L = K(w) for some w € L.
[Hint: First deal with the case where L = K(u,v), then use induction on n to prove the general
case L = K(uq,...,up).]

3.7. Let K be a field. Show that every quadratic (i.e., of degree 2) extension E/K is normal.
Is such an extension always separable?

3.8. Let f(X) € Q[X] be an irreducible polynomial of odd degree greater than 1 and having
only one real root u € R. Show that Q(u)/Q is not a normal extension.



CHAPTER 4

Galois extensions and the Galois Correspondence

In this Chapter we will study the structure of Galois extensions and their associated Galois
groups, in particular we will explain how these are related through the Galois Correspondence.
Throughout the chapter, let K be a field.

4.1. Galois extensions

4.1. DEFINITION. A finite extension FE/K is a (finite) Galois extension if it is both normal
and separable.

From Section 3.5 we know that for such a Galois extension E/K, [E: K| = (E : K) and also
every monomorphism ¢ € Monog (E, K) maps F into itself, hence restricts to an automorphism
of E which will be denoted ¢, .

Also, by the Monomorphism Extension Theorem 3.49, every automorphism o € Aut k(E) ex-
tends to a monomorphism E — K fixing elements of K. So there is a bijection

Monog (E, K) «— Autg(E)
and we have
(4.1) |Autg (E)| = (F: K)=[F: K]
4.2. DEFINITION. For a finite Galois extension E/K, the group
Gal(E/K) = Autg (F)

is called the Galois group of the extension or the Galois group of E over K. The elements of
Gal(E/K) are called (Galois) automorphisms of E/K.

Notice that Equation (4.1) implies
(4.2) |Gal(E/K)|=(F: K)=[E: K].
We can also reformulate the notion of conjugacy introduced in Definition 3.51.

4.3. DEFINITION. Let E/K a finite Galois extension and u,v € E. Then v is conjugate to u
if there is a ¢ € Gal(E/K) for which v = p(u); we also say that v is a conjugate of u.

It is easy to see that for u,v € K, there is a finite Galois extension E/K in which v is
a conjugate of u if and only v is a conjugate of u over K in the old sense. Here is a slightly
different way to understand this. First notice that every element ¢ € Auty (K, K) restricts to a
monomorphism £ — K whose image is contained in F, hence gives rise to an automorphism
vp: E — E. Similarly, if F'//K is any finite normal extension with F < F, every automorphism
0: F — F restricts to an automorphism 95: E — FE. The proof of the next result is left as
an exercise.

49
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4.4. PROPOSITION. If E/K is a finite Galois extension, then the function

Autg (K, K) — Autg(E,E); ¢+ ¢p
is a surjective group homomorphism. If F/K < K/K is any finite normal extension with E < F
then there is a surjective group homomorphism

Auty (F,F) — Autg(E,E); 0 +— 6%,
Furthermore, for ¢ € Autk (K, K) we have

(or)E = ¢5-
4.2. Working with Galois groups

Let E/K be a finite Galois extension. Then we know that E is a splitting field for some
polynomial over K since F/K is normal. We also know that E is a simple extension of K
since F'/K is separable. Hence E is a splitting field for the minimal polynomial of any primitive
element for £/ K; this minimal polynomial has degree [F : K]. It is often convenient to use these
facts to interpret elements of the Galois group as permutations of the roots of some polynomial
which splits over F.

4.5. EXAMPLE. Describe the Galois group Gal(Q(v/2,v/3)/Q) as a subgroup of the group of
permutations of the roots of (X? —2)(X? — 3) € Q[X].

SOLUTION. We have
[Q(vV2,V3): Q] = [Q(V2,V3) : Q(V2)] [Q(v2) : Q] = 4,
and the following non-trivial elements of the Galois group together with the element identity
a1 = id:

V2 — V2 V2 — V2 V2 — V2
= e — 2 v — e
Tl v3— VBl TP VB — =B T VB — 3

VB 3 V3 — B3 V3 — B3

Writing the roots in the list v/2, —v/2, v/3, —v/3 and numbering them from 1 to 4, these auto-
morphisms correspond to the following permutations in S4 expressed in cycle notation:

ag — (12), az3«——(34), ag+— (12)(34). O

4.6. EXaAMPLE. Using a primitive element u for the extension, describe the Galois group
Gal(Q(v/2,v3)/Q) as a subgroup of the group of permutations of the roots of minpolyg ,(X) €
Q[X].

SoLuTION. We have Q(v/2, \/§) = @(ﬂ + 1/3) and the conjugates of u = /2 + /3 are
++/2 4+ /3. Listing these as

V2+ V3, V23, —V2+ V3, —V2 -3,

and after numbering them accordingly, we find the correspondences
ay — (13)(24), a3«—(12)(34), oaa—(14)(23). O

Next we summarize the properties of Galois groups that can be deduced from what we
have established so far. Recall that for an extension F/K and a polynomial f(X) € K[X],
Roots(f, F') denotes the set of roots of f(X) in F.

4.7. RECOLLECTION. Recall that an action of a group G on a set X is transitive if for every
pair of elements x,y € X, there is an element g € G such that y = gz (so there is only one
orbit); the action is faithful or effective if for every non-identity element h € G, there is a
element z € X such that hz # 2.

4.8. THEOREM. Let E/K be a finite Galois extension. Suppose that E is the splitting field
of a separable irreducible polynomial f(X) € K[X]| of degree n. Then the following are true.
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(i) Gal(E/K) acts transitively and faithfully on Roots(f, E).
(ii) Gal(E/K) can be identified with a subgroup of the group of permutations of Roots(f, E).
If we order the roots uy, ..., u, then Gal(E/K) can be identified with a subgroup of S,,.
(iii) | Gal(E/K)| divides n! and is divisible by n.

As we have seen in Examples 4.5 and 4.6, in practise it is often easier to use a not necessarily
irreducible polynomial to determine and work with a Galois group.

4.9. EXAMPLE. The Galois extension Q((g)/Q has degree [Q((s) : Q] = 4 and it has the
following automorphisms apart from the identity:
a:g— G, B:lsr— (8, vl (.
If we list the roots of the minimal polynomial
minpolyg (X) = ®5(X) = X' 41

in the order (s, ¢3, (3, Cg , we find that these automorphisms correspond to the following permu-
tations in Sy:
— (12)(34), B (13)(24), ~v—(14)(23).
So the Galois group Gal(Q({s)/Q) corresponds to
(

)
{id, (12)(34), (13)(24), (14)(23)} < Sy.

Noticing that
1
(g = ﬁ ﬂ
we easily find that v/2,i € Q((g); hence Q(v/2,i) < Q(Cg). Since [Q(v/2,4) : Q] = 4, we have
Q(v2,i) = Q(Cg). Notice that Q(v/2,1) is the splitting field of f(X) = (X2 — 2)(X?2 + 1) over
Q. Now list the roots of f(X) in the order v/2, —v/2,i, —i, and observe that

V3 2 V3 2

a: _¢2 — f (1234, 8 _\f — \? —(12),
V2 — V2

v _7:2 — __‘f — (34).

In this description, the Galois group Gal(Q((g)/Q) = Gal(Q(v/2,i)/Q) corresponds to the
subgroup

{id, (1 2), (3 4),(12)(34)} < Su.

While it can be hard to determine Galois groups in general, special arguments can sometimes
be exploited.

4.10. EXAMPLE. Suppose that f(X) = X3 + aX? + bX + ¢ € Q[X] is an irreducible cubic
and that f(X) has only one real root. Then Gal(Q(f(X))/Q) = Ss.

PROOF. Let u; € R be the real root of f(X) and let ug,us be the remaining complex
roots. Then Q(f(X)) = Q(u1,u2,u3) and in fact [Q(f(X)) : Q] = 6 since [Q(f(X)) : Q] | 6
and ug ¢ Q(u;) < R. Hence Gal(Q(f(X))/Q) is isomorphic to a subgroup of S3 and so
Gal(Q(f(X))/Q) = S3 since the orders agree. We also have Q(f(X)) NR = Q(u1).

The Galois group Gal(Q(f(X))/Q) contains an element of order 3 which corresponds to a
3-cycle when viewed as a permutation of the roots uy, us, us; we can assume that this is (1 2 3).
It also contains an element of order 2 obtained by restricting complex conjugation to Q(f(X));
this fixes u; and interchanges ug, us, so it corresponds to the transposition (2 3). O
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4.11. REMARK. Such examples occur when the cubic polynomial f(X) has local maximum
and minimum at real values ¢4 and c_ with f(c4), f(c—) > 0or f(c4), f(c—) < 0. This happens
for example with f(X) = X3 —3X + 3 which has local extrema at +1 and f(1) = 1, f(—1) = 5.

Given a Galois extension E/K, we will next study subextensions L/K < E/K and sub-
groups I' < Gal(F/K), focusing on the relationship between objects of these types.

4.3. Subgroups of Galois groups and their fixed fields

Let E/K a Galois extension and suppose that I' < Gal(E/K). Consider the subset of
elements of F fixed by I,

E'={ucE:Vyerl, y(u) =u}.
4.12. LEMMA. EU < E is a subfield of E containing K.
ProOF. For u,v € E' and v €T,
Y(u+v) =(w) +7y(0) =utv, y(w)=7y(u)y(v) =uv.
Also, if u # 0,
Y ) =)t =

Finally, if t € K then (t) =, s0 K < ET. O

4.13. DEFINITION. E' < E is the fized subfield of T.

By Proposition 3.73, the extensions E/E" and E' /K are separable. E/E" is also normal,
so this is a Galois extension; we will identify its Galois group. Notice that

[E:EY] = (E:E") =|Gal(E/E")).

Now each element of Gal(E/E") is also an element of Gal(E/K) and Gal(E/E") < Gal(E/K).
Notice that by definition T' < Gal(E/E"), so Lagrange’s Theorem implies that |I'| divides
| Gal(E/E")|. In fact we have

4.14. PROPOSITION. For T' < Gal(E/K), we have Gal(E/E") =T and the equations

[E:EY] = |Gal(E/EY)| = 1|, [E':K]= |Gal‘(§/K)

PROOF. We know that E/E" is separable, so by the Primitive Element Theorem 3.75 it is
simple, say £ = E"(u). Now let the distinct elements of I be 4 = id, ¥a, ..., 5, where h = |T|.
Consider the polynomial of degree h

F(X) = (X =u)(X = 2(u)) - (X =y (u)) € BIX].

Notice that f(X) is unchanged by applying any -, to its coefficients since the roots v;(u) are
permuted by ;. Hence, f(X) € EV[X]. This shows that

E: EY) = [E"(u): BY) < h = |T).
Since I' < Gal(E/E"Y), we also have
h=|l|<|Gal(E/EY)| = [E: E"].
Combining these two inequalities we obtain
[E: E'] = | Gal(E/E")| = |T| = h
and therefore I' = Gal(E/E"). O
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4.4. Subfields of Galois extensions and relative (Galois groups

Let E/K a Galois extension and suppose that L/K < E/K (i.e., K < L < E). Then E/L
is also a Galois extension whose Galois group Gal(E /L) is sometimes called the relative Galois
group of the pair of extensions E/K and L/K. The following is immediate.

4.15. LEMMA. The relative Galois group of the pair of extensions L/K < E/K is a subgroup
of Gal(E/K), i.e., Gal(E/L) < Gal(E/K), and its order is | Gal(E/L)| = [E : L].

4.16. PROPOSITION. Let L/K < E/K. Then L = EG2(E/L),

PrOOF. Clearly L < EG2(E/L)  Suppose that u € E — L. By Theorem 4.8(i), there is
an automorphism @ € Gal(E/L) such that 6(u) # u, hence u ¢ EC(P/L) This shows that
EGal(E/L) < L and therefore EGal(E/L) — T, O

We need to understand when Gal(E/L) < Gal(E/K) is actually a normal subgroup. The
next result explains the connection between the two uses of the word normal which both ulti-
mately derive from their use in Galois theory.

4.17. PROPOSITION. Let E/K be a finite Galois extension and L/K < E/K.

(i) The relative Galois group Gal(E/L) of the pair of extensions L/K < E/K is a normal
subgroup of Gal(E/K) if and only if L/K is a normal extension.
(ii) If L/K is normal and hence a Galois extension, then there is a group isomorphism

Gal(E/K)/Gal(E/L) = Gal(L/K); aGal(E/L) — ay,.

PROOF. (i) Suppose that Gal(E/L) <« Gal(E/K), i.e., for all a € Gal(E/L) and § €
Gal(E/K), we have Ba3~! € Gal(E/L). Now if u € L, then for any v € Gal(E/K) and
a € Gal(E/L), v(u) € E satisfies

ay(u) = v(v ay(u) = y(u),

since v 'ay € Gal(E/L); hence y(u) € ESNE/L) = [, By the Monomorphism Extension
Theorem 3.49, every monomorphism L — K fixing K extends to a monomorphism F — K
which must have image E, so the above argument shows that L/K is normal.

Conversely, if L/K is normal, then for every ¢ € Gal(E/K) and v € L, ¢(v) € L, so for
every 6 € Gal(E/L), 0(p(v)) = ¢(v) and therefore

0 1 0p(v) = v.
This shows that ¢~ 10p € Gal(E/L). Hence for every ¢ € Gal(E/K),
¢ Gal(E/L)p~! = Gal(E/L),

which shows that Gal(E/L) <« Gal(E/K).
(ii) If @ € Gal(E/K), then aL = L since L/K is normal. Hence we can restrict o to an
automorphism of L,
a,: L—L; o(u)=au).
Then «, is the identity function on L if and only if a € Gal(E/L). It is easy to see that the
function

Gal(E/K) — Gal(L/K); avr—a),
is a group homomorphism whose kernel is Gal(E/L). Thus we obtain an injective homomor-
phism

Gal(E/K)/Gal(E/L) — Gal(L/K)
for which
[E : K]
[E: L]
Hence this homomorphism is an isomorphism. g

| Gal(B/K)/ Gal(E/L)| =

=I[L: K] =|Gal(L/K)|.
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4.5. The Galois Correspondence and the Main Theorem of Galois Theory

We are now almost ready to state our central result which describes the Galois Correspon-
dence associated with a finite Galois extension. We will use the following notation. For a finite
Galois extension E/K, let

S8(E/K) = the set of all subgroups of Gal(E/K);

F(E/K) = the set of all subextensions L/K of E/K.
Each of these sets is ordered by inclusion. Since every subgroup of a finite group is a finite
subset of a finite set, §(E/K) is also a finite set. Define two functions by

Pp/r: F(E/K) — S(E/K); Pp/k(L) = Gal(E/L),

Op/k: S(E/K) — F(E/K); Op/(I) =E".

4.18. THEOREM (Main Theorem of Galois Theory). Let E/K be a finite Galois extension.
Then the functions ®p/k and O i are mutually inverse bijections which are order-reversing.

F(B/K) :fé S(E/K)
E/K

Under this correspondence, normal subextensions of E/K correspond to normal subgroups of
Gal(E/K) and vice versa.

PrOOF. We know from Proposition 4.16 that for an extension L/K in F(E/K),
Op/k(®p k(L)) = Opyx (Gal(E/L)) = ESE/D = L.
Also, by Proposition 4.14 for H € §(E/K) we have
Op/k(Op/k(T) = P/ (E") = Gal(E/E") =T.

This shows that ®p/x and O,k are mutually inverse and so are inverse bijections.

Let L1/K, Ly/K € F(E/K) satisty L1/K < Lo/K. Then Gal(E/Ls) < Gal(E/L1) since
L; C Lyandsoif a € Gal(E/Lg) then « fixes every element of L;. Hence (I)E/K(L2> < (I)E/K(Id)
and so P/ reverses order.

Similarly, if I'1, Ty € §(E/K) and I'; < I'y, then E'2 < B since if w € E'2 then it is fixed
by every element of 'y (as I'y is a subset of I'y). Hence O,k reverses order. O

There is an immediate consequence of the Main Theorem 4.18 which is closely related to
Proposition 3.20.

4.19. COROLLARY. Let E/K be a finite Galois extension. Then there are only finitely many
subextensions L/ K < E/K.

PROOF. Since the set §(E/K) is finite, so is F(E/K). O

When dealing with a finite Galois extension F/K, we indicate the subextensions in a diagram
with a line going upwards indicating an inclusion. We can also do this with the subgroups of
the Galois group Gal(E/K) with labels indicating the index of the subgroups. In effect, the
Galois Correspondence inverts these diagrams.

4.20. EXAMPLE. Figure 4.1 shows the Galois Correspondence for the extension of Exam-
ple 3.30.

As noted at the end of Example 3.38, the Galois group here is Gal(Q(V/2,¢3)/Q) = S3. It
is useful to make this isomorphism explicit. First take the 3 roots of the polynomial X3 — 2 for
which E is the splitting field over Q; these are v/2, /2 (3, v/2 §§ which we number in the order
they are listed. Then the monomorphisms id, ag, a1, o, ag, o, extend to automorphisms of E,
each of which permutes these 3 roots in the following ways given by cycle notation:

ap=1(23), a1=(123), a]=(12), ax=(132), afh=(13).
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Q(V2,3)

v

v F
Gal(E/Q(¥2))  Gal(E/Q(V2¢s)  Gal(B/Q(¥2¢2)) °

{id}

FIGURE 4.1. The Galois Correspondence for E = Q(3/2,(3)/Q

We find that
Gal(E/Q(G)) = {id, a1, a0} ={id, (123),(132)},  Gal(E/Q(V?2)) = {id, a0} ={id, (2 3)},
Gal(E/Q(V2¢3)) = {id, ap} ={id, (1 3)}, Gal(E/Q(V2(3)) = {id, o} ={id, (1 2)}.

Notice that {id, (12 3),(1 3 2)}<S3 and so Q(¢3)/Q is a normal extension. Of course Q((3)
is the splitting field of X3 — 1 over Q.

4.6. Galois extensions inside the complex numbers and complex conjugation

When working with Galois extensions contained in the complex numbers it is often useful
to make use of complex conjugation as an element of a Galois group. Let E/Q be a finite Galois
extension with £/Q < C/Q. Setting Fr = RN E, we have Q < Fr < E.

4.21. PROPOSITION. Complex conjugation (): C — C restricts to an automorphism of E
over Q, ( )g/o: £ — E. Furthermore,

(i) (7)E/Q agrees with the identity function if and only if Ex = E.
(ii) If Er # E, then

((e) =1{id,( e} =Z/2,
hence, Eg = E\O)ere) and [E: Er| = 2.

