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Numerical, or computational physics is a branch of physics with an age-old tra-
dition. If you can’t produce a number, you have achieved nothing says Feynman,
and right he is. More often than not this is possible only by computing. This
series of lectures introduces standard methods of computational physics. The
computational power which is available to the average student or researcher has
grown by a factor of thousand or so, within the last twenty years. And with it
the availability of high quality software. Therefore, these lectures concentrate
on how to use software, and not how to develop it. Quite naturally, this boils
down to MATLAB.
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1 Introduction

This series of lectures is about standard numerical techniques for computing
in physics. Although teachers prefer examples which can be solved by pencil
and paper, or by chalk on the blackboard, most problems cannot be solved
analytically. They require computations. Computational physics has a long
tradition. However, computational physics cannot be taught any more in
the traditional way.
In 1980, the first IBM personal computer could address 64 kB of memory,
its mass storage was a floppy of 360 kB, and it ran at 8 MHz with an
8 bit processor. With 15000 EUR it was cheap as compared to mainframes.
Today, an electronic computer, such as my laptop, costs 1500 EUR. Its 32 bit
processor runs at 1.2 GHz, is supported by 512 MB fast storage, 40 GB
mass storage, ethernet and modem controller on board, and so forth. This
amounts to a many-hundred-fold increase in computational power within
the last two decades.
Moreover, high quality software to be run on these cheap and highly efficient
computers has become cheap. Just study the price list of the MathWorks
corporation for Matlab.
Today, a course on computational physics, in particular an introduction,
should concentrate on how to use available and cheap high quality software,
and not how to develop it.
I have decided on using Matlab for various reasons.
First, because it is relatively cheap.
Second, because it comes with an integrated development environment such
as a command window, a language sensitive editor, a debugger, a workspace
inspector, and so forth.
Third, because it includes the software treasures of the last 50 years. In
particular, the LINPACK and EISPACK packages1 of linear algebra, forming
the backbone of computational physics, are the core of Matlab. In fact,
Matlab was conceived as a meta-language how to use such FORTRAN code
without indulging into unnecessary details.
Fourth, Matlab now provides for sparse matrix technology which is essen-
tial for partial differential equations.
Fifth, Matlab makes you think in terms of objects, it is not a procedural
language. After a short while, you will think of x as a variable, not of an
array of equally spaced representative values.
And last but not least, Matlab is a powerful graphics machine for visual-

1Steve Moler is one of the authors of the the LINPACK and EISPACK packages docu-
mentation, and one of its main contributors. Today he is the chief executive officer of
MathWorks.
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izing data, both two and three dimensional. In particular, Matlab allows
for the export of pictures in encapsulated postscript format.
In these lectures on Computational Physics we cannot cover a number of
other important fields, such as data acquisition, graphical user interfaces or
fine points of graphics programming. Instead, we will restrict ourselves to
standard techniques of doing analysis on a computer.
This text addresses students of physics who are used to learn by carefully
chosen examples. It is neither systematic nor complete.

2 Matrices

The basic objects of Matlab are matrices. A number is a 1 × 1 matrix.
A row vector is 1 × N matrix, a column vector is an N × 1 matrix. A
polynomial is represented by the row vector of its coefficients. A string is a
row vector of 2 byte numbers which represent characters. And so forth.
The most important operators are square brackets for aggregation. The
comma operator separates objects which are to be aggregated horizontally.
The semicolon operator separates objects which are to be aggregated ver-
tically. The semicolon operator, at the end of an expression, suppresses
echoing.
Here are a few examples:

>> A=[1,2,3;4,5,6];
>> B=[A;[7,8,9]];

The size function takes in a matrix and returns the numbers of rows and
columns. Try

>> [r,c]=size(A);

Note that output is always aggregated horizontally.
By saying2

>> M=3; N=5;
>> a=zeros(M,N);

you create an M × N matrix a of zeros. Likewise, ones creates matrices of
ones.