ProOF. Let u € E. As E/Q is normal, minpolyg ,(X) € Q[X] splits over E, so all of its

complex roots lie in E. But () permutes the roots of this minimal polynomial. Therefore ()
maps F into itself.
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(i) For z € C, Z = z if and only if z € R.
(ii) Here | (( )g/q)| =2, and

EOEm) = {ue B 5= u} = Fg. e

We will usually write () rather than ()g,g when no confusion seems likely to result.

4.22. ExAMPLE. Consider the cyclotomic extension Q((g)/Q where

mi/4 _ 1 1.

From Example 4.9 we know that

Q) =Q(v2,0),  [QGs) : Q =4,
and we easily see that

Q(és)r = Q(V2).

4.7. Galois groups of even and odd permutations

We have seen that for a monic separable polynomial f(X) € K[X] of degree n, the Galois
group of its splitting field E over K can naturally be thought of as a subgroup of the symmetric
group S,,, where we view the latter as permuting the roots of f(X). It is reasonable to ask when
Gal(E/K) < A, rather than just Gal(E/K) < S,,.

We first recall an interpretation of the sign of a permutation o € S,,, sgno = +1. For each
pair 4,j with 1 < 7 < j < n, exactly one of the inequalities o (i) < o(j) or o(j) < o(i) must
hold and the ratio ((j) — o(4))/(j — i) is either positive or negative. It is easily verified that
the right-hand side of the following equation must have value +1 and so

(4.3) sgno = H M.
- J—1
1<i<jsn
Note that this is sometimes used as the definition of sgno.
Suppose that f(X) factorizes over E as

n

FX) = (X =) (X —un) = [ (X —w).

i=1
Here uq,...,u, € E are the roots of f(X); as we have assumed that f(X) is separable, the u;
are distinct.

4.23. DEFINITION. The discriminant of f(X) is
Discr(f(X)) = [] (4 —w)®€E.

1<i<j<n

Notice that Discr(f(X)) # 0 since u; # uj if i # j.
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4.24. REMARK. There is an explicit formula for computing Discr(f(X)) is terms of its
coefficients. For polynomials
p(X)=ap+ar X+ +apn X", ¢qX)=ar+au X+ - +a, X",

their resultant is the (m 4+ n) x (m + n) determinant (with n rows of a;’s and m rows of b;’s)

ag A1 e am 0 0
0 a ap ....... am 0 0
0 0 a a1 ....... am

(4.4) Res(p(X), ¢(X)) = bop b1 ....... bn O 0"

0 by by ....... bn 0 0

0 0 by by ovviii.. by,
Then if f(X) is monic with d = deg f(X),
(4.5) Discr(f(X)) = (—1)%4=D/2Res(f(X), f/(X)).

So for example,

Discr(X® 4 pX +¢) = (—1)>Res(X? + pX + ¢,3X> + p)

qg p 0 1 0
0 g p 01
=(=)|lp 0 3 0 0| =—4p®—274%
0 p O30
0 0 p 0 3
Here are some low degree examples of discriminants obtained with the aid of Maple.
n=2: Discr(ag + a1 X + X?) = —4ag + a?.
n=23: Discr(ag + a1 X + as X? + X3) = —27a0 + 18agpaias + a1a2 4a2a0 — 4a1

n=4: Discr(ag + a1 X + asX? + a3 X3 + X*) = 18aza’ay — 6a3a3ag — 192aza1a3 — 27a]
+ 144asa3a? + 144apa’ay + 25603 — 4a3a’ — 128a3a2 + 16a3a0 — 4a3a?

+ 18a3ayazag — 80azaa3ag — 27a3a0 + a3a3a? — 4a3aiag.

n =>5: Discr(ag + a1 X + a2X2 + a3X3 + a4X4 + X5) = 2250@4@%@8 — 36aoaiai’ — 128(1%@‘11
+ 2000a0a3a1 900a1a3a0 2500&3@4@1 50a0a4a1 900a4a2a0 27a4a] — 3750a3a2a8
+ 356&3 az asaiag + 560@3&%613&% — 2050a3a2a0a4a1 — 80a3a2a4a13 — 630a33a2a4a02
+ 825a3a2a0 + 16a3a2a0 + 2000a2a4a0 6a2a4a1 128a2a4a0 + 16a2a4a0 — 4a2a4a%
+ 108a3a0 + 108a5ag — T46asazapas’ar? — 27a3a3 + 256a4a0 4a3a2a1 + 144azaa’
+ 144a2ataz + 3125(13 + 25643 — 72a§a2a1a0 + 18azasaia’ + 560a3a2a0a1 + 16a3a1

3

+ 18&3&230,4&12 — 72a3a24a4a0 + 144@32a2a4 a02 — 192&440,1&3&02 — 630a3ag3a1a0

+ 24@230,42&10,0 + a32a22a42a12 - 6@430,12@320,0 — 80@3@220,43@10,0 — 40,32&230,42@0
+ 2250a1a3a3 — 1600azaiay — 192a4a‘11a2 — 1600agaias — 4a3aiaj — 27a§aia%
+ 1020@42a32a02a1 + 18a33a2a42a0a1 + 160a2a43a02a1 + 144a2a44a0a12
+ 24aqai?as®ag + 1020agagas®ar? + 160agasar>as.
So for example,

Discr(X® 4 as X* + ag) = a3(3125a¢ + 256a3), Discr(X® + a1 X + ag) = 25643 + 3125ag.
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4.25. PROPOSITION. For every o € Gal(E/K),
o(Discr(f(X))) = Discr(f(X)).
Hence Discr(f(X)) € EGIE/K) = K
PRroOF. For 0 € Gal(E/K) < S,,, we have

oDiser(F(X))) = [ oty =)= ] @et)—tew)

1<i<jsn 1<i<jsn
Now for each pair %, j with 7 < j,
G(Uj - Uz) = Ug(5) = Us(i)s
and by Equation (4.3)
(4.6) [T Wog) = o) =seno [[ (w—w)=E) [ (u—w).
1<i<j<n 1<i<jsn 1<i<j<n
Hence o(Discr(f(X))) = Discr(f(X)). Since EG(E/K) = K we have Discr(f(X)) € K. O
Now let

s(fX) = J[ (w-w)ek.

1<i<j<n
Then 6(f(X))? = Discr(f(X)), so the square réots of Discr(f(X)) are £5(f(X)). Now consider
the effect of o € Gal(E/K) on §(f(X)) € E. By Equation (4.6),
o(6(f(X))) = sgno 6(f(X)) = +0(f(X)).
If 6(f(X)) € K, this means that sgno = 1. On the other hand, if §(f(X)) ¢ K then
K(5(7(X))) = BSE/<0A
Of course |Gal(E/K)/ Gal(E/K) N A,| =2.
4.26. PROPOSITION. The Galois group Gal(E/K) < S,, is contained in A,, if and only if
Discr(f(X)) is a square in K.
4.27. EXAMPLE. For the polynomials of Examples 6.40 and 6.42 we obtain
Discr(X5 — 35X% 4 7) = —4611833296875 = —3% - 56 . 74 . 29 . 157,
§(X° —35X44+7) =+45%.3.7%.1/3-29- 157 = +18375V/13659 ¢ Q;
Discr(X° + 20X + 16) = 1024000000 = 2'¢ . 55,
§(X° 420X +16) = +285° € Q.

4.8. Kaplansky’s Theorem

In this section we give a detailed account of the Galois theory of irreducible rational poly-
nomials f(X) = X* + aX? + b € Q[X]. The following result describes the Galois groups that
occur and the proof introduces some useful computational techniques.

4.28. THEOREM (Kaplansky’s Theorem). Let f(X) = X4 +aX? + b € Q[X] be irreducible.
(i) If b is a square in Q then Gal(Q(f(X))/Q) =X Z/2 x Z/2.

(i) If b(a® — 4b) is a square in Q then Gal(Q(f(X))/Q) = Z/4.

(iii) If neither b nor b(a? — 4b) is a square in Q then Gal(Q(f(X))/Q) = Ds.

PROOF. Let g(X) = X2 +aX + b € Q[X]. Notice that g(X) must be irreducible since
otherwise f(X) would factorize, hence (a? — 4b) is not a square in Q. Setting d = (a® — 4b) € Q
and taking ¢ to be a square root of d (so § ¢ Q), we find that the roots of g(X) are (—a=+6)/2 ¢ Q.
Then the roots of f(X) are +u, +v, where

o (atd) 5 (ca-d)

2 7 2 7
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so the splitting field of f(X) over Q is E = Q(u,v) which contains the quadratic extension
Q(9)/Q. Since deg f(X) = 4, we also have 4 | [E : Q]. In fact, since E is obtained by at most 3
successive quadratic extensions we also have [E : Q] | 8.

(i) We have

2
2 _ 99 0 —d_4b
(uv)* = u*v* = yami

hence wv is a square root of b which is in Q. Setting ¢ = uv € Q, we find that v = ¢/u € Q(u).
This shows that £ = Q(u) and we have the following Galois tower.

E=Q(u)

2

Q(9)

2

Q

In particular [E : Q] = 4 = | Gal(E/Q)|. Notice that for the Galois extension Q(4)/Q there
must be a normal subgroup N < Gal(E/Q) with

Q) = EY, Gal(Q(9)/Q) = Gal(E/Q)/N.

Hence there is an element o € Gal(£/Q) for which o(d) = —d. This element must also have
the effects o(u) = v and o(v) = tu. Given u we might as well choose v so that o(u) = v.
There is also an element 7 € N for which 7(u) = —u and we also have 7(v) = —v. Notice that
if 0(v) = —u then easy calculation shows that

To(v) =07(v) =u, 70(§) =07(d)=—0,

hence we might as assume that o(v) = w since if necessary we can replace our original choice
by 70o.
We now have

= b,

ouw)=—, 7(u)=-u, 7o(u)=o07(u)=-

c c
u u
These satisfy

2

0? = 72 = (07)? = id = the identity, o7 = T0.
This shows that
Gal(Q(f(X))/Q) = Gal(E/Q) = {id, o, 1,07} 2 Z/2 x Z/2 = the Klein 4-group.
(ii) If bd is a square in Q, then
(uvd)? = u?v?d = bd,
which is a square in Q, so we can write uvd = ¢ € Q or equivalently v = ¢/(ud) € Q(u) since
Q(9) < Q(u). This shows that £ = Q(u,v) = Q(u) and again we have a Galois tower

E=Q(u)
2

Q(5)

2

Q

with [F: Q] =4 = | Gal(E/Q)].
Since Q(0)/Q is Galois there is an element o € Gal(E/Q with ¢(d) = —0 and this has the
effect o(u) = tv; given u we might as well choose v so that o(u) = v. Notice that
c c

o(ud)  wé -

_u7



60 4. GALOIS EXTENSIONS AND THE GALOIS CORRESPONDENCE

so 0?(u) = —u. This shows that
Gal(Q(f(X))/Q) = Gal(E/Q) = {id, 0, 0%03} = Z/4 = a cyclic group of order 4.

(iii) Suppose that d, b and bd are not squares in Q. By an easy calculation we find that (uv)? = b,
so uwv € E is a square root of b in E. Suppose that uv € Q(d); then uv = p+¢d for some p, ¢ € Q.
By squaring we obtain

b= (p* + ¢*d) + 2pq9,

and so pg = 0. We cannot have ¢ = 0 since this would imply that b was a square in Q; if
p = 0 then b = ¢?d and so bd = (qd)?, implying that bd was a square in Q. Thus we have
Q(uv) NQ(9) = Q. A similar discussion shows that

Q(uvd) N Q(3) = Q = Q(uwd) N Quv).

So we have a Galois tower which includes the following subfields.

E =Q(u,v)
Q(uv, )
Q(9) Q(uv) Q(uvd)
\ 2 /
2 2
Q
Choose
a € Gal(E/Q(uv)) < Gal(E/Q)

so that «(d) = —6. By renaming —v to v if necessary, we may assume that v = «a(u) and so
u = a(v). Notice that o? = id.

Choose

B € Gal(E/Q(d)) < Gal(E/Q)

with f(uv) = —uv. We must have either f(u) = —u or §(v) = —v, so by interchanging +4 if
necessary we can assume that 3(u) = —u and 8(v) = v. Notice that 4% = id.
Choose

v € Gal(E/Q(68,uv)) < Gal(E/Q)

so that y(u) = —u. Then we must have v(v) = —v since y(uv) = uv. Notice that 2 = id.
Setting o = a3 we find o(u) = —v and o(v) = u. Then 0? = v and ¢ has order 4. Also,

aca = fof =oc""t.

The eight elements

id, o, 7, o1, a0, vy, ao?

form a group isomorphic to the dihedral group of order 8, Dg. Therefore we have

Gal(Q(f(X))/Q) = Gal(E/Q) = Ds,
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and [E : Q] = 8. The corresponding Galois tower is
E = Q(ua ’U)

4.29. EXAMPLE. We have the following Galois groups:

Gal(Q(X*+1)/Q) =2 7Z/2 x Z/2; Gal(Q(X*+4X? +2)/Q) = 7Z/4;
Gal(Q(X* +2X% 4+ 2)/Q) = Dg.

Exercises on Chapter 4

4.1. If f(X) € K[X] is a separable polynomial, prove that the splitting field of f(X) over K is
a finite Galois extension of K.

4.2. Let K be a field for which char K # 2,3 and suppose that f(X) € KJ[z] is a cubic
polynomial.

(a) Show that there u,v € K with u # 0 such that f(uX +v) = X3 + aX + b for some
a,be K. If f(X) is monic, deduce that a,b € K; under what conditions is this always
true?

(b) If g(X) = X3 +aX + b € K|x] is irreducible and E = K(g(X)) is its splitting field
over K, explain why Gal(FE/K) is isomorphic to one of the groups S3 or As.

(c) Continuing with the notation and assumptions of (b), suppose that wi, wy, ws are the
distinct roots of g(X) in E and let

A= (w1 — w2)2(w2 — ZU3)2(U)1 — UJ3)2 cFE.
Show that
A = —4b% — 2742,
and hence A € K. If § = (w1 — w2)(w3 — w3) (w1 — ws), show that

A; ifdeK,
Gal(E/K) = {833 £6¢ K

[Hint: Consider K(0) < E and the effect on the element § of even and odd permutations
in Gal(F/K) < S3.]
4.3. Show that f(X) = X3-3X+1 € Q[X] is irreducible over Q, and show that its discriminant
is a square in Q. Prove that the Galois group of f(X) over Q is cyclic.

4.4. This is a revision exercise on finite groups of small order.

(a) Show that every non-abelian finite group has order at least 6.
(b) Let Dg be the dihedral group with the eight elements

2 3 2 3
La, o, ’Ig’ﬂa7lﬁa ,ﬂOé

satisfying
at=., =1 paf=a"l=0a’
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Find all the normal subgroups of Dg.

4.5. Use Kaplansky’s Theorem 4.28 to find the Galois group of the splitting field £ of the
polynomial X% + 3 € Q[X] over Q. Determine all the subextensions F' < E for which F/Q is
Galois.

4.6. Find the Galois groups for each of the following extensions:

QX3 —10)/Q;  Q(V2)(X3—10)/Q(v2); Q(V3I)(X? — 10)/Q(/3);

Q(VEB)(X? - X —1)/Q(VBi);  K(X*— X —1)/K for K = Q, Q(v/5), Q(V51), Q(i).
4.7. Let p > 0 be a prime. Let K be a field with char K # p. Suppose that 0 # ¢ € K and
f(X)=XP—ae K[X]. Let L/K where L is a splitting field for f(X) over K.

(a) Show that f(X) has p distinct roots in L. If w € L is one such root, describe the
remaining roots and show that L contains p distinct p-th roots of 1.

(b) Suppose that K contains p distinct p-th roots of 1. Show that either f(X) is irreducible
over K or it factors into p distinct linear factors over K.

(c¢) Suppose that the only p-th root of 1 in K is 1. Show that either f(X) is irreducible
over K or it has a root in K.

4.8. Let K be a field of characteristic char K = p where p > 0 is a prime. Suppose that
0#a€ K and f(X) = XP —a € K[X]. Show that if f(X) has no root in K then it is
irreducible over K.



CHAPTER 5

Galois extensions for fields of positive characteristic

In this chapter we will investigate extensions of fields of positive characteristic, especially
finite fields. A thorough account of finite fields and their applications can be found in [6].

Throughout this chapter we will assume that K is a field of characteristic char K = p (where
p > 0 is a prime) containing the prime subfield F,,.

5.1. Finite fields

If K is a finite field, then K is an IF,-vector space. Our first goal is to count the elements of
K. Here is a more general result.

5.1. LEMMA. Let F be a finite field with q elements and let V' be an F-vector space. Then

dimp V < oo if and only if V is finite in which case |V| = ¢imrV,
ProoOF. If d = dimp V' < oo, then for a basis vq,...,vq we can express each element v € V
uniquely in the form v = tjv; + - -- + tqug, where ti,...,tq € F. Clearly there are exactly ¢?

such expressions, so |V| = ¢°.
Conversely, if V' is finite then any basis has finitely many elements and so dimp V' < co. [J

5.2. COROLLARY. Let F' be a finite field and E/F an extension. Then E is finite if and only
if E/F is finite and then |E| = |F|F:F),

5.3. COROLLARY. Let K be a finite field. Then K/F, is finite and |K| = plEFpl,

Our next task is to show that for each power p? there is a finite field with p? elements. We
start with the algebraic closure I, of IF,, and consider the polynomial

0,4(X) = X" — X € F,[X].

Notice that @;7 4(X) = —1, hence by Proposition 3.55 every root of ©,4(X) in F, is simple. There-
fore by Corollary 1.35 ©,4(X) must have exactly p? distinet roots in F,, say 0,ui,... s Upd _1-
Then in F),[X] we have

XM X = X (X — ) (X = upay),
and each root is separable over F,,. Let

Fpa = {u eF,: Opa(u) = 0} CF,, ]ng ={u€Fy:u#0}
Notice that v € ng if and only if W'l =1,

5.4. PROPOSITION. For each d > 1, Fpa is a finite subfield of F, with p? elements and
Iﬁ‘gd = ]F‘;d. Furthermore, the extension IF‘pd/Fp s a separable splitting field.

PROOF. If u,v € Fpa then by the Idiot’s Binomial Theorem 1.10,

(w0l = (u+v) = @ + ") = (utv) = (W —u) + (" —v) =0,
(uv)pd — v = """ — ww = uv — ww = 0.
Furthermore, if u # 0 then uP*~1 =1 and so u has multiplicative inverse uP*=2. Hence Fa < F,.
Notice that F, < Fpa, so F,a/F, is a finite extension. In any field the non-zero elements are

always invertible, hence FO, = F*,. O
P p

63
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5.5. DEFINITION. The finite subfield F,. < F, is called the Galois field of order p®.

The notation GF(p?) is often used in place of F,a. Of course, F,n = GF(p') = GF(p) = F,
and [Fpa : Fy] = d.

5.6. PROPOSITION. Letd > 1.

(i) Fpa < F, is the splitting subfield for each of the polynomials X?' — X and XP""1 — 1
over Iy,

(ii) Fpa < F, is the unique subfield with p? elements.

(iii) If F is any field with p® elements then there is an monomorphism F — Fp with itmage
Fpa, hence FF = Fpa.

PROOF. (i) As 4 consists of exactly the roots of ©,4(X) in F, it is the splitting subfield.
The non-zero elements of F . are the roots of xri-1 1, so Fa is also the splitting subfield for
this polynomial.

(ii) Let F' < F, have p? elements. Notice that the non-zero elements of F' form a group F*
under multiplication. This group is abelian and has p? — 1 elements, so by Lagrange’s Theorem,
each element u € F* has order dividing p¢ — 1, therefore w1 = 1 and so w?" = u. But this
means every element of F' is a root of ©,4¢(X) and so F' < F,4; equality follows since these
subfields both have p? elements.

(iii) Apply the Monomorphism Extension Theorem 3.49 for K = L = F, and M = F. By (ii),
the image of the resulting monomorphism must be F4, therefore ' = [Fq. O

It is worth noting the following consequence of this result and the construction of Fa.

5.7. COROLLARY. Let K be a finite field of characteristic p. Then K/F, is a finite Galois
extension.

5.8. ExaMPLE. Consider the polynomial X4 — X € Fo[X]. By inspection, in the ring Fo[X]

we find that
XX =X'"+X=X(X’+1)=X(X+1)(X*+ X +1).

Now X2 + X + 1 has no root in Fy so it must be irreducible in Fo[X]. Its splitting field is a
quadratic extension Fo(w)/Fs where w is one of the roots of X2 + X + 1, the other being w + 1
since the sum of the roots is the coefficient of X. This tells us that every element of Fy = Fa(w)
can be uniquely expressed in the form a 4+ bw with a,b € Fy. To calculate products we use the
fact that w? = w + 1, so for a,b, c,d € Fy we have

(a +bw)(c+ dw) = ac + (ad + be)w + bdw? = (ac + bd) + (ad + be + bd)w.

5.9. ExaMPLE. Consider the polynomial X — X € F3[X]. Let us find an irreducible
polynomial of degree 2 in F3[X]. Notice that X2+ 1 has no root in F3, hence X2+ 1 € F3[X] is
irreducible; so if u € F3 is a root of X2 + 1 then F3(u)/F3 has degree 2 and F3(u) = Fg. Every
element of Fg can be uniquely expressed in the form a + bu with a,b € F3. Multiplication is
carried out using the relation u? = —1 = 2.

By inspection, in the ring F3[X] we find that

XP-X=XX-1)=(X*-X)(X*+)(X*+ X - 1)(X*-X-1).

So X2+ X —1and X?— X — 1 are also quadratic irreducibles in F3[X]. We can find their roots
in Fy using the quadratic formula since in F3 we have 27! = (—1)~! = —1. The discriminant of
X?+X —1is

1—-4(-1)=5=2=1u?
so its roots are (—1)(—14 u) = 1 + u. Similarly, the discriminant of X2 — X — 1 is

1—4(-1)=5=2=1u?
and its roots are (—1)(1 & u) = —1 £ u. Then we have

Fg = ]Fg(u) = Fg(l + ’LL) = Fg(*l + u)
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There are two issues we can now clarify.

5.10. PROPOSITION. Let Fym and Fpn be two Galois fields of characteristic p. Then Fym <
Fpn if and only if m | n.

Proor. If Fpm < Fpn, then by Corollary 5.2,

pn — (pm)[]Fpn:Fpm] — pm[FPn :Fpm}

)

som | n.
If m | n, write n = km with & > 1. Then for u € Fy» we have uP" = u, so

n mk m. ,m(k—1) m(k—1)
uP =uP = (WP )P =P =...=u’ =

Hence u € Fp» and therefore Fym < Fyn. O

This means that we can think of the Galois fields IF,» as ordered by divisibility of n. The dia-
gram of subfields for F 24 can be seen in Figure 5.1 which shows extensions with no intermediate
subextensions.

AN,
\,

FIGURE 5.1. The subfields of [F)y24

F

p2

5.11. THEOREM. The algebraic closure of I, is the union of all the Galois fields of charac-

teristic p,
Fp = Fpr.
n>1

Furthermore, each element u € ﬁp is separable over IF),.

PROOF. Let u € F,,. Then u is algebraic over F,, and the extension F,(u)/F,, is finite. Hence
by Corollary 5.2, F,(u) < F,, is a finite subfield. Proposition 5.10 now implies that F,(u) = Fyn
for some n. The separability statement follows from Corollary 5.7. g

We will require a useful fact about Galois fields.

5.12. PROPOSITION. The group of units IF;d in Fpa is cyclic.

This is a special case of a more general result about arbitrary fields.

5.13. PROPOSITION. Let K be a field. Then every finite subgroup U < K™ is cyclic.
Proor. Use Corollary 1.35 and Lemma 1.46. U

5.14. DEFINITION. w € F;d is called a primitive root if it is a primitive (p? — 1)-th root of

unity, i.e., its order in the group F;d is (p? — 1), hence (w) = F;d.
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5.15. REMARK. Unfortunately the word primitive has two confusingly similar uses in the
context of finite fields. Indeed, some authors use the term primitive element for what we have
called a primitive root, but that conflicts with our usage, although as we will in the next result,
every primitive root is indeed a primitive element in our sense!

5.16. PROPOSITION. The extension of Galois fields Fpna/F o is simple, i.e., Fyna = Fa(u)
for some u € Fjna.

PROOF. By Proposition 5.12, F,n has a primitive root w say. Then every element of
F,na can be expressed as a polynomial in w, so Fjna < Fpa(w) < Fyna. This implies that
Fpnd = de (w) O

5.17. REMARK. This completes the proof of the Primitive Element Theorem 3.75 which we
had previously only established for infinite fields.

5.18. EXAMPLE. In Example 5.8 we find that F4 = Fo(w) has the two primitive roots w
and w + 1.

5.19. EXAMPLE. In Example 5.9 we have Fg = F3(u) and Fy is cyclic of order 8. Since

©(8) = 4, there are four primitive roots and these are the roots of the polynomials X2 + X — 1
and X2 — X — 1 which we found to be 1 4 u.

We record a fact that is very important in Number Theory.

5.20. PROPOSITION. Let p > 0 be an odd prime.

(i) If p=1 (mod 4), the polynomial X% + 1 € F,[X] has two roots in F,,.
(ii) Ifp =3 (mod 4) the polynomial X*+1 € Fp[X] is irreducible, so F» = Fp[X]/(X?+1).

Proor. (i) We have 4 | (p — 1) = [F)[, so if u € F’ is a generator of this cyclic group, the

order of uF#1/4 is 4, hence this is a root of X2 + 1 (the other root is —u‘F;V‘l).
(ii) If v € Fp is a root of X* 41 then v has order 4 in F)¥. But then 4 | (p — 1) = [F)’|, which is
impossible since p — 1 =2 (mod 4). O

Here is a generalization of Proposition 5.20.
5.21. PROPOSITION. F,a contains a primitive n-th root of unity if and only ifp? =1 (mod n)
and ptn.
5.2. Galois groups of finite fields and Frobenius mappings

Consider an extension of Galois fields Fna/F, .. By Proposition 5.6(i), Corollary 5.7 and
Proposition 3.73, this extension is Galois and

| Gal(Fyna /Fpa)| = [Fyna : Fpa] = n.
We next introduce an important element of the Galois group Gal(IF na /Fa).

5.22. DEFINITION. The (relative) Frobenius mapping for the extension Fjna/F,q is the func-
tion Fy: Fpna — Fna given by Fg(t) = "

5.23. PROPOSITION. The relative Frobenius mapping Fq: Fpna — Fpua s an automor-
phism of Fpna that fizes the elements of Fa, so Fq € Gal(Fpnd/IF‘pd). The order of Fyq is n, so
Gal(Fjna/Fa) = (Fg), the cyclic group generated by Fg.

PROOF. For u,v € F)na, we have the identities
Falu+v) = (u+ v)pd =+ vpd, Fa(uv) = (uv)pd = updvpd,

so Fy is a ring homomorphism. Also, for u € F,« we have
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so Fg fixes the elements of F,.. To see that F is an automorphism, notice that the composition
power Fl; = Fjo0--- o Fy (with n factors) satisfies

i) =" =+¢
for all £ € Fna, hence Fj = id. Then F is invertible with inverse F;l = Fg_l. This also shows
that the order of Fy; in the group Autﬂ:p 4(Fpna) is at most n. Suppose the order is k with k < n;

then every element u € F .4 satisfies the equation Flfl(u) = u which expands to ™ = u, hence
u € Fpra. But this can only be true if k = n. 0

Frobenius mappings exist on the algebraic closure F,. For d > 1, consider the function
Fo:F, —TF,; Fut) = "
5.24. PROPOSITION. Letd > 1.
(i) Fy: @, — F, is an automorphism of F, which fizes the elements of Fpa. In fact for
u € Fp, Fg(u) = u if and only if u € Fpa.
(ii) The restriction of Fq to the Galois subfield Fpan agrees with the relative Frobenius
mapping Fq: Fpna — Fpna.
(ii) If k > 1, then F% = Frq. Hence in the automorphism group Aut]de (Fp), Fq has infinite

order, so AutIFp ,(Fy) is infinite.
ProoF. This is left as an exercise. g

The Frobenius mapping F = F; is often called the absolute Frobenius mapping since it exists

as an element of each of the groups Autg, (F,) and Autg, (Fyr) = Gal(IFpn /Fp) for every n > 1.
In Gal(Fyna/Fpa) = (Fg), for each k with k | n there is the cyclic subgroup <F§> of order

| (FEY | = n/k.

k
5.25. PROPOSITION. For k | n, the fixed subfield of <F§> in Fpna is F<F;i> =TF a.

pr p
Fpna
n/k
FU) = By
k
Fpa
PROOF. For u € Fjna we have Fh(u) = uP™ | hence F%(u) = u if and only if u € Fpak. O

Figure 5.2 shows the subgroup diagram corresponding to the lattice of subfields of [,
shown in Figure 5.1.

5.3. The trace and norm mappings

For an extension of Galois fields Fna /de, consider the function TH“pn afFq F,
defined by

nd — Fpnd

(n—1)d

Tp e () =ut w4 o™ 4o ™ = u Fa(u) + Faa(u) + -+ + Fru_pa(w).

Notice that
d 2d 3d nd
Fa(Tp . . () = +ul™ +ul™ +- -+l
p(nfl)d

= ! ™ +u="Tg /5 (W)
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Gal(F,2i /F,) = (F) = 7,/24

() — T ()
<F4>\< —

F%)

(F%) (F?)

T

(F?*) = {id}
FIGURE 5.2. The subgroups of the Galois groups of 24 /IF,,

So by Proposition 5.24(i), Tg /¢ ,(u) € Fpa. If we modify T  ,/r , to have codomain F,q«, we
p p P P

obtain the relative trace

— d 2d (n—1)d
Ternd/de : ]Fpnd de; Ternd/de (u) =u -+ uP + uP 4ot uP '

5.26. PROPOSITION. The relative trace Trg . p , is a surjective F a-linear mapping and
P P

whose kernel is an Fa-vector subspace of dimension n — 1.

Proor. Clearly Tern a/E is additive. For ¢t € Fa we have ! = t, so [Fa-linearity follows
from the formula

tu + (tu)pd + (tu)pm + - (tu)

To see that Trg  ,/r , is surjective, notice that Trg /¢ ,(u) = 0 if and only if u is a root of
p p p p

p(nfl)d _ tu + tupd + tup2d —I— o + tup(nfl)d.

the polynomial
X4+ X7 4 X7 P e F X

which has degree p(" D4 and so has at most p( D4 < pd roots in Fyna. This means that
ker Trlen a/F cannot be the whole of Fjna. Tern a/F is surjective since its codomain has

dimension 1. g
There is a multiplicative version of this construction. Consider the function
N: F;nd — F;nd
for which
d . 2d (n—1)d
N(u) = uu? u? - -uP =uFq(u) Fag(u) - - F_1)q(u).
Then we have
Fy(N(u)) = updup2dup3d N 'upnd
_ updup2dup3d N .up(n—l)du
_ uupdup2dup3d B .up(nq)d
= N(u).
So by Proposition 5.24(i), N(u) € F,«. By redefining the codomain we obtain the relative norm

d . 2d (n—1)d
. X X, — P, P P
Normend/]de : Fpnd — Ide, Normend/de (u) = wuP u? - -u :

5.27. PROPOSITION. The relative norm Normg . , is a surjective group homomorphism.
p p
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PROOF. Multiplicativity is obvious. The kernel of Normy ./ , consists of the roots in Fna
p P
of the polynomial
Xy e,

SO )
T
d —1a P =1
|kerNormend/de | <1+ptg 4 pnhd = T
Hence ;
ne— 1
|imNormg /e, | = : >pt—1
P/ Tp | ker Norm]Fpn ofF |
Since imNormg | r , <TF,;, we also have
p" I3 p
3 d
|1mNorm]Fpnd/de | <p®—1,
therefore
im Norm]Fpn afF 0 = F;d. O

Exercises on Chapter 5

5.1. Show that Proposition 5.13 also applies to an integral domain in place of a field.
5.2. What happens to Theorem 5.20 if we try to take p = 2.

5.3. Let f(X) € F,[X] be an irreducible polynomial with deg f(X) = n. Find the splitting field
of f(X). Deduce that for any other irreducible polynomial g(X) € F,.[X] with deg g(X) = n,
the splitting fields of f(X) and g(X) over F,. agree.

5.4. Find the smallest Galois fields containing all the roots of the following polynomials, in
each case find a primitive root of this Galois field:

(a) X* —1eFu[X]; (b) X*—1€F5[X]; (c) X*—1eFnu[X]; (d) X®—1¢€F[X]

5.5. Let w € FX, be a primitive root. If ¢ < d, show that w ¢ F*,. Deduce that degy w = d
p p P
and d | o(p? —1).

5.6. Let p > 0 be a prime. Suppose that d > 1, and K/, is an extension. For a € K, let
ga(X) = X?" — X —a € K[X].

(a) If the polynomial g,(X) is irreducible over K, show that the splitting field E of ¢,(X)
over K is separable and Gal(E/K) = F 4. [Hint: show that if u € E is a root of go(X)
in an extension E /K, then so is u+t for everyt € Fp.]

(b) If d = 1, show that g,(X) is irreducible over K if and only if it has no root in K.

(c) If K is a finite field and d > 1, explain why g¢,(X) can never be irreducible over K.

5.7. Let p be an odd prime, d > 1 and write ¢ = p?.

(a) Consider {£1} = {1, —1} as a group under multiplication. Show that there is a unique
group homomorphism A,: Fy — {£1} which is characterized by the requirement
that for every u € Fy, A\y(u) = 1 if and only if u = v? for some v € Fx. Is A\g always
surjective?

(b) Consider the set of all squares in [,

Y, ={u*e€F,:uecF,}CF,

Show that the number of elements of ¥, is |34 = (¢+1)/2. Deduce that if ¢t € F, then
the set

t—Y,={t—u?eF,:ueclF,}
has [t — 34| = (¢ + 1)/2 elements.
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(c) If t € Fy, show that
S0 (- 2] > 1.
Deduce that every element of [, is either a square or can be written as the sum of two
squares.
(d) Deduce that the equation z? + y? + 2% = 0 has at least one non-trivial solution in F,.
(e) What can you say about the case p = 27



CHAPTER 6

A Galois Miscellany

In this chapter we will explore some miscellaneous topics in Galois Theory. Historically,
Galois Theory has always been an important tool in Number Theory and Algebra, stimulating
the development of subjects such as Group Theory, Ring Theory and such diverse areas as Dif-
ferential Equations, Complex Analysis and Algebraic Geometry. Many of the ideas introduced
in this chapter are of great importance in these and other mathematical areas.

6.1. A proof of the Fundamental Theorem of Algebra

We will prove the Fundamental Theorem of Algebra for the complex numbers C. This proof
is essentially due to Gauss but he did not use the historically more recent Sylow theory. It is
interesting to compare the proof below with others which use the topology of the plane and circle
or Complex Analysis; our proof only uses the connectivity of the real line (via the Intermediate
Value Theorem) together with explicit calculations in C involving square roots.

6.1. THEOREM (Thefundamental Theorem of Algebra). The field of complex numbers C is
algebraically closed and R = C.

ProOOF. We know that [C : R] = 2, so C/R is algebraic. Let p(X) € C[X] be irreducible.
Then any root u of p(X) in the algebraic closure C is algebraic over R, so in C[X] we have
p(X) | minpolyg ,,(X). The splitting field of p(X) over C is contained in the splitting field £ of
minpolyg ,(X)(X? + 1) over R. Since C < E, we have 2 | [E : R] and so 2 | | Gal(E/R)|.

Now consider a 2-Sylow subgroup P < Gal(E/R) and recall that | Gal(E/R)|/|P| is odd.
For the fixed subfield of P, we have

_ | Gal(E/R)|
I

which shows that E¥/R has odd degree. The Primitive Element Theorem 3.75 allows us to
write B = R(v) for some v whose minimal polynomial over R must also have odd degree.
But by the Intermediate Value Theorem, every real polynomial of odd degree has a real root,
so irreducibility implies that v has degree 1 over R and therefore E¥ = R. This shows that
Gal(E/R) = P, hence Gal(E/R) is a 2-group.