>> B=eye(N);

2Matlab distinguishes between lower and upper case
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generates a square 5 × 5 unit matrix. Check it by typing

>> B(2,1)
>> B(2,2)

The dash operator stands for Hermitian conjugation. Compare

>> x=[1,2+3i,4;0,i,2]

and

>> xc=x’

One of the highlights of Matlab is the colon operator. It stands for
’from:to. The colon itself stands for all indices. Thus we could have written

>> B=[1:3;4:6;7:9];

We now extract the first and the third row:

>> C=B([1,3],:);

Note that matrices are used just as functions. Arguments are in parentheses
and separated by commas. The first argument is a vector of column indices,
the second argument a vector of row indices.
Another often used function for creating vectors is linspace. This function
has three arguments: the lower value of an interval, the upper value, and
the number of representative points.

>> x=linspace(0,10,128);

produces a row vector of size 1 × 128. Its first element is 0, the last is 10,
and linear interpolation in-between.

>> x=[0:10/127:10];

does the same.
Here the from:step:to construct is used. If the difference between to and
from is not an integer multiple of step, then to is an upper bound. If step
is omitted, a value of 1 is assumed.
From the 10 × 10 matrix

>> x=rand(10,10);

of randomly chosen numbers we may extract the sub-matrix
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>> y=x(1:2:10,1:2:10);

of random numbers with odd indices.
Constructs like

>> k=[1,4,9:2:17,31];

are allowed as well. Matlab’s syntax rules, if strictly applied, would require

>> k=[[1],[4],[9:2:17],[31]];

They are, however, sensibly relaxed. In many cases the horizontal alignment
comma operator may also be omitted,

>> k=[1 4 9:2:17 31];

works as well. We shall try to avoid this kind of syntax relaxation although
you may encounter it in the help system.

3 Numbers

Matlab is rather strict with numbers. It adheres to the IEEE3 convention
on representing real numbers and algebraic operations with them. It is obvi-
ous that real numbers must be approximated. The approximation, however,
should be reliable and as good as possible.
There is a predefined number eps. It is the smallest number such that 1
and 1+eps/2 are identical. On my computer eps=2.2204e-016. Roughly
speaking, the inherent accuracy is 16 digits. This is sufficient for physics
where not more than 6 digits are meaningful.
Rounding errors are randomly distributed. With N operations, the error
grows proportional to

√
N . Hence, 1020 operations on real numbers are

allowed until the statistical error exceeds the 6 digits limit. If your computer
runs at 1.0 GHz, approximately 1011 seconds are required to perform such
a large number of operations. This is more than 1000 years. Put otherwise:
rounding errors, unless crucial, will not pose a problem.
Rounding errors become crucial if a result is the difference between two
large, but almost equal numbers. Try

>> x=1e-15;
>> y=((1+x)-1)/x

3Institute of Electrical and Electronics Engineers
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The result is 1.1102, but should be 1.
Assume you want to calculate f(x) = sin(x)/x for x ∈ [0, 2π]. The following
code does is:

>> x=linspace(0,2*pi,1024);
>> y=sin(x)./x;

Typing

>> y(1)

produces NaN, not a number. And this should be so. After all, we have
divided zero by zero, and the result is neither 1 nor infinite, it is not defined.
The IEEE standard of floating point representation, which is realized by
all Intel processors and supported by Matlab software, provides for a bit
pattern which is not a valid number. Any operation with NaN results in NaN.
NaNs tend to spread out. For example,

>> z=y/sum(y);

results in a vector filled with NaNs.
A NaN can be detected by the function isnan. isnan(y(1)) returns 1 which
stands for true. isnan(y(2)) results in 0, or false. isnan(y) returns an
vector the first component of which is 1, the remaining are 0.
Another special number of the IEEE standard is Inf which stands for posi-
tive infinity. 1/0 results in Inf, -1/0 in -Inf, just as log(0). Inf/Inf or
Inf-Inf are ill defined, i. e. NaN. However, Inf+Inf gives Inf.
The pseudo-numbers Inf and NaN solve a long-standing problem. In the old
days, you could either demand program abort if an ill-defined arithmetic op-
eration was performed, or the result was arbitrary. With the IEEE standard
and high quality software the program is not halted, but errors are realized
and documented.
Let us return to f(x) = sin(x)/x. This function, by declaring f(0) = 1, can
be made to be continuous everywhere.