As C/R is a Galois extension, we can consider the normal subgroup Gal(E/C)<Gal(E/R) for
which | Gal(E/R)| = 2| Gal(£/C)|. We must show that | Gal(E/C)| = 1, so suppose not. From
the theory of 2-groups, there is a normal subgroup N <Gal(E/C) of index 2, so we can consider
the Galois extension EV /C of degree 2. But from known properties of C (see Proposition 3.29),
every quadratic aX? + bX + ¢ € C[X] has complex roots (because we can find square roots

of every complex number). So we cannot have an irreducible quadratic polynomial in C[X].
Therefore | Gal(E/C)| =1 and E = C. O

[ET . R]

6.2. Cyclotomic extensions

We begin by discussing the situation for cyclotomic extensions over QQ using material dis-
cussed in Section 1.3. Let ¢, = €2™/™  the standard primitive n-th root of 1 in C. In Theo-
rem 1.43, it was claimed that the irreducible polynomial over Q which has ¢, as a root was the
n-th cyclotomic polynomial
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6.2. THEOREM. Letn > 2. Then

* [Q(Cn) : Q] = p(n);
o Gal(Q(¢,)/Q) = (Z/n)*, where the element t,, € (Z/n)* acts on Q((n) by tn-Cn = .

PROOF. Since the complex roots of ®,(X) are the powers ¢! with t = 1,...,n — 1 and
ged(t,n) = 1, Q(¢y) is the splitting field of ®,(X) over Q and indeed Q(¢,) = Q(¢!) whenever ¢
has the above properties and so ¢! is a primitive n-th root of unity. The main step in the proof
is to show that @, (X) € Z[X] is irreducible. To do this we will show that every power (! as
above is actually a Galois conjugate of (,, over Q, therefore

®,,(X) = minpolyg,, (X) = minpolyg ¢t (X)

and hence ®,,(X) is irreducible.
Consider
Z(Cn) ={ao+ a1l +---+ar(, 7 >0, aj € Z} CQ(Cp)-
Then Z((,,) is a subring of Q((,) and so is an integral domain. Its group of units contains the
cyclic subgroup ((,) of order n.

Let p > 0 be a prime which does not divide n. Let P <Z((,) be a maximal ideal which
contains p; then the quotient ring Z((,)/P is a field of characteristic p. In fact, it is a finite
field, say F,a for some d. Let m: Z((,) — F,a be the quotient homomorphism.

Inside the group of units of Z((,) is the subgroup of powers of (,, ((n) < Z((,)™; this
is a cyclic subgroup of order n. We claim that when restricted to ((,), 7 gives an injective
group homomorphism, 7’: (¢,) — F;d. To see this, suppose that 7«/(¢") = 1 for some r =
1,2,...,n—1; then (;, — 1 € P. By elementary Group Theory we can assume that r | n and so
p1r. On factoring we have

G =G+ + G+ 1) = (G — D (mod P),
$0 ¢, — 1 € P or r € P since maximal ideals are prime. But Z N P = (p) and so r ¢ P, hence
Cn — 1 € P. Recalling that
Wi+ G+ 10,
we see that n € P and hence p | n, thus contradicting our original assumption on n. So 7’ is
injective.
Writing @ = 7'(u), we can consider the effect of the absolute Frobenius map F: F,a — F
7t R
on ¢, = ¢},
—t —t e
F(C) = (G =Gl

This shows that in the Galois extension Fa/F), Zi is conjugate to C?; by iterating this we find

that ZZ is conjugate to every power of the form {flpk.
Now let t =1,...,n — 1 and ged(¢,n) = 1. Suppose there is a factorization

®,(X) = f(X) minpolyg ¢, (X)
for some monic polynomial f(X) € Z[X] and f(¢!) = 0. Consider the prime power factorization
t = pi*---p», where the p; are primes with 2 < p; < -+ < pp, and r; > 1 with. Since

ged(t,n) = 1 we also have p; {n s.

Now consider a maximal ideal P; <Z[(,] containing p;. Reducing modulo P; and working
— "1
in the resulting extension Idel /Fp,, we find that ¢, is conjugate to CZI . By separability and
1

the fact that the reduction map m: Z[(,] — del is injective on the powers of (,,, we find that
- 1
71 71 71 1
f(Ch ) #0and so (G ) # 0 in Z[¢,]. This shows that minpolyQ,Cn(Cg1 ) =0 and so (i is
conjugate to (,.
71
Repeating this argument starting with ¢4* and using the prime py we find that

71,72
minpolyg,¢, ( Py =0
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71,72
and so ¢+ "2 is conjugate to (,. Continuing in this fashion, for each j = 1,...,m we have
1,72, 00
minpolyg , ( Pty — o
T d
and so QI;I Pi s conjugate to (. When j = m, this shows that minpolvacn(Cfl) = 0. Hence
¢t is conjugate to ¢, in the extension Q((,)/Q. O

6.3. THEOREM. For n > 2, consider the cyclotomic extension Q(¢,)/Q where ¢, = e*™/™.
Then Q(Cn)r # Q(¢n). Furthermore,

Q(¢n)r = Q(Cn)«i» = Q¢ + Zn) = Q(cos(27/n)),

and
[Q(cos(2r/n)) : Q] = 9”(2”),

PRrROOF. Recall that
Gal(Q(¢n)/Q) = Z/n*,
where the residue class of r acts by sending ¢, to ¢;,. Complex conjugation corresponds to the
residue class of —1 =n —1 (mod n). Making use of the identities

: 1, .
¥ = cos +sinfi, cosh = 5(6(% +e7 %),

we obtain 1 1
cos(2m/n) = §(Cn +¢,) = §(<n +¢).

Complex conjugation fixes each of the real numbers cos(2wk/n) for k = 1,2,...,n — 1. The
residue class of r acts by sending cos(27/n) to cos(2nr/n); it is elementary to show that
cos(2mr/n) # cos(2m/n) unless 7 =1 (mod n). Hence

() ={id, ()} = Gal(Q(cos(27/n))/Q).
Thus we have
Q) = Q(eos(2n/n)),
and so [Q(cos(27/n)) : Q] = ¢(n)/2. Notice that ¢, is a root of the polynomial
X2 —2cos(2m/n)X + 1 € Q(cos(27/n))[X],
so we also have
(6.1) Minpoly g(cos(2r/n)),cn (X) = X% —2cos(2m/n)X + 1. O
6.4. EXAMPLE. We have
[Q(C24) : Q = (24) =8
and
Gal(Q(G21)/Q) 2 Z/2 x /2 x T2,
PrOOF. By Theorem 1.43 we have [Q(C24) : Q] = 8. Also,

. 1 V3 1 V3
6 . 3 < : 8 - ;
Coa = 1, C24—2+72 iy, Coy = 2+ D) 2,

and all of these numbers are in Q((24), hence Q(v/2,v/3,1) < Q((a4). It is easy to check that
[Q(v2,v3,i) : Q] =8,
which implies that
Q(¢as) = Q(V2,V3,4).
Using this we find that
Gal(Q(C21)/Q) = Z/2 x Z/2 x /2.
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We also have cos(2m/24) = cos(m/12) € Q((24). Since

cos(2m/12) = cos(7/6) = \gga

we have
2cos?(m/12) — 1 = \gg
and so
4cost(m/12) — dcos®(n/12) + 1 = Z,
giving
16 cos*(7/12) — 16 cos®(n/12) + 1 = 0.
Then

].6X4 — ].6X2 +1=16 minpOIyQ,cos(ﬂ'/12) (X)
Note that case (i) of Kaplansky’s Theorem 4.28 applies to the polynomial minpolyg,o.(r/12) (X).

For this example, Gal(Q(C24)/Q) has 23 — 1 = 7 subgroups of each of the orders 2 and 4; it
is an interesting exercise to find them all together with their fixed subfields. O

6.5. REMARK. The minimal polynomial for cos(m/12) can also be found as follows. We have
®94(C24) = 0, hence since
Doy (X) =X — X1 41,
we obtain
Gi—Cutl=0.
Then after multiplying by §2_44 we have

(34— 1+ Gyt =0,

giving
(Goa+Co) —1=0.
Now
(Coa + Co)* = (Gou + o) + 4Gy + G5 + 6,
hence
Goa+ Cor = (Coa + 3 = 4(GBu + G517) — 6.
Similarly,
(G + G ) =G+ G +2,
SO

Gt Cot = (Cu+ G )P — 2.
Combining these we have
(Coa+ G ) —A(Cu+ G )P+ 1 =0,
and so
16 cos*(m/12) — 16 cos®(n/12) +1 = 0.
This method will work for any n where ¢(n) is even, i.e., when n > 2.
6.6. REMARK. The polynomial that expresses cosnf as a polynomial in cosf is the n-

th Chebsyhev polynomial of the first kind T,(X) € Z[X]. Here are the first few of these
polynomials:

Ty(X) =2X? — 1, T3(X) = 4X° - 3X,
T4(X) =8X* —8X2 +1, T5(X) = 16X° — 20X3 + 5X,
Te(X) = 32X° — 48X* + 18X2 — 1, T7(X) = 64X7 —112X° +56X3 — 7X.

These form a system of orthogonal polynomials which can be computed in Maple using the
command orthopoly [T] (n,X).
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Now let K be a field with characteristic char K { n. The polynomial ®,(X) has integer
coefficients, so we can view it as an element of K[X] since either Q < K or F, < K and we
can reduce the coefficients modulo p. In either case it can happen that @, (X) factors in K[X].
However, we can still describe the splitting field of X™ — 1 over K and its Galois group.

6.7. THEOREM. If char K { n, then the splitting field of X™ —1 over K is K(¢), where ( € K
is a primitive n-th root of unity. The Galois group Gal(K(¢)/K) is isomorphic to a subgroup
of (Z/n)*, hence it is abelian with order dividing ¢(n).

PrOOF. Working in K, we know that ®,(¢) = 0, hence the roots of minpoly -(X) € K[X]
are primitive roots of 1. So X" — 1 splits over K({) and each element o € Gal(K(¢)/K) has
the action a(¢) = (", where ged(rq,n) = 1. Hence Gal(K(¢)/K) is isomorphic to a subgroup
of Gal(Q(¢y)/Q) = (Z/n)* which implies that it is abelian and its order divides ¢(n). O

6.8. REMARK. When p = char K > 0, this Galois group only depends on the largest subfield
of K which is algebraic over ;. For example, if K = [F,a(T) then the value of d is the crucial
factor. The precise outcome can be determined with the aid of Proposition 5.21.

6.9. ExAMPLE. We have the following splitting fields and Galois groups.

(i) The splitting field of X* — 1 over F3(7T) is Fo(T') and
Gal(Fy (T)/F3(T)) = (Z/4) = 7,/2.
(ii) By Proposition 5.20, X* — 1 splits over F5(7T") and the Galois group Gal(F5(T)/F5(T))
is trivial.

Proor. (i) By Proposition 5.20, X* — 1 is separable over F3(7) and has irreducible factors
(X —1), (X +1) and (X2 +1). The splitting field of (X2 + 1) over F3 is Fg = F5(¢), where
(?+1=0,s0 (X?+ 1) splits over Fo(T). Also,

Gal(Fy/F3) & (Z/4)% = 7,/2,

with generator o satisfying 0(¢) = (*! = —(. This generator clearly extends to an automor-
phism of Fg(7") which fixes T'.
(ii) By Proposition 5.20, X* — 1 splits over Fs. O

6.3. Artin’s Theorem on linear independence of characters
Let G be a group and K a field.

6.10. DEFINITION. A group homomorphism x: G — K is called a character of G with
values in K.

6.11. EXAMPLE. Given any ring homomorphism ¢: R — K we obtain a character of R*
in K by restricting ¢ to a map y,: R* — K*.

6.12. EXAMPLE. Given an automorphism a: K — K, xo: K* — K* is a character of
K> in K.
6.13. EXAMPLE. Let E/K be a Galois extension and o € Gal(E/K). Then x,: EX — E*

is a character.

6.14. DEFINITION. Let x1,...,xn be characters of a group G in a field K. Then x1,...,Xn
are linearly independent if for t1,...,t, € K,

tixi+ - -+thaxn=0 — t1=---=t,=0.
If x1,..., xn are not linearly independent then they are linearly dependent.
In this definition, the functional equation means that for all g € G,
tixi(g) + -+ + taxn(g) = 0.

6.15. THEOREM (Artin’s Theorem). Let x1,...,xn be distinct characters of a group G in a
field K. Then x1,...,Xn are linearly independent.
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PRrROOF. We proceed by induction on n. For n = 1 the result is easily verified. For the
inductive assumption, suppose that it holds for any n < k.

Let x1,...,Xk+1 be a set of k 4+ 1 distinct characters for which there are t1,...,tx11 € K
not all zero and such that

(6.2) tixt+ -+ ter1Xxeser = 0.

If one of the t; is zero, say t, = 0, then x1,...,Xr—1, Xr+1,---, Xk+1 is linearly dependent,
contradicting the inductive assumption. Hence all of the ¢; must be non-zero. As x1 # X2, there
must be an element gy € G for which x1(go) # x2(g0). So for all g € G, Equation (6.2) applied
to gog yields

tix1(g909) + -+ + ter1Xr+1(909) = 0,
and therefore since x;(g09) = x;(90)x;(9), we see that

tix1(go)xa + -+ + ter1xe+1(90) Xk+1 = 0.
Multiplying Equation (6.2) by x1(go) and subtracting gives

ta(x2(g90) — x1(90))x2 + t3(x3(90) — x1(90))x3 + - - + trtr1Xk+1 = O,

in which the coefficient t2(x2(g0) — x1(g0)) is not zero. Hence xa, ..., Xx+1 is linearly dependent,
again contradicting the inductive assumption. So x1,...,Xx+1 is linearly independent, which
demonstrates the inductive step. O

6.16. COROLLARY. Suppose that ay, ..., a, are distinct automorphisms of the field K. Let
t1,...,tn € K be a sequence of elements, not all of which are 0. Then there is a z € K for
which

tiog(2) 4+ -+ than(z) # 0.
Hence the K-linear transformation tiaq + - - - + tpan: K — K is non-trivial.

6.17. COROLLARY. Let E/K be a finite Galois extension of degree n and let ai,...,
be the distinct elements of Gal(E/K). Then the function oy + -+ + o E — E is a non-
trivial K -linear transformation whose image is contained in K. Hence the associated K -linear
transformation

Trpp: B — K; Trg/x(z) =o(z) + -+ an(z)
18 surjective.

The function Trg i E — K is called the trace mapping of E/K.
PRrROOF. First note that for z € F and v € Gal(E/K),
V(e (z) + -+ an(z) = yar(z) + - +yom(z) = ar(z) + -+ + an(),

since the list yaq, ..., ya, is the same as aq, ..., a, apart from its order. Hence,
a1 (x) + -+ ap(z) € ECNER) — |
The rest of the statement follows directly from Corollary 6.17. O

Suppose that E/K is a finite Galois extension with cyclic Galois group Gal(E/K) = (o) of
order n. For each u € E*, the element uo(u)---0" 1(u) € E satisfies

o(uo(u)---o" Hu) =o(u)---o" N (u)o"(u) = o(u) - 0" H(u)u,
hence in uo(u)--- 0™ ' (u) € B = K. Now using this we define a group homomorphism
Np/k: E* — K*; Ng/g(u) = uo(u)- 0" Hw).

Ng/k is called the norm mapping for E/K and generalizes the norm mapping for finite fields
of Section 5.3.
There is another homomorphism

(SE/KIEX —>E><; 5E/K(U):’U,U(U)_l
Notice that for u € E*,
Nk (0p/x (@) = (uo(u) ) (o(w)o? (@)t -0 (u)o™(u) ") = 1,
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since 0" (u) = u. So imdg/kx < ker Ng . Our next result is an important generalization of
Proposition 5.27.

6.18. THEOREM (Hilbert’s Theorem 90). Let E/K be a finite Galois extension with cyclic

Galois group Gal(E/K) = (o) of order n. Then imép,x = ker Ng,i. Eaplicitly, if u € E* and
wo(u)--- 0" L(u) =1, then there is a v € EX such that u = vo(v)~ L.

PROOF. Let u € kerNE/K.

The characters o*: EX — E* with k =0,1,...,n—1 are distinct and linearly independent
by Artin’s Theorem 6.15. Consider the function

id +uo + uo(u)o? + - +uo(u) - " 2(u)o" ! EX — E.
This cannot be identically zero, so for some w € F, the element
v =w+uo(w) +uo(u)o?(w) + - +uc(u) - 0" *(u)o™(w)
is non-zero. Notice that
uo(v) = uo(w) + uo(u)o?(w) + uo(u)o?(w)o® (w) + - - - + uo(u)o?(u) - - - ™ (u)o™ (w) = v,
since
uo(u)o?(u) - -- o™ L (u)o™(w) = w.

-1

Thus we have u = vo(v)™" as required. O

6.4. Simple radical extensions

In this section we will investigate splitting fields of polynomials of the form X™ — a, where
char K t n. We call these simple radical extensions and later in Definition 6.33 we introduce a
more general notion of radical extension.

6.19. PROPOSITION. Let f(X) = X™ —a € K[X] be irreducible and separable over K. Then
the splitting field of f(X) over K has the form K(u,(), where u is a root of f(X) and ¢ is a
primitive n-th root of 1.

6.20. COROLLARY. If K contains a primitive n-th root of 1, (, then the splitting field of
f(X) = X" —a over K has the form K(u), where u is a root of f(X). The Galois group
Gal(K(u)/K) is cyclic of order n with a generator o for which o(u) = Cu.

In the more general situation of Proposition 6.19,
{id} « Gal(K (¢, u)/K(()) <« Gal(K (¢, u)/ K),
where Gal(K (¢,u)/K(()) is cyclic and
Gal(K(¢)/K)) = Gal(K (¢, u)/K))/ Gal(K (¢, u)/K(¢))

is abelian. The Galois Correspondence identifies the following towers of subfields and subgroups.

K¢ Gal(K(¢,u)/K)
KO GalK(Cu)/K ()
Kk VVA{id}

6.21. DEFINITION. Let K be a field with char K { n and which contains a primitive n-th
root of 1, ¢ say. Then L/K is a simple n-Kummer extension if L = K(u) where u" = a for
some a € K. L/K is an (iterated) n-Kummer extension if L = K(u1,...,u;) where ul =
ai, ..., uy = ay, for some elements ay,...,a; € K.

Note that in this definition we do not require the polynomials X" — a; € K[X] to be
irreducible.
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6.22. PROPOSITION. Let K(u)/K be a simple n-Kummer extension. Then K(u)/K is a
Galois extension and Gal(K(u)/K) is cyclic with order dividing n.

PROOF. Suppose that u" = a € K. Then in K[X] we have
X" —a=(X—u)(X —Cu)-- (X =" L.

Clearly the roots of X™ — a are distinct and so K (u)/K is separable over K in fact, K (u) is a
splitting field of X™ — a over K. This means that K(u)/K is Galois.

For each o € Gal(K (u)/K) we have a(u) = ("u for some 1, = 0,1...,n — 1. Notice that
for p € Gal(K(u)/K),

Ba(u) = B(C"u) = (" Plu) = (" (Pu = T,
and so 7go = rq + r3. Hence the function
p: Gal(K(u)/K) — (C);  pla) =",

is a group homomorphism. As (¢) is cyclic of order n, Lagrange’s Theorem implies that the
image of p has order dividing n. Since every element of Gal(K (u)/K) is determined by its effect
on u, p is injective, hence | Gal(K (u)/K)| divides n. In fact, Gal(K(u)/K) is cyclic since every
subgroup of a cyclic group is cyclic. O

6.23. EXAMPLE. Let n > 1 and ¢ € Q. Then Q((p, {/9)/Q(¢n) is a simple n-Kummer
extension.

6.24. ExaMPLE. Q(i,v/2)/Q(3) is a simple 4-Kummer extension with Gal(Q(i,v/2)/Q(3))
cyclic of order 2.

ProOF. We have (v/2)* —4 =0, but
Xt —4=(X%2-2)(X%+2),
and
X2 2= minpolyg 3(X).
The corresponding group homomorphism p: Gal(Q(i)(v/2)/Q(i)) — (i) has image
imp={1,-1} < (i) . O
Here is a converse to Proposition 6.22.

6.25. PROPOSITION. Suppose that char K 1 n and there is an element ( € K which is a
primitive n-th root of unity. If E/K is a finite Galois extension with cyclic Galois group of
order n, then there is an element a € E such that E = K(a) and a is a root of a polynomial of
the form X™ — b with b € K. Hence E/K is a simple n-Kummer extension.

ProoF. We have
Npg/k(ChH=¢"=1
so by Hilbert’s Theorem 6.18, there is an element a € E for which (7! = ac(a)™!. Then

o(a) = Ca and the elements o*(a) = ¢*a for k = 0,1,...,n — 1 are distinct, so they must be
the n conjugates of a. Also note that

X" —a" = (X —a)(X —¢a)- - (X = (") = (X — a)(X — 0(a)) - (X = 0" }(a)),
hence a™ € K since it is fixed by o. Since K(a) < E, this shows that
n=[K(a):K|]<[E:K|=n

and therefore
[K(a): K|=[F: K]=n,
whence K(a) = E. O
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6.5. Solvability and radical extensions
We begin by recalling some ideas about groups, see [3, 5] for further details.

6.26. DEFINITION. A group G is solvable, soluble or soluable if there is a chain of subgroups
(called a subnormal series)
{1} =G <Gr1<---<G1<Gp=G
in which Gi11 < Gy and each composition factor Gy /Gyy1 is abelian; we usually write
{1} =Gy<Gy_14---<1G1 <Gy =G.

If each composition factor is a cyclic group of prime order the subnormal series is called a
composition series. A group which is not solvable is called insolvable.

6.27. REMARK. It is a standard result that we can always refine (i.e., add extra terms) a
subnormal series of a solvable group to obtain a composition series. The primes appearing as
well as the number of times each occurs are all determined by |G|, only their order varying for
different composition series.

6.28. EXAMPLE. Let G be a finite abelian group. Then G is solvable.
6.29. EXAMPLE. Let G be a finite p-group, where p is a prime. Then G is solvable.

In fact, for a finite p-group G, there is always a normal subgroup of a p-group with index p,
o0 in this case we can assume each quotient G /Gjy1 is cyclic of order p.

6.30. PROPOSITION. Let G be a group.

(i) If G is solvable then every subgroup H < G and every quotient group G /N s solvable.
(ii) If N <G and G/N are solvable then so is G.

In the opposite direction we can sometimes see that a group is insolvable. Recall that a
group is stmple if it has no non-trivial proper normal subgroups.

6.31. PROPOSITION. Let G be a finite group. Then G is insolvable if any of the following
conditions holds:
(i) G contains a subgroup which is a non-abelian simple group (or has a quotient group
which is a non-abelian simple group).
(ii) G has a quotient group which is a non-abelian simple group.
(iii) G has a composition series in which one of the terms is a non-abelian simple group.

6.32. EXAMPLE. For n > 5, the alternating and symmetric groups A,, and S,, are insolvable.

Proovr. This follows from the fact that if n > 5, A,, is a simple group and A, <S,, with
quotient group S, /A, = 7Z/2. O

Now we explain how this relates to fields and their extensions. Let K be a field and L/K a
finite extension. For simplicity, we assume also that char K = 0.

6.33. DEFINITION. L/K is a radical extension of K if it has the form L = K(a1,as,...,a,)
with
ai’“ S K(al, ag, ... ,ak_l)
for some d > 1. Thus every element of L is expressible in terms of iterated roots of elements
of K.

We will need the following Lemma and its Corollary. According to [4], several text books
make subtle errors or omissions related to this result, so beware when reading other sources!

6.34. LEMMA. Let L/K be a finite Galois extensions and let L(u)/L be a radical extension.
Let E/L be an extension where E is a splitting field for the polynomial minpolyKu(X) over K.

Then E/L is a radical Galois extension. In particular, if L/K is a radical Galois extension
then so is E/K.
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PROOF. Suppose that u? € L. By Proposition 6.22, there is a primitive d-th root of unity
¢ € FE and the subfield L(¢,u) < E is normal over L, hence L((,u)/L is a radical Galois
extension. But L(¢,u)/K need not be Galois. However, if uw = uy,...,u; € E are the distinct
roots of minpoly ., (X) in E, then

E =L(¢,u,uy,...,u).

But this is clearly a radical extension of L.
If L/K is a radical Galois extension, say L = K (a1, ...,a,), then

E=L(ay,...,an,C,u,ug, ..., u),
which is a radical Galois extension of K. O

6.35. COROLLARY. If L/K is a radical extension then it is contained in a radical Galois
extension L' /K.

PrROOF. Writing L = K(aj,as,...,a,) as in Definition 6.33, this is proved by induction
on n using Lemma 6.34. U

In the next definition, the word Galois is superfluous because of the preceding results.

6.36. DEFINITION. If L is the splitting field of a polynomial f(X) € K[X], then f(X) is
solvable by radicals over K if L is contained in a radical (Galois) extension of K.

6.37. DEFINITION. L/K is solvable if L < L' where L'/K is a finite radical Galois extension
of K.

6.38. THEOREM. Let E/K be a finite Galois extension. Then E/K is solvable if and only
if the group Gal(E/K) is solvable.

PROOF. Suppose that £ < E’ where E'/K is a radical Galois extension. Then Gal(E/K)
is a quotient group of Gal(E'/K), so it is solvable by Proposition 6.30.

Now suppose that Gal(E/K) is solvable and let n = | Gal(E/K)|. Let E’ be the splitting
field of X™ — 1 over E, so E’ contains a primitive n-th root of unity ¢ and therefore it contains
a primitive d-th root of unity for every divisor d of n. Now Gal(E'/E) < Gal(E'/K) and
by Theorem 6.7, Gal(E'/E) is abelian. Also, Gal(E'/K)/Gal(E'/E) = Gal(E/K) which is
solvable, so Gal(E'/K) is solvable by Proposition 6.30. We will now show that E'/K is a
radical extension.

Clearly K(¢)/K is radical. Then Gal(E'/K({)) <Gal(E'/K) is solvable. Let
{1} =Gr<aGy_14---<1G119Gy = Gal(E'/K(Q))

be a composition series. The extension (E')%1/K(() is radical by Proposition 6.25. Similarly,
each extension (E')%%+1 /(E')%* is radical. Hence E'/K(C) is radical, as is E'/K. O

6.39. ExAMPLE. The Galois group of the extension Q((3, v/2)/Q is solvable.

PRrOOF. We have already studied this extension in Example 3.30 and 4.20. Clearly Q((z, v/2)
is a radical extension of QQ and

Q(¢3, V2) = Q(G3)(V2).

We know that Gal(Q((3, v/2)/Q) = S3, where we identify each element of the Galois group with
a permutation of the three roots of X? — 2 in Q(3, ¥/2) which we list in the order

\3/57 \3/§C37 \S@C??
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We have the following towers of subfields and subgroups related under the Galois Correspon-
dence.

Q(C& \3/5) _,783
3 T 2

Q) = QG Y2 A= Gall@(G, V2)/Q(G))
Q° " {id}

Here Q((3)/Q is itself a Galois extension and Ag<S3. Notice that Ag =2 7Z/3 and S3/A3 = 7Z/2,
so we have the following composition series for Sg:

{id} < A3 < 83. O

It is also interesting to reverse the question and ask whether there are extensions which are
not solvable. This was a famous problem pursued for several hundred years. To find examples,
we first recall that the smallest non-abelian simple group is As which has order 60. We should
therefore expect to look for a polynomial of degree at least 5 to find a Galois group for a splitting
field to be simple or occur as a composition factor of such a Galois group. Here is an explicit
example over Q.

6.40. EXAMPLE. The splitting field of the polynomial f(X) = X® —35X*+7 € Q[X] is not
solvable.

PROOF. Let E < C be the splitting field of f(X) over Q. Using the Eisenstein Test 1.38
with p = 7, we find that f(X) is irreducible over Q. By Theorem 4.8(iii), 5 divides the order of
Gal(E/Q), so by Cauchy’s Lemma this group contains an element of order 5.

Now observe that

F(X)=5X"-140X3% = 5X3(X —28), f"(X)=20X"—420X% = 20X?(X — 21).
There are two turning points, namely a maximum at x = 0 and a minimum at z = 28. Then
f(0)=7>0> f(28) = —4302585,

hence there are three real roots of f(X) and two non-real complex ones. Then complex conju-
gation restricts to an element of order 2 in Gal(£/Q) which interchanges the non-real roots and
fixes the others. If we list the roots of f(X) as uy,ug,us, uq, us with uj, ug being the non-real
roots, then the transposition (1 2) € S5 corresponds to this element. Furthermore, the only
elements of S; of order 5 are 5-cycles; by taking an appropriate power we can assume that there
is a 5-cycle of the form (1 2 3 4 5) corresponding to an element of Gal(E/Q) which we can view
as a subgroup of Ss. The next lemma shows that Gal(E/Q) = Ss.

6.41. LEMMA. Let n > 1. Suppose that H < S, and H contains the elements (1 2) and
(12 ---n). Then H=S,,.

The proof is left as an exercise. This completes the verification of Example 6.40. ]

It is worth remarking that the most extreme version of this occurs when we ask for a Galois
group which is simple. There has been a great deal of research activity on this question in the
past few decades, but apparently not all simple groups are known to occur as Galois groups of
extensions of Q or other finite subextensions of C/Q. Here is an example whose Galois group
is As; this is verified using Proposition 4.26.

6.42. EXAMPLE. The Galois group of f(X) = X54+20X+16 over Q is Gal(Q(f(X))/Q) = As,
hence it is not solvable.
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6.6. Symmetric functions

Let k be a field. Consider the polynomial ring on n indeterminates k[X7, ..., X,]| and its
field of fractions K = k(X1,...,X,). Each permutation ¢ € S,, acts on k[X1,...,X,] by

T F(X1ye o, X)) = F7(X0y o, Xn) = F(Xp1ys s Xom):

Viewed as a function o-: k[ X7, ..., X,;] — k[X1,..., X,,] is a ring isomorphism; this extends to
a ring isomorphism o-: k(X1,...,X,) — k(Xi,...,X,). Varying o we obtain actions of the
group S, on k[X,...,X,] and k(X1,...,X,) by ring isomorphisms fixing k and in the latter
case it is by field automorphisms fixing k.

6.43. DEFINITION. The field of symmetric functions on n indeterminates is
Sym,, (k) = k(X1,...,X,)5% <k(Xi,...,X,).
So if f(Xy,...,Xn) € k(Xy,...,X,), then
f(X1,...,Xp) € Sym, (k) <= VoeS, f(X1,...,Xn) = f(Xo)s > Xom))-

6.44. THEOREM. The extension k(X1,...,X,)/Sym, (k) is a finite Galois extension for
which Gal(k(X1,...,Xy)/Sym,(k)) = S,.

PROOF. There are elements of k[ X1,..., X,] Ck(Xy,...,X,) called elementary symmetric
functions,

€L = Z XilXiz Xlka
11 <t2<--<lj
where 1 < k < n. It is easy to see that for every o € S,,, €] = e, so e, € Sym,, (k). Working in
the ring k(X71,..., Xy)[Y] we have

(V) =Y"—e V" o (=) e, Y + (1), =0,

hence the roots of this polynomial are the X;. So k(Xi,...,X,) is the splitting field of f,,(Y)
over Sym,, (k). Now S,, < Gal(k(X7,...,X,)/Sym,(k)), hence

k(X1,...,X,) : Sym, (k)] = | Gal(k(X1, ..., Xn)/ Sym, (k)| > |Sn| = n!.

But as every element of Gal(k(Xy,...,X,)/Sym, (k)) permutes the roots of f,(Y) and is de-
termined by this permutation, we also have

a1 > | Gal(k(X1, .., X)) Sym, (k).
Combining these inequalities we obtain |Gal(k(X1,...,X,)/Sym,(k))] = n! and therefore

Gal(k(Xy,...,Xy)/Sym, (k) = S,. 0
6.45. REMARK. In fact, this proof shows that the extension k(Xi,...,X,)/k(e1,...,ep) is
Galois of degree n!. Since k(eq,...,e,) < Sym,, (k) we can also deduce that k(eq,...,e,) =

Sym,, (k). Hence every element of Sym,, (k) is a rational function in the e;. Analogous results
are true for polynomials, i.e.,

k[Xl, e ,Xn]S" = ]k[el, R ,en].
6.46. COROLLARY. Ifn > 5, the extension k(X1,...,X,)/Sym, (k) is not solvable.

Exercises on Chapter 6

6.1. Let p > 0 be a prime and G a group of order |G| = p™ for some n > 1. Show by induction
on n that there is a normal subgroup N < G with |N| = p"~!. [Hint: what do you know about
the centre of G? Use this information to produce a quotient group of smaller order than G.]

6.2. Let K be a field for which char K # 2 and n > 1 be odd. If K contains a primitive n-th
root of unity, show that then K contains a primitive 2n-th root of unity.
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6.3. Find all values of n > 1 for which ¢(n) | 4. Using this, determine which roots of unity lie
in the following fields:

Q(i), Q(V2i), Q(V314), Q(V51i).

6.4. (a) Describe the elements of (Z/24)* explicitly and verify that this group is isomorphic
to Z/2 x Z/2 x Z]2. Describe the effect of each element on Q({24) and Q(cos(7/12)) under the
action described in Theorem 6.2.

(b) Determine the group (Z/20)* and describe the effect of each of its elements on Q({20) and
Q(cos(m/10)) under the action described in Theorem 6.2.

6.5. Letn > 1.
(a) What can you say about sin(27/n) and Gal(Q(sin(27/n))/Q))?
(b) Determine sin(7/12) and Gal(Q(sin(7/12))/Q)).

6.6. In this question, work in the cyclotomic field Q((s) where (5 = €2/,

(a) Describe the Galois group Gal(Q(¢5)/Q) and its action on Q((s).
(b) Determine the minimal polynomial of cos(27/5) over Q. Hence show that

-1+5
PR
For which other angles 6 is cos # a root of this minimal polynomial? What is the value
of sin(2m/5) ?

(c¢) Find the tower of subfields of Q((5) and express them as fixed fields of subgroups of
Gal(Q(¢5)/Q).

6.7. In this question, let p be an odd prime and let ¢, = ¢>™/P € Q(¢,) < C.
(a) Consider the product

cos(2m/b) =

p—1)/2

(
= I G -¢7) Q).

r=1

Show that .
—

& = (o2 T[a-g).
r=1

(b) Deduce that
52:{ p ifp=1 (mod4),
—p ifp=3 (mod 4).
(c¢) Conclude that
. {i\/ﬁ if p=1 (mod 4),
+/pi ifp=3 (mod4).
and also \/p € Q(¢p) if p=1 (mod 4) and /pi € Q((p) if p =3 (mod 4).
6.8. Prove Lemma 6.41. [Hint: show that every 2-cycle of the form (i i + 1) is in H by
considering elements of the form (12 --- n)"(12)(12 --- n)"" ]

6.9. This question is about an additive version of Hilbert’s Theorem 90, see Theorem 6.18.
Let E/K be a Galois extension with cyclic Galois group Gal(E/K) = (o) of order n.
(a) Show that the function

T:E—E; T(u) =u+o(u)+oc*(u)+--+0"1(u),

takes values in K and use this to define a K-linear mapping Trg/: F — K.
(b) If v € E has Trg, g (v) = 0, show that there is a w € E such that v = w — o(w).
[Hint: Show that there is an element t € E' for which Trg/rt # 0, then consider

1

w = T D) (vo(t) + (v + 0 ()o2(t) + -+ + (0 + o(V)2(E) + - + 0" 2(v))o™ (1))
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and adapt the proof of Hilbert’s Theorem 90 in Theorem 6.18, using Trg g in place of Ng /x|
6.10. (a) For n > 1 and 1 < k < n, the k-th power sum s € k[ X1, ..., X,]>" is defined by

S = Z Xf.
1<isn
Prove the formula
Sp = e155—1 — €28h—2 4+ - + (=1 Lep_151 + (—1)*kes.
(b) For n > 1 and 1 < k < n, the total symmetric function is defined by
hy, = Z leij o 'Xjkv
J1<2 <<k
i.e., the sum of all the monomials in the X; of degree k.

(i) For large values of n, express hi, ho, hs in terms of the elementary symmetric functions
€1, €2, €3.
(ii) Show that the power sum functions s of the previous question satisfy

s = —(h1Sk—1 + haSg—2 + -+ + hg—181) + khy.
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Solutions

Chapter 1

1.1. Clearly {n € Z: n>0andnr=0forallr€ R} C {n € Z : n>0andnl =0} If
0 < n € Z and nl = 0, then for every r € R,
nr=r+--+r=01+---+1)r=(nl)r=0 =0,
n X
so{n€Z:n>0andnl =0} C{n€Z:n>0and nr=0 for all r € R}. Hence these sets
are in fact equal. When char R = p > 0 they must both be non-empty. Now by definition of
characteristic,

char R=min{n € Z:n >0 and nl =0} =min{n € Z : n > 0 and nr = 0 for all r € R}.

1.2. (a) Let u,v € S and suppose that uv = 0; then u = 0 or v = 0 since u,v € R and R is
an integral domain. Consider the unit homomorphisms n: Z — R and ’: Z — S. Then for
n € Z, n'(n) = n(n), so kern’ = kern and therefore char S = char R.

(b) Q is a field and Z C Q is a subring which is not a field.

1.3.  (a) For any subring R C C, R is an integral domain with characteristic subring Z and
char R = 0.

(b) The characteristic subring of A[X] is the same as that of A and char A[X] = char A. A[X]
is an integral domain if and only if A is an integral domain.

(c) If we identify A with the subring of scalar matrices in Mat,(A), then the characteristic
subring of Mat, (A) is the same as that of A and charMat,(A) = char A. If n > 1 then
Mat,,(A) is not commutative, in any case it always has zero-divisors since any singular matrix
is a zero-divisor.

1.4. The main thing to check is that ¢(u + v) = ¢(u) + ¢(v) which is a consequence of the
Idiot’s Binomial Theorem. For R = F,[X], ¢ is not surjective, while for R = F,[X]/(X?), ¢ is
not injective.

1.5. (a) Recall from the Isomorphism Theorems of basic Ring Theory that ¢~ 'Q < R; we need
to show it is a prime ideal. Suppose that u,v € R with uv € p~1Q; then p(u)p(v) = p(uv) € Q
and so ¢(u) € Q or p(v) € Q, hence u € = 1Q or v € Q.

(b) Consider the inclusion function inc: R — S; then inc™! Q = Q N R, so this result follows
from (a).

(c) Consider Z C Q; then the zero-ideal (0)g<Q has (0)gNZ = (0)z <Z but this is not maximal
in Z since for any prime p > 0, (p)z <Z is a (maximal) ideal that properly contains (0)z.

(d) We have P C QN R< R with P < R maximal; so P C QN R. In fact @ only needs to be a
proper ideal of S for this argument to work.

1.6. The only proper ideal of k is the zero ideal (0), so ker ¢ = (0).
1.7. (a) Addition and multiplication follow from the obvious formulae
(U1+U1i)+(U2+U2i) = (u1+UQ)—|—(U1+U2)i, (U1—|—U1i)(UQ+U2i) = (u1u2—U1U2)+(U1U2—|—u201)i,

with Z[i] and Q[i] both closed under these operations and containing 1 = 1 + 0i as a unity, so
they are subrings of the field C; by Qu. 1.1, they are both integral domains. To see that Q[:] is
a field, notice that if u + vi # 0 with u,v € Q,

(u — vi)(u + vi) = (u+vi)(u —vi) = u* + 0> £0,
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SO
u

u? 4 v? - u2+v2i€Q(i)
is the inverse of u 4 vi. Hence every non-zero element of Q[i] has an inverse, therefore QJi] is a
field. 1
(b) & (c) The crucial point is that every element of Q[i] can be written as —(u + vi) with

n
n,u,v € Z and n # 0. Then

inc, <(u+m)> = inc, <(u+m)> = l(U"‘W')a

n n+ 07 n
so the latter element is in the image of inc, which must therefore be a surjection.
1.8. (a) Existence and uniqueness of such an 1), follow from the Homomorphism Extension
Property 1.22 and its effect on f(X) =7 X" € R[X] where r; € R is

n

Yap(f(X)) = f(aX +b) = ri(aX + )"
i=0
We have
Yab © Ve d(X) = Yap(cX +d) =c(aX +b) +d=caX + (cb+d) = Veqcb+d(X).
By the uniqueness part of the Homomorphism Extension Property, we have ¢, 5,04 = Yca,cbtd-

If a is a unit then ¢,-1 _p,-1: R[X] — R[X] has the property that ¢,-1 _p,-1(aX +b) = X and
Yap(a™tX —ba~1) = X, so by the uniqueness part of the Homomorphism Extension Property,

¢a,b © 77ba—1,—ba—1 =id = wa—l,—ba—l o l/fa,b'

. . . T |
Therefore these are inverse isomorphisms, ¢,-1 _po-1 = 9.

(b) (1) If f(X) =YX’ € k[X] with ¢; € k and ¢, # 0, then deg f(X) = n. Now

Yap(f(X)) = ci(aX +b)
=0
= ¢pa" X" + terms of lower degrees in X.
Since c,a™ # 0, this shows that deg v, ,(f(X)) = deg f(X).
(ii) Suppose that g (p(X)) | g(X)h(X) for g(X),h(X) € k[X]. Choose k(X) € k[X] so that
9(X)h(X) = k(X )hap(p(X)). Since 1qy is an isomorphism, we have

Vo (9(X)) W (h(X)) = gy (k(X))p(X)

and as p(X) is prime, p(X) | 93 (9(X)) or p(X) | ¥ (A(X)). Hence ¢qp(p(X)) | g(X) or

Pap(P(X)) | h(X) and s0 ¢g(p(X)) is prime.
(iii) This follows from (ii) and Proposition 1.30.

1.9. (a) Addition and multiplication are given by the usual formulae

(Zaka Zkak Zak—l—bk ZakX Zkak :Z Zagbk )X
k=0 k=0 =0 (=
Clearly k[X] C ]k[[X]] is a subring. Given two non-zero elements a,b € ]k[[X]] we may write
a= Y aX* b=>) bX*
k=ko £o

with ag, # 0 # bg,. Then the lowest degree term in ab is ag,by, X 00 with ag,bs, # 0. Hence
ab # 0. So k[[X]] is an integral domain.

(b) Let a = Y22 ,ar X" € k[[X]]. Then a has an inverse in k[[X]] only if there is a b =
S o be X! € k[[X]] with ab = 1, in particular this forces ag # 0 since otherwise the lowest term
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in X in ab would be of degree greater than 0. Conversely, if ag # 0, then we can inductively
solve the system of equations

n
agbo = 1, Zafbn—é = aoby, + arbp—1 + -+ apb, =0 (n = ]—)a
£=0
to ensure that ab = 1.
(c) We can define make the set k((X)) of all such finite tailed Laurent series into a ring with
addition and multiplication defined by

o0 (e e} [e.e]
D aXH)+ (D X = Y (a+b)X",
k=k1 k=ko k=min{k1,k2}
00 00 00 k
(Y- aXHOQ X = D O abk )X
k=Fo (=t k=min{ko,lo} j=0

Clearly k[[X]] C k((X)) is a subring. Notice that every element > 7, apX* € k((X)) with
ko < 0 can be written as
XX

The inclusion inc: k[[X]] — k((X)) extends to the monomorphism inc, : Fr(k[[X]]) — k((X))
for which

: ii ar X" > r
Cyx (W) = (Z Ar kg X )Xko,
r=0
so inc, is surjective.
1.10. Here f(X) = (3X —3)d(X) + (—-9X + 7).
1.11. Here f(X)=-X? - X2+ X +1and d(X) = —X3 — X with
fX)=d(X)+ (=X — X? +1) =d(X) + (2X? +2X +1).

1.12. The reduction modulo p function

p: ZIX] — Fp[X]; p(f(X)) = f(X),
is a ring homomorphism. If f(X) = ¢g(X)h(X) with ¢g(X),h(X) € Z[X], degg(X) < deg f(X)
and deg h(X) < deg f(X), then

F(X) = plg(X)(X)) = p(g(X))p(h(X)) = g(X)h(X),
where deg g(X) < deg f(X) = deg f(X) and degh(X) < deg f(X) = deg f(X). But this is

impossible since f(X) is irreducible. So f(X) must be irreducible.

X3 — X + 1 reduces modulo 3 to an irreducible since it has no roots modulo 3. So X% — X + 1
is irreducible.

X3 42X +1=X%-X+1 (mod 3) so this polynomial reduces modulo 3 to an irreducible and
so is irreducible.

X3 + X — 1 reduces modulo 2 to an irreducible since it has no roots modulo 2. So X% + X — 1
is irreducible.

X5 — X 41 is irreducible modulo 3 and 5 so is itself irreducible.

X0+ X —-1=(X3+X2-1)(X2-X+1)and 5X3 - 10X + X? -2 = (5X + 1)(X? - 2) so
neither of these is irreducible.

113, I = (X%241), I = (X%242), I3 = (X2-2), I, = (X —V2), Iy = (X2+42), I[s = X?>+ X +1.
1.14. The image is

esQX] =Q[v2 ={a+bv2:a,becQ}.
The image of e_ zise_ 5 Q[X] = Q[V2] = e 5 Q[X]. We have
kere 5 =kere_ 5= (X% -2)<Q[X]
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which is a maximal ideal.

1.15. Notice that w = (=1 + 1/3i)/2 = (3 is a primitive 3-rd root of unity and is a root of the
irreducible polynomial X2 + X + 1 € Q[X]. Then

cwQX] =Qw] ={a+bw:a,beQ}, kere,=(X*+X +1)<Q[X],

where (X2 + X + 1) «Q[X] is a maximal ideal. The other complex root of X2 + X + 1 is w?,
so the evaluation homomorphism ¢ 2 has e 2 Q[X] = ¢, Q[X] and kere,2 = kere,,.

1.16. We have
£a Q[X] = Qo] = {a +ba+ ca® +da® : a,b,c,d € Q}, kere, = (X —2)<Q[X],

and the latter ideal is maximal. The other complex roots of X% — 2 are —a, ai, —a i (notice
that two of these are real while the other two are not). Then

kere_, =kere,; = kere_,; = (X4 —2)<Q[X]
but although €_, Q[X] = Q[a], we have
£aiQ[X] = c_0i Q[X] = Qai] = {a+bai+ ca® +da’i: a,b,c,d € Q} # Q[al,

80 €qi Q[X] # €4 Q[X] since one of these is a subset of R but the other is not.
If we replace Q by R, then X* — 2 = (X? — 2)(X? + 2) in R[X] and we have to consider
which factor « is a root of. If a? — 2 = 0 then

caR[X]=c oR[X]=R[a] = {a+ba:a,b € R} CR, kere, =kere_, = (X* —2) aR[X].
If a® +2 = 0 then
caR[X] =c oR[X]=Rla] ={a+ba:abeR}ZR, kerey, =kere_,=(X%42)aR[X].

1.17. First change variable to obtain
9(X)=f(X+3)=X>—-6X +4.
Using Cardan’s method we have to solve the quadratic equation
U? +4U +8 =0,

which has roots

—24 2i = (V2)3e3m/4,
Thus we can take

u =2 = é(l +i)w" =1 +i)w" (r=0,1,3).

V2
For the roots of g(X) we obtain 2, v/3—1, —/3 — 1, while for f(X) we have 5, v/3+2, —v/3+2.
1.18. Work backwards with Cardan’s method. For «, take
27¢° +4p°

108

so ¢ = —20 and p = 6. Thus « is a real root of f(X) = X3+ 6X — 20. Notice that 2 is a real
root of this polynomial and

~9 _1p, 108,

f(X) = (X —2)(X? +2X +10),
where X2 + 2X + 10 has no real roots. Therefore o = 2.
For 3, take
a4, 2+’ 28
2 08 27
so ¢ = —2 and p = 1. Thus 3 is a real root of g(X) = X3 + X — 2 for which 1 is also a root and
g(X) = (X —1)(X%2+ X +2),

where X? 4+ X + 2 has no real roots. Therefore 3 = 1.
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1.19. To see that the homomorphism
Affy (k) — Autg(k[X]); Ar— ay-1,

described in the Proof of Example 1.60 is surjective, suppose that ¢ € Autyg(k[X]) is any
automorphism. Let

p(X)=aot+ar X+ +a, X"
with a; € k and a,, # 0. If n = 0 then pk[X] = k C k[X] so ¢ would not be surjective, hence
we must have n > 1. Suppose that show that n > 1. Then

Pk[X] = {c+ 0+ c1o(X) + -+ (X)) co,c1, .. op € k} = K[X].

But if £ > 0 and ¢ # 0 then deg(c+ 0+ c1o(X) + - + exp(X)¥) = kn > 1, so X ¢ ¢k[X],
which gives a contradiction. So we must have n = 1. Therefore ¢(X) = ap+a1 X and so ¢ = ay
for some A € Aff; (k).

1.20. Calculation.
1.21. We have
deg ®20(X) = ¢(20) = p(4)p(5) =2 x 4 =38
and
X0 _1=(x" x4+ =xXY-1)X?+ DX - X+ X1 - X2 +1).
Since the roots of X0 — 1 are the 10-th roots of unity, we find that
Poo(X) [ (X2 +1)(X®— XO 4+ X — X2 41);
since cyclotomic polynomials are irreducible, we must have ®90(X) = X® — X6 + X4 — X2 1.
1.22. (a) We have

so by (1.5), -
[I epx)=2,(x" ) JI @p(X),

0<j<k 0<j<k—1

and therefore @ x(X) = ®,(XP""). The complex roots of ®,(X) are the primitive p-th roots
of 1, so the roots of @ (X) are their p*~!-st roots which are the primitive p*-th roots of 1.
(b) Using the formula of Equation 1.4, we have

By (X) = Bp(XP" ) = (X7 )P g (X 1P b (XPT — 1) e,
where ¢, =0 (mod p) and ¢y = p. The Idiot’s Binomial Theorem gives

X" 1= (X — 1)pk_1 (mod p)
50 k k k
1 —1 -1
P (X) = (X — 1)(p—1)p + c;_Q(X _ 1)(p—2)p +o (X -1 44,

where ¢/, =0 (mod p). In fact,

ch= <I>pk(1) =®,(1) =co=p,

so the Eisenstein Test can be applied to show that @ x (X) is irreducible over Q.
(c) First notice that

deg (bn(X) = gp(n) = (pl — 1) . (pk _ 1)p§'1_1 .. .p;k—1’

and
7'k,71

r1—1
deg ®p,..p, (XP1 Pk

1—1 re—1 r1—1 re—1

)=r-pp T = (= D) (= DR
so deg @, (X) = deg @p, ..., (qulil'“PZkil). Also, each root £ of @,(X),

rlil"‘p;k_l)pl“'pk —_ é.n — 1’
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1 rp—1 r1—1 T —1
Pt ) has this property, hence (fpl1 Pt ) is a root of
] -

T — T 1
D, ...p. (X). This shows that @, (X) | ®p,...p, (xPi' P ). As these are monic polynomials of
the same degree they are equal.

and no smaller power of (57’;1_

1.23. By Theorem 143, ,(X) =[] (X —¢h), 0

:(_1)s0(n)X—¢(n) H (X =)

n
t=1,...,n—1
ged(t,n)=1

= (—1)*M XM, (X).

Since 2 | ¢(n) when n > 2 and the result is immediate when n = 2, we see that desired equation
always holds.

1.24. We have
Co+ (L = 2mi/n | g 2mi/n
= (cos(2mi/n) + sin(27i/n) i) + (cos(2mi/n) — sin(27i/n) i) = 2 cos(2mwi/n).
Now we have
G+ G =2c08(2m/5), GH(P=(G+ G -2 = 4cos’(2m/5) — 2.
We also have ®5(X) = X* 4+ X3+ X2+ X + 1, s0
G+HE+E+G+1=0
Rearranging and using the formulae Cé = (5 L Cg’ = (5 2 we have
(E+EH+(GHEH+L=0,

hence

4 cos*(2m/5) + 2cos(2m/5) — 1 = 0.
Thus a suitable polynomial is 4X2 +2X — 1 € Q[X].
1.25. (a) In K[X], by the Idiot’s Binomial Theorem 1.10,

XP—1=XP+ (-1’ =(X+(-1))P = (X — 1)~

By the Unique Factorization Property 1.33, the only root of this polynomial in K must be 1.
Similarly,

m m

X" 1= (X" 1)P
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and the only roots of this must be n-th roots of 1.
(b) If uw € K is a root of this polynomial then u? = a. As in (a) we have

XP—a=XP —uP = (X —u)?,

so u is the only root in K.

Chapter 2

2.1. This is similar to Example 2.4.

2.2. It is obvious that [Q(y/p, /q) : Q(/p)] < 2; if [Q(\/p, /a) : Q(v/P)] = 1 then /g € Q(\/D),
say \/q = a + by/p for some a,b € Q. Then

q = (a+byp)? = (a* + b?p) + 2ab\/p,
giving the simultaneous pair of equations
aA+v’p=yq, 2ab=0.

If b= 0 then /g € Q which contradicts the result of Qu. 2.1. If a = 0 then ,/q = b\/p. Writing
b = b1 /by with by, be € Z and ged(by, ba) = 1, we obtain

b2 50 = b
and so p | be and ¢ | by. Writing by = bjq and by = blq for suitable b}, b, € Z, we obtain
(05)*p°q = (b1)%¢*p,
hence
(b5)*p = (V)%

From this we obtain p | b} and ¢ | b}; but then p | by as well as p | by, contradicting the fact that

ged(b1, b2) = 1. So /g ¢ Q(\/p).
2.3. Arrange the induction carefully.
2.4. Notice that if v = +u then b = v? = u? = a which is impossible; so v # 4+u. Then

_ 2 2 —b
u—v:(u v)(u—i—v):u vt a € K(u+0).
u—+v u+v u—+v

Hence

w=g (w4 o) +(u—v) € K(utu), v=((utv)-(u—0v) € K(uto)

So K(u,v) < K(u+v) < K(u,v) and therefore K(u+v) = K(u,v).

2.5. Since 1,7 span the Q-vector space Q(i), we have [Q(7) : Q] < 2. But also if z,y € R, then
x—i—yz—O(:)x—y—O so 1,4 is a basis for Q(7) over Q. Hence [Q(7) : Q] = 2.

2.6. First notice that [Q(v/3) : Q] = 2 (with Q-basis 1,v/3) and Q(v/3) < R. Also, i ¢ Q(v/3)
and since i2 + 1 =0, Q(v/3,4) = Q(v/3)(i) has [Q(v/3,7) : Q(v/3)] = 2. By Theorem 2.6(ii),

[@(v3,i): Q] = [Q(V3,4) : Q(V3)][Q(V3) : Q] =2 x 2 = 4.

The following three subfields of Q(/3,4) are distinct and are extensions of Q having degree 2:
L1 = Q(V3), Ly = Q(i), Ly = Q(+/34). Then [L,NLs:Q] >1 <= L, NLs =L, = Ly, so
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L. N Ls = Q whenever r # s. The only real subfield amongst these is L.
.C

2.7. (a) Since 5 is a prime,
[Q(¢) : Q) = [QX]/(®5(X)) : Q] = (5) =5 -1 = 4.

(b) We have (5 = cos(27/5) +sin(27/5)i € Q((s). But also (5 € Q(¢5) and (5 = cos(27/5) —
sin(27/5) i € Q((5). Hence we have
1

cos(2m/5) = % ((5 + Cs_l) € Q(¢5), sin(2n/5)i= 3 (C5 — <5—1) € Q(¢s).

(c) This can be found by repeated use of the double angle formula
cos(A + B) = cos Acos B — sin A sin B.

The polynomial T,,(X) expressing cosnf in terms of cos® is called the n-th Chebyshev polyno-
mial, see Remark 6.6.

(d) For k = 0,1,2,3,4, cos(5(2kw/5)) = cos(2km) = 1, so Ts(cos2kn/5) — 1 = 0. So each of
the numbers cos(2k7/5) is a root of the polynomial T5(X) —1 = (X —1)(4X? +2X — 1)%. For
k=1,2,3,4, cos(2km/5) is a root of 4X? + 2X — 1, therefore

Q(cos(21/5)) = Q[X]/(4X% +2X — 1), [Q(cos(2kx/5)) : Q] = 2.
(e) Q(¢s)

2

Q(cos(2m/5))

2

Q

2.8. This is similar to the previous question.

2.9. (a) If a € Autg(E,) then a(2/™)" = a(2) = 2, so a(2/") € E, is also a real n-
th root of 1. If n is odd, the only possibility is a(2Y/") = 21", so a = id. If n is even, the
possibilities are a(21/ "= +21/7 ' We can realize this automorphism starting with the evaluation
homomorphism €41/» : Q[X]| — E,, and precomposing with the isomorphism v¢: Q[X]| — Q[X]
for which ¥ (X) = —X to form 5’21/n = €91/n 0 9. On passing to the quotient homomorphism of
5’21 /n We obtain an automorphism 7, of E, under which 7, (21/ "= —2l/n,

(b) Since E < R, an automorphism « € Autg(E) has the effect

{ 91/7 if n is odd,

a2y =
( ) +921/7 if n is even.



95

If for some n we have a(2'/™) = —2'/" then
_21/n _ a(21/n) _ a(21/2n)2 >0

since a(21/?") € R. This contradiction shows that a(2'/™) = 21/™ for every n, so a = id.
(c) Assuming there are only 6 such subfields, they form the following tower.

Eis
7

2

\/

(d) This element is a root of the polynomial
(X — (212 4 213)) (X — (=212 4 21/3)) = X2 — 2(2'/3)X 4 2%/% — 2 € E3[X],
S0 it is certainly an element of Eg which is the only degree 2 extension of Es. If 21/2421/3 ¢ Ej4

then 21/2 € F3, which would imply 2 = [E» : Q] | [E3 : Q] = 3 which is false, so 21/2 +21/3 ¢ Ej;
a similar argument shows that 21/2 4 21/3 ¢ Ey. Writing w = e2mi/3 21/2 4 91/3 is g root of

(X — 22 +23))(X — (212 + 2 W) (X — (277 + 2'3w?))
= X3 —302Y)X%+6X — (2+2(2'/?)) € Ey[X],

so it cannot lie in Ey since 21/2 +21/3 ¢ By and 31 [Ey : Ey] = 2. So 21/2 + 2'/3 is in Eg and
FE15 and none of the others.

Chapter 3

3.1. Clearly, ¢ is algebraic over K if and only if kere; # (0), i.e., (i) <= (ii). By Theorem 2.9,
(ii) <= (iii). Hence these three conditions are indeed equivalent.

3.2. The diagrams at the bottom indicate useful subfields of the splitting fields occurring in
each of these examples.

, 1+ )
p1(X) = X* — X2 4+ 1: The polynomial X2 — X + 1 has the complex roots e*™/3 = ﬂ, S0

the four roots of p;(X) are the complex square roots of these numbers, i.e., 2e*7/6, Explicitly

these are
V3 1. V3 1. v3 1. V3 o1,
—Jrf —_ ==, — — =, ——— + —1.
27 2 2 2 2 2 2
The splitting field is F = (@(\f i) and [E: Q] = 4.
p2(X) = X6 —2: The roots are the six complex 6-th roots of 2, i.e., fe2km/6 \fek’”/?’ for

k=0,1,2,3,4,5. Explicitly, these are
V2 V2
%’\Qf+f\/§ fff o, ff\fff\f

2 "2 T2 T2 "y 2
The splitting field is E = Q(v/2,v/3i) = (\[)(\fz) which has degree [E : Q] = 12.
p3(X) = X* + 2: The roots are the four 4-th roots of —2, i.e., v/2ek+7mi/4 for k= 0,1,2,3.
Explicitly these are

1 1.1 1, 111 1
— i, — - i

The splitting field is £ = Q(+v/2,4) and [E : Q] = 8.
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pa(X) = X*+5X3 +10X2 + 10X + 5: Notice that
pa(Y = 1) =Y '+ YV + Y24 Y +1=d5(Y),
so the splitting field of ps(X) over Q is the same as that of ®5(Y) over Q and this is the
cyclotomic field Q(¢s) where (5 = cos(27/5) + sin(27/5)i with [Q((5) : Q] = 4; in fact we have
Q(¢s) = Q(cos(27/5), sin(27/5)1).
Q(V2,v/3,1)

2

Q(V3,1) Q(¥2,V3) Q(v/2,1) Q(cos(2m/5), sin(27/5)i)

2 6 2 2
Q(V3) Q(V3) Q(2) Q(cos(27/5))
2 9 4 2

Q Q Q Q

3.3. List the three roots of X3—2 asu; = v/2, us = v/2(3, ug = W{% Then each automorphism
a € Autg(Q( V2, (3)) permutes these roots, so can be identified with the unique permutation
0q € S3 for which

a(ui) = Uy, i) (1=1,2,3).
We find that (using cycle notation for permutations)
oiq =id, 0ay =(23), 0a0, =(123), 04 =(12), 00, =(132), 04 =(13).
These are the six elements of Sz, therefore Autg(Q(v/2, (3)) = Ss.

3.4. TIrreducibility is a consequence of the polynomial version of the Eisenstein Test 1.48.
Suppose that ¢ € k(T) is a root of g(X); then using the Idiot’s Binomial Theorem we have

(X —t)P = XP — P = XP — T,

so t is in fact a root of multiplicity p, hence it is the only root of g(X) in k(7"). This also gives
the factorization of g(X) into linear factors over k(7').

3.5. Q(v/5,v/10)/Q: Here [Q(v/5,4/10) : Q] = 4 and the element /5 + 1/10 has degree 4 with
minimal polynomial X 4 _ 30X? + 25 which has roots +v/5 + /10.

Q(v2,i)/Q: Here [Q(v/2,i) : Q] = 4 and the element /2 + i has degree 4 with minimal
polynomial X% — 2X?2 + 9 which has roots £v/2 = i.

Q(v3,i)/Q: Here [Q(v/3,i) : Q] = 4 and the element /3 + i has degree 4 with minimal
polynomial X4 —4X? 4+ 16 which has roots ++v/3 £ i.

Q(v/3,4)/Q: Here [Q(v/3,i) : Q] = 4 and the element +/3 4 i has degree 8 with minimal
polynomial X® 4+ 4X% + 40X? + 4 which has roots £+v/3 £+ and +v/3i £ .

3.6. The induction is straightforward. Here is the argument that K(u,v)/K is simple. We
assume that K is infinite since otherwise the result will be proved in Proposition 5.16.

Consider the subfields K (u + tv) < K(u,v) with t € K. Then there are only finitely many
of these, so there must be s,t € K such that s # ¢t and K (u + sv) = K(u + tv). Then

(s —t)v = (u+ sv) — (u+tv) € K(u+ tv),
hence v € K(u + tv). This implies that
u=(u+tv) —tv € K(u+ tv),
hence K (u,v) < K(u+ tv) < K(u,v) and so K(u,v) = K(u + tv).
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3.7. If E/K is a quadratic extension then for any u € E — K we have 1 < [K(u) : K] < 2,
so [K(u) : K] =2 = [E: K] and therefore K(u) = E. Then minpoly ,(X) must factor into
linear factors over E, so both its roots in K lie in E. This shows that E is normal over K.
The example Fo(Z)/Fo(Z?) is not separable since X2 — Z2 € Fo(Z?)[X] is irreducible but
not separable (see Qu. 3.4). If char K # 2 then all quadratic polynomials over K are separable.

3.8. Let E < C be a splitting subfield for f(X) over Q. Then if v € C is a non-real root of
f(X) we have v ¢ Q(u), so f(X) does not split over Q(u) even though it has a root in this field.

This means that there is a monomorphism ¢ € Monog(Q(u), C) = Monog(Q(u), Q) for which
o(u) = v, hence pQ(u) # Q(u) and so Q(u)/Q is not normal.

Chapter 4

4.1. By Theorem 3.81 we know that splitting fields are always normal, so it is only necessary
to show that the splitting field E of p(X) over K is separable over K. Since FE is obtained by
repeatedly adjoining roots of p(X), the result follows from Proposition 3.73 together with the
fact that if L/K < E/K is separable and v € E is a root of p(X), then L(v)/K is separable.

4.2. (a) Suppose that f(X) = c3X3 + c2X? 4 ¢1 X + ¢4 with c3 # 0. Then

fuX +v) =
c3u X3 + (3czvu® + cou?) X2 + (Bezuv? + cru + 2c0uv) X + (c30° + ¢4 + v + cav?),

so if we take u to be any cube root of ¢z and u = —cy/3c¢s then f(uX +v) has the desired form.
Notice that v € K(u) and then f(uX +v) € K(u), so provided that we can find a cube root of
1/cs in K, we have f(uX +v) € K.

(b) Viewing Gal(E/K) as a subgroup of S3, by Theorem 4.8 we know that 3 divides | Gal(E/K)|;
but the only subgroups of S3 with this property are Ss and As.

(c) This is a tedious calculation! See Section 4.7 for the rest of this question.

4.3. If a/b is a rational root of f(X), we may assume that ged(a,b) = 1. Now a® — 3ab? +b® =
0, which easily implies that a,b = +£1; but 1 is certainly not a root. Hence there are no
rational roots and so no proper rational factors. By the formula following Proposition 4.25, the
discriminant of f(X) is
A= —27—4(-3) =81 =92

If the distinct roots of f(X) in C are u,v,w, the splitting subfield K (v, w) = Q(u,v,w) < C
satisfies 3 | [Q(u,v,w) : Q] and [Q(u, v, w) : Q] | 3! = 6. The Galois group Gal(Q(u,v,w)/Q) is a
subgroup of S3 (viewed as the permutation group of {u, v, w}). Since the discriminant is a square
in Q, Proposition 4.26 implies that Gal(Q(u, v, w)/Q) < Az = Z/3. So | Gal(Q(u,v,w))/Q)| = 3
and Gal(Q(u,v,w)) is cyclic of order 3 whose generator is a 3-cycle which cyclically permutes
U, v, w.

4.4. (a) This should be a familiar result.
(b) The centre of Dg is <a2> which has order 2, and there are three normal subgroups of order
4, namely

<Oé> = {L7a7a27a3}7 <042,ﬂ> = {L,a2,/6,,8042}, <052,ﬁ04> = {L,Cyz”@a,ﬁa:s}.
Notice that there are also four non-normal subgroups of order 2,

B) ={u,8}, (Ba)={,Ba}, (Ba®)={,,Ba%, (Ba’)={spa’}.

4.5. This is an example of case (iii) of Kaplansky’s Theorem and we use the notation of the
proof. The discriminant here is 62 = —12, so we can take 6 = 21/3i. The roots of X? + 3 are
i\/gz', SO We may assume

2v/3 : _ 2v/3

= (1+i), = (1),
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where as usual (g = e2mi/8 — (14 2)/\@ Hence we have uv = v/3 and uvd = 6i. This gives the
diagram of subfields of £

E=Q(V3(s, V3" =Q(V3,¢)

Q(v3,1)
Q(v/3i) Q(V3) Q(7)
2/
2 2
Q
Then « is the restriction of complex conjugation to E, while 8(v/3i) = v/3i and 5(v/3) = —/3,
hence also (3(i) = —i. Using the choices of the proof, we have

B(V3() = V3G, BV = B(—V3(si) = —V3(si.

The effects of o and ~ on the four roots v/3 (s, \4/§C8—1’ —v/3 s, —%Cgl of f(X) are given in
permutation notation by ¢ = (1 4 3 2) and a = (1 2)(3 4), and these generate a dihedral
subgroup of Sy4. Using the previous question (but beware that the notation there is inconsistent
with that of the present situation!) we have the normal subgroups

<02> , (o), <02, @), <02, ao),
and these have fixed fields
B =Q(v3,i), B =q(), B =qQv3E), B0 =q(v3i),
each of which is a normal extension of Q.

4.6. Q(X3 —10)/Q: This is similar to Example 4.20, with splitting field Q(+/10,¢3) and
Gal(Q(v/10,¢(3)/Q) = Ss.
Q(v2)(X? - 10)/Q(v'2): The splitting field is Q(v/2, V10, ¢3), [Q(v2, V10) : Q(v/2)] = 3 and

Q(V2, V10) < Q(V2, V10, (3).

Since (3 is not real, [Q(v/2, V10, (3) : Q(v/2)] = 6. The Galois group is isomorphic to Ss.
Q(V3i)(X? —10)/Q(v/34): Here Q(v/3i) = Q((3), with [Q(¢3) : Q] = 2. The splitting field is
Q(¥/10,¢3) and [Q(/10,¢3) : Q(G3)] = 3, hence Gal(Q(+3/10,(3)/Q((3)) = Z/3 with generator
for which o(+/10) = V/10 3.

Q(v234)(X3 — X —1)/Q(+/231): First note that X> — X — 1 € Z[X] must be irreducible since
its reduction modulo 2, X3 4+ X + 1 € Fo[X], has no root in Fy and hence has no linear factor
(see Qu. 1.10). To proceed further we can use the ideas of Qu. 4.2 above (see also Section 4.7).
The discriminant of the polynomial X3 — X — 1 is A = —23 and so § = v/234. Then if
E = Q(+v234)(X? — X — 1) is the splitting field of X3 — X — 1 over Q, Gal(E/Q) = S3 and
Gal(E/Q(v/231)) = As.

K(X3 - X —1)/K for K = Q, Q(v/5), Q(+/51), Q(i): Continuing the preceding discussion,
notice that [FNR : Q] = 3, so v/5 ¢ E, hence

QVE)(X* = X —1) = Q(X* - X ~1)(v5)
and
[QV5)(X? =X —1): Q(V5)] = [Q(X* - X —1): Q] =6,
hence Gal(Q(v/5)(X3 — X —1)/Q(v/5)) = S3. Similarly, v/5i ¢ E and i ¢ E, hence

Gal(Q(v54)(X? — X —1)/Q(v514)) 2 S5 = Gal(Q(i)(X? — X — 1)/Q(i)).
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4.7.  (a) Since char K # 0, f/(X) = pXP~! # 0, so if u € L is any root of f(X) then
f'(u) = puP~t # 0. By Proposition 3.55, there are no multiple roots, hence p distinct roots. If
u,v € L are distinct roots, then (vu=1)? =1, so v = uf for £ € K a p-th root of 1 with & # 1.
(b) If there is a root u ¢ K, the Galois group Gal(L/K) acts in the following way. By The-
orem 4.8, there must be an element v € Gal(L/K) with y(u) # u. We can write y(u) = u&,
where £, # 1 is a p-th root of 1. Since 7(§,) = &, for 7 > 1 we have 4" (u) = uf, which can
only equal u if p | r. So u must have at least p conjugates which are all roots of f(X). Since
deg f(X),, every root of f(X) is conjugate to u, so f(X) must be irreducible over K.

(¢) Suppose that f(X) = g(X)h(X) with g(X) € K[X] monic irreducible and 0 < d =
degg(X) < p. Let L/K with L a splitting field for f(X) over K and let w € L be a root
of g(X). Arguing as in (a), we know that each root of g(X) has the form w¢ where ¢ is some
p-th root of 1; moreover, L must contain p distinct p-th roots of 1. Now the constant coefficient
of g(X) is g(0) = (—1)%uw? € K where & is a p-th root of 1. So

9(0)" = ()P (w?)? = (~1)Pa’,

from which it follows that a? is a p-th power in K. As ged(p,d) = 1, there are integers 7, s such
that rp + sd = 1, so we have

a = (a")P(a?)® = a p-th power in K.

Hence if f(X) is not irreducible in K[X] it has a root in K.

4.8. Ifu € Lisarootof f(X) in an extension L/K then by the Idiot’s Binomial Theorem 1.10
XP—a=XP+ (—u)’ = (X —u)P,

so u is the only such root in L and f(X) splits over L. If (X — u)? € K[X] for some d with
1 < d < pthen u € K. Since ged(d, p) = 1, there are integers r, s such that rd+ sp = 1. Hence
(u?)*(uP)" = u, where the left hand side is in K. This shows that u € K. Hence either f(X)
has a root in K or it must be irreducible over K.

Chapter 5

5.1. By Theorem 1.17, an integral domain D always admits a monomorphism into a field
j: D — F (e.g., F can be taken to be the field of fractions of D), so any subgroup U < D*
becomes isomorphic to a subgroup jU < F*, and if U is finite so is jU. Therefore jU and U
are cyclic.

5.2. The only root of X2 + 1 in Fs is the multiple root 1.

5.3.  The field F,«[X]/(f(X)) is an extension of F s which has degree n, hence it is a finite
field with p? elements, hence Proposition 5.6 implies that it is isomorphic to Fpan. Since the
extension Fpan /F ¢ is normal, F, is a splitting field for f(X) over F 4.

5.4. (a) Here 41 is prime. Since 8 | (41 — 1), there is a primitive 8-th root of unity in F4;. 6 is
a primitive root for Fy; and 6° = 27 (mod 4)1 has order 8.
(b) Here 5 is prime 4 | (5 — 1), so there is a primitive 4-th root of unity in FZ', but no primitive
8-th root of unity. In fact, 2 and 3 have order 4, so these are primitive roots for F5. Notice that
in F5 [X],

X 1=(X'"- DX +1) = (X - 1)(X2-2)(X?-3),
where the polynomials X2 — 2 and X2 — 3 are irreducible. Therefore Fos is the splitting field for
X8 — 1 over F5 and we have Fos5 = F5(u) = F5(v), where u? = 2 and v? = 3, so +u and +v are
primitive 8-th roots of unity. To find an element of order 24 in FJ;, we first find one of order 3.
Consider the polynomial X? 4+ X + 1 € F5[X]; in F5, this has roots which have order 3. These
roots are given by (—1 #+ w)/2, where w? = (1 — 4) = —3 = 2, hence they are

(—1+wu)
2
Now the elements +(2 £ 2u)u = £(+4 + 2u) = +4 + 2u all have order 8 x 3 = 24.

= —3 £ 3u.
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(c) Here 11 is prime and 8 | (121 —1) = 120, so F12; is the splitting field of X® —1 over Fy1. The
polynomial X2+ 1 is irreducible over F11 so F1a1 = Fq1(2) where 22 = —1. Since 120 = 8 x 3 x 5,
it is sufficient to find elements of order 8, 3 and 5 whose product will have order 120.
Suppose that a + bz € F191 with a,b € Fy1. If this element has order 8, then (a +b2)? = +2.
So let us solve
(a® — b*) + 2abz = z.

Then 2ab = 1 and b* = a2, hence b = +a. Now we have 2a> = +1 and so a? = £1/2 = +6.
Now 6 is not a square in F;; but

7?=—-6=4% (mod 1)1,

so we have a = 4, b = £4 and a = 7, b = £7. Therefore the elements of order 8 in Fy;, are
44+4zand 7£7z.
By the same approach as in (b), the elements of order 3 in Fi9; are (—1+5z2)/2 =5+ 8z.
2 is a primitive root for Fq; so 4 = 22 has order 5.
Combining these we obtain the following primitive roots for Fio1: 74 2z, 10 + 4z.
(d) In Fo[X] we have X® —1 = (X — 1)8, whose only root in Fy is 1. So the splitting field is Fa.

5.5. Notice that F,(w) is a splitting field of the separable polynomial X7 — 1 over F,, so
if we IF‘;E then F(w) < Fpe. Since Fp(w) = Fpa we have d < {; we also have degy w = d.
The number of conjugates of w is d, hence each primitive root of Fa has d conjugates and the
total number of these is the number of generators of the cyclic group IE‘;d =~ 7/(p? — 1), i.e.,
@(p? —1). Hence d | ¢(p? — 1). This can also be interpreted in terms of the evident action of
Gal(F,qa/Fp) = Z/d on the set of all primitive roots of F,«; each orbit has exactly d elements,
so the number of orbits is ¢(p? — 1)/d which is an integer.

5.6. (a) First note that ¢/, (X) = —1, so g,(X) is separable, hence E/K is separable. If u € F
is a root of g,(X), then for t € Fq,

gaut+t) =+t —(u+t)—a= W —u—a)+ " —t) = (W' —u—a) =0,

hence u+1 is also a root of g,(X). This means that £ = K (u) since all the other roots of g,(X)
lie in K (u). As g,(X) is irreducible over K, [E : K] = p? = | Gal(E/K)| and so the following
p? automorphisms are the elements of Gal(E/K):

o BE— E; o(u)=u+t (t € Fpa).

It is easy to check that for s,t € F 4, 05001 = 054+ Hence there is an isomorphism Gal(E/K) =
F,a with oy corresponding to ¢ € Fa.
(b) If g,(X) is irreducible over K then it cannot have a root in K since its degree is greater
than 1.

Conversely, suppose that g,(X) has no root in K. Then if u € F is any root of g,(X) in
a splitting field over K, the other roots are the p elements u +t € E (t € Fp). If u+ty # u
is a conjugate of u with 0 # to € F,, there must be an element 7, € Gal(E/K) for which
Tto(u) = u + to. Then (73,) must be isomorphic to a non-trivial subgroup of F,, but this must
be F, since this group is simple. Hence, u must have p conjugates and so g,(X) is irreducible
over K.
(¢) If K is a finite field and d > 1 then if g,(X) were irreducible over K, then by (a), E would
be finite and Gal(E/K) = Fa. But F,« is not cyclic, yet we know from Proposition 5.23 that
Gal(F,q/Fp) = Z/d is cyclic.

5.7. (a) By Proposition 5.12, F¢ is a cyclic group. If p = 2 then |F,| = 24 — 1, which is odd,
so every element of F;d is a square; we may therefore take \ya(u) = 1 for all u € IFQXd. So now
suppose that p is odd. Then |F;d| = p% — 1, which is even. The set of squares in F;d is the
normal subgroup

(]F;d)Q = {u2 fu e ]F;d} < ]F;d
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and it is easily seen that its quotient group has order 2, hence
F;d/(IF;d)Q =~ (+1}.
We may use this group isomorphism to define )\,. Clearly we have
ker \, = (F;d)?
Aq is surjective if and only if p is odd.
Remark: when d =1, A\, (u) = <Z>, the Legendre symbol of u from Number Theory.

(b) If u € ¥, then either u = 0 or u # 0 and u = (4v)? for some v € Fx. Thus we have

Then
[t — 2| = |3 = (q+21)
(c) Since ¥4 U (t — X4) C Iy, we have
q > [3qU(t—3g)| = [3q] + [t = Zq| — [Eg N (¢ = )]

This implies that
q=(g+1)—[SgN (-2
and so
£ (= 20| > 1.

Thus for every t € Fy, there are u,v € F, (possibly 0) for which u? = t —v?, whence t = u? +v?.
(d) By (c), we may write —1 = a? + b? for some a,b € Fy, i.e.,

124+a2+0*>=0.

Chapter 6

6.1. Now when n = 1, G = Z/p, which is abelian. Suppose that the result holds whenever
|G| = p* with k < n. Now if |G| = p", recall that by Cauchy’s Lemma, the centre Z of G
is non-trivial. Hence G/Z has order |G/Z| = p* with k < n. By the inductive hypothesis,
there is a normal subgroup M < G/Z with |M| = p*~!. By one of the Isomorphism Theorems,
there is a normal subgroup N < G containing Z and satisfying N/Z = M C G/Z. Clearly
IN| = |Z||M| = p"~!. This establishes the inductive step and hence the desired result.

6.2. In this situation, for any non-zero t € K, —t # t (since otherwise 2t = 0 and so ¢ = 0).
If ¢ € K is a primitive n-th root of unity, then (—()* = (—1)"¢" = —1, while (—()*" =
(—1)27¢?" = 1. Hence —C € K is a primitive 2n-th root of unity.

6.3. Write n = Qkpgl -+ py®, where each p; is an odd prime, p1 < ps < --- < ps, 7; = 1 and
k > 0. Then

o(n) = o(25)o(pih) -+ o(ph) = e(2")(pr — Dpp* "+ (ps — 1)ple

If s > 0 then ¢(n) | 4 happens precisely when r; = --- = rs = 1 and one of the following
possibilities occurs:

e p1 =5,s=1and k=0 (hence n = 5);
ep=3,s=1and k=0,1,2 (hence n = 3,6,12);
e s=0and k=0,1,3 (hence n = 1,2,4,8).



102 SOLUTIONS

Q(i): Here degree [Q(i) : Q] = 2 and clearly the four 4-th roots of unity +1, 4 lie in this field.
As ¢(5) = 4, it has no 5-th roots of unity except 1. If it contained a 3-rd root of unity then it
would contain v/3 and so Q(v/3,7) < Q(i) which is impossible since [Q(v/3,7) : Q] = 4. From
this we see that the only roots of unity in Q(i) are +1, 4.

1 2
Q(v/24): This field contains the 4 primitive 8-th roots of unity i§ + \gz as well as the 4-th

roots.
A . . . 1, V3,
Q(+/31): This contains the six 6-th roots of unity +1, j:§ + - &

Q(v/54): This field contains only the square roots of unity 1.
6.4. (a) We have p(24) = ¢(8)¢(3) = 4 x 2 = 8. The elements of Z/24 which are invertible
are the residue classes modulo 24 of the numbers 1, 5, 7, 11, 13, 17, 19, 23. For each of these
numbers 7, the residue class modulo 24, 7, satisfies 7> = 1, hence these all have order 2 except 1
which has order 1. Since (Z/24)* is abelian, it is isomorphic to Z/2 x Z/2 x Z/2. The effect of
these elements on Q((24) is given by 7 - (%,. Notice that 23 acts like complex conjugation. The
effect on Q(cos(7/12)) is given by
7 - cos(m/12) = cos(mr/12),

so in particular,

—r-cos(m/12) = cos(—nr/12) = cos(nr/12) =T - cos(7/12).

(b) This is similar to (a). We have ¢(20) = ¢(4)p(5) = 2 x 4 = 8 and the elements of (Z/20)*
are the residue classes modulo 20 of the numbers 1, 3, 7, 9, 11, 13, 17, 19. This time there are
elements of order 4, for instance 7 and 13. Then we have (Z/20)* =~ Z/2 x Z/4.

6.5. For any n > 1, let ¢, = e*™/™ = cos(2m/n) + sin(27/n)i. Notice that if n is odd, then
Q(¢n) = Q(—¢,) where —¢, is a primitive 2n-th root of unity, so we might as well assume that
n is even from now on. We also have

G — Gyt =2sin(2m/n) i € Q((n).
(a) If 4 1 n then writing n = 2k with k& odd, we have

Q) = Q] = (2k) = p(2)p(F) = ¢(k),
while
[Q(Cn) : Q) = (4k) = p(4) (k) = 20(k).
Hence, Q(¢,) cannot contain (a,, and by another simple argument it cannot contain i = ¢},. So
we see that sin(27/n) ¢ Q(¢,) in this situation. Notice that since i = ¢§ |

C2n C2n

sin(27/n) = %

€ Q(Cn);
and by Theorem 6.3,
sin(27/n) € Q(C2n) NR = Q(cos(m/n)).

Also, we have

[Q(cos(m/n)) : Q] = 2[Q(cos(2m/n)) : QJ,

hence
Q(cos(m/n)) = Q(cos(27/n))(sin(27 /n))
and
[Q(cos(2m/n))(sin(27/n)) : Q(cos(2m/n))] = 2,
with

minpOIY(@(cos(27r/n)),sin(27r/n) (X) = X? + C082(27T/n) -1
If 4 | n, we can write n = 4£. Then i = (%, so i € Q({,), whence

1
sin(m/20) = sin(27/n) = n=Sn_ C € Q(Gn)-
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Clearly

sin(m/20) € Q(¢,) NR = Q(cos(27/n)).
Consider the automorphism o € Gal(Q((,)/Q)) for which o(¢,) = 2! = —(,; it is easy to
see that o has order 2. Then

o(cos(2m/n)) = o(cos(m/2¢)) = — cos(mw/20),
o(cos(m/l)) = cos(m /1),

o(sin(2m/n)) = o(sin(mw/20)) =

—n+ G sin(7/2¢) if £ is odd,
2(=¢n)t | —sin(w/20) if £ is even.
From this we find that when £ is odd,
Q(cos(27/n)) = Q(cos(m/2¢)) = Q(cos(m/L))(sin(m/2()) = Q(sin(w/2()),
since cos(m/f) = 1 — 2sin?(7/2¢) € Q(sin(7/2¢)). Thus we have [Q(sin(7/2¢)) : Q] = 2¢(£) and
Gal(Q(sin(7/20))/Q) = Gal(Q(cos(r/20))/Q) = (Z/46)" /{1, -1}
Similarly, if £ is even,
[Q(cos(m/€))(sin(7/2¢)) : Q(cos(w/€))] = 2
and we must have
Q(cos(2m/n)) = Q(cos(m/2¢)) = Q(sin(m/2())
with
Gal(Q(sin(7/2())/Q) = Gal(Q(cos(7/2())/Q) = (Z/4¢)* /{1, -1}
(b) We have

in?(r/12) = 1 —cos(m/6) 2— \/37

2 4
and so
sin(mw/12) = V3 \[ 1 \[
Then
Q(sin(m/12)) = Q(V6 — v2) = Q(v2,V3).
and

Gal(Q(sin(7/12))/Q)) = (Z/46)* J{1, -1} X Z/2 x Z/2.
Here the effect of the coset of the residue class of 7 € (Z/4£)* is given by
Coa = Coa
Z‘T

7 -sin(7/12) = = sin(rr/12) 17"

Explicitly we have

1-sin(n/12) = —1 - sin(7/12) = sin(7/12) = */6; V2
5-sin(m/12) = =5 - sin(7/12) = sin(57/12) = \/EZ ﬂ,
7-sin(r/12) = =7 - sin(n/12) = —sin(77/12) = _‘/64_ V2
11 - sin(7/12) = —11 - sin(7/12) = —sin(117/12) = _‘/6: V2
In terms of the generators v/2 and v/3 these act by
TV3=v2,  T.V3=13. 5v2= V2, 5-V3= 3,
7-V2=V2, 5-v3=-v3, I vV2=-V2, 1 vV3=-V3.

6.6. (a) We have
| Gal(Q(¢5)/Q)] = [Q(¢5) : Q] = deg @5(X) = p(5) =4,
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and (Z/5)* is cyclic generated by the residue class 2. The action is given by

2.¢=¢, 22-6=¢ 2-6=¢, 2t (=G

b) We have (5 + C_l = 2cos(27/5) and ®5((5) = 0, so since (2 = C_Q and (& = ¢ 1,
5 5 5 5 5

(G+GH+(G+EGH+1=0
and therefore
G+HGE2+H(G+HGH —1=0.

Hence
4 cos®(2m/5) + 2cos(21/5) — 1 = 0.

The quadratic polynomial 4X2 + 2X — 1 € Z[X] has discriminant 20 which is not a square in

Q, so this is this polynomial is irreducible over Q, therefore

1 1
inpol X)=X>+_-X-——.
minpo y@,cos(27r/5)( ) + 2 4
-1+
The roots of this are 4\[ As cos(2m/5) > 0 we must have cos(27/5) =
—1—-+/5
also have cos(47/5) = 4\[ As sin(27/5) > 0,

1+5-2vV5 545
16 8

sin?(27/5) = 1 — cos?(21/5) = 1 —

545

hence sin(27/5) = 3

_1?:\@_ We

(c) Gal(Q(¢5) & Z/4 and has 3 subgroups {1} < {1,4} < Gal(Q({3), giving the following tower

of subfields.
Q(¢s)

2

Q(¢s) ™ = Q(eos(27/5)) = Q(V5)

2

Q
6.7. (a) We have
(p—1)/2 (p—1)/2
&= G -6 =2 I G -GG - ¢)
r=1 r=1
(r—1)/2
= (e I a-gMe-¢
r=1

p—1
= ()Tl - ¢
r=1

p—1)

(
= (- V2Tl a-¢)
s=1

)

since each congruence 2z = ¢ (mod p) has exactly one solution modulo p for each t.

(b) Since

(_1)(]3—1)/2 _ -1 lfp =1 (mod 4),
1 ifp=3 (mod4),
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and

the result follows.
(c) Taking square roots we find that

g: {i\/ﬁ if p=1 (mod 4),
+/pi ifp=3 (mod 4).
As £ € Q(¢p), we see that \/p € Q((p) if p=1 (mod 4) and \/pi € Q((p) if p=3 (mod 4).
6.8. Recall the well-known formula
o(iy - ip)o t = (o(iy) - o(iy)).
Then for 1 < r < n — 2 we have
(12---n)(12)12---n)""=12---n)"12)(A2---n)") ' =@Fr+1r+2),
while
12--n)"ta2)yr2---n)"Hl=@a2 - n)ta2)(12---n)Ht=mn1)=(1n).

This means that every such 2-cycle (r + 1 r + 2) is in H. Also recall that every permutation
p € S, is a product of 2-cycles, so it suffices to show that every 2-cycle (a b) € S,, is a product
of 2-cycles of the form (r + 1 r 4+ 2). Assuming that a < b, we also have

(@ab)=0b-1b)---(a+2a+3)(a+1la+2)(aa+)(a+1la+2)(a+2a+3)---(b—10),
and this is in H. Hence H = S,,.
6.9. (a) For each u € F,
o(T(w)) = o+ o(u) + 02(w) + - + 0" ()

=o(u) +o*(u) + -+ o™ (u)

=o(u) +o?(u) + -+ 0" Hu) +u = T(u),
so T'(u) is fixed by o and all its powers, hence by Gal(E/K). Therefore T'(u) is in EG(E/K) = [,
It is straightforward to verify that the resulting function Trg/r: ' — K is K-linear.

(b) Let v € E and suppose that Trg/ i (v) = 0. By Artin’s Theorem 6.15, the linear combination

of characters id 40 + - - - + ¢™ ! must be linearly independent, so there is an element t € F for
which

Trpct=t+o(t)+ - +0"'(t) #0.
Then
u=vot)+ (v+o@)o*t)+--+ w+o@a(lt)+ -+ 0" 2(v)o"(t)
satisfies
u—o(u)=v(o(t)+ o2(t) 4+ J"_l(t)) — (o) +-+ J”_l(v)) t
=v(t+o(t)+ o2(t) 4+ -+ O'n_l(t)) —(vt+o(w) +--+ a"_l(v)) t
= (Trg g t)v — (Trg g v)t = (Trg/k t)v.

So we obtain

1 1
v Trp Kk i <TTE/K tu> .
6.10. (a) This can be proved by induction on n. Write

elml = o Xy Xy, sM= Y X]

11 <t < <ir<m 1<i<m
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Then we easily find that

eLm] _ eLm—l] + eE«nZII]Xma SLm} _ S’Lm—l} + X,,Tn

Notice also that eL m _ 0 whenever » > m. The desired result is that for alln > 1 and k& >
sgﬂ e[ln]s[] e[Qn] [71] +'--+(—1)k 1621]18[ "] +(-1) ke[n].

When n =1 we have sL] X7 and e[l] = X from which the result follows. Now suppose that
the result is true for some n > 1. Then s[nH] [n] + Xk ni1, while

€[1n+1]s£€nj-11] B e[2n+1] [n+1] +'._+( 1)/<; 16Ln+11] [n+1] + (—1)kke[n+1] _
[n]

(e[ln] + Xn+1)(5£n]1 “'Xrlf-&) ( i + e[ ]Xn+1)(5k 9 T Xﬁ—&-%)
+ (DR e + ey X)) (51 + Xna1) + (— 1)k (e +eL”]1Xn+1>

se)+ (X0 - eI XN 4 (D) X)

+ (SLR] _ 6[1n}8£n] 4t (_1)k—16[n} [n] +(-1) kegf_]l)XnH

(X — e X e (DX )
e k=
which demonstrates the inductive step.
(b)(i) We have hy = e1, hy = €2 — e3 and h3 = e3 — 2ejeq + €5.
(ii) This can be done by induction on 7 in a similar way to part (a).