>> y=sin(x)./x;
>> y(1)=1;

is a plausible and obvious solution.
However, you have made use of the fact that it is the first component which
is exceptional. Much better is the following solution:

>> y=ones(x);
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>> k=find(x~=0);

>> y(k)=sin(x(k))./x(k);

find returns a vector of indices for which x is not equal to zero.
A third possibility4 is old-style procedural programming:

1 for k=1:1024
2 if x(k)==0
3 y(k)=1;
4 else
5 y(k)=sin(x(k))/x(k);
6 end
7 end

This is not recommended. Loops in Matlab are slow, they should be
avoided by all means.
A fourth possibility would be

>> x=linspace(eps,2*pi,1024);

Although it works, this is a dirty trick. The problem is avoided, not solved.

4 Functions

Functions map one ore more real or complex variables into real or complex
numbers. Functions are essential for physics, they describe relationships
between measurable quantities.
Let us study an example. The spectral intensity of black body radiation is
described by Planck’s famous formula

S(x) =
15
π4

x3

e
x − 1

, (1)

where x is short for ~ω/kBT .
(1) is good praxis. Computational physics has to deal with numbers, i. e. di-
mensionless quantities. The spectral density is a probability distribution, a
dimensionless quantity. In fact,∫ z

0
dxS(x) = Pr{~ω < zkBT} . (2)

4Line numbers instead of the >> prompt indicate that we have executed a script file,
test.m in this case
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Figure 1: The black body radiation spectral intensity S(x) where
x = ~ω/kBT

In Matlab you describe a function in a separate m-file. The filename
without the .m extension is the name of the function. (1) is realized as
follows:

1 % this file is planck.m
2 % spectral intensity of black body radiation
3 function s=planck(x);
4 s=zeros(size(x));
5 k=find(x~=0);
6 s(k)=15/pi^4*x(k).^3./(exp(x(k))-1);

We may now say

>> x=linspace(0,10,1024);
>> plot(x,planck(x));

>> print -deps2 planck.eps

Fig. 1 shows the result.
The figure has been exported to an Encapsulated Postscript (level 2) file
planck.eps. It was transformed into planck.pdf by the eps2pdf program
and included into this LATEX document by saying
\FIG{planck.pdf}
{The black body radiation spectral intensity $S(x)$
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where $x=\hbar\omega/\kB T$.}

My \FIG macro is defined as follows:

1 \newcommand{\FIG}[2]{
2 \begin{figure}[!hbt]
3 \begin{center}
4 \begin{minipage}{0.85\textwidth}
5 \centering{\includegraphics[width=95mm]{#1}}
6 \caption{\label{#1}\small{#2}}
7 \end{minipage}
8 \end{center}
9 \end{figure}

10 }

You must have imported the epsfig package before.
We have explained how to define and how to visualize a function. What else
can you do?
Let us numerically check whether (1) is indeed a probability distribution.
We approximate x = inf by x = 20, say. The following line performs the
integration:

>> quad(@planck,0,20)

The output 0.99999729919447 (with format long) is convincing since the
quadrature method quad has a predefined tolerance of six digits. And 20 is
not yet infinity. quadl is better, although slower. The following call

>> quadl(@planck,0,40)

results in 1.00000000003192.
The function, here planck, is referred to by its handle @planck.

>> quad(’planck’,0,20)

will work as well. Although there are subtle differences, we shall not discuss
them here.
quad or quadl are in-built functions which work on functions. You may
inquire by typing

>> help funfun

fminbnd is such a function function. It finds out the position of the minimum
within prescribed bounds. However, we want to know about the maximum
position of our planck function. Therefore we must define the negative of
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the planck probability distribution. For this we do not require a new m-file,
because there is the inline statement:

>> np=inline(’-planck(x)’);

The string is parsed as we would read it.

>> xmax=fminbnd(np,0,20)

delivers 2.8214.
We now may ask

>> elo=quad(@planck,0,xmax);
>> ehi=quad(@planck,xmax,20);

for finding the amount of energy below and above the spectral intensity
maximum. The two numbers should add up to 1. Do they?

5 Ordinary differential equations

We talk about a system which is in a certain state. If the system has
N degrees of freedom, the state is described by a vector y1, y2, . . . , yN of
variables. The state will change in the course of time. In many cases the
time development of the state of a system is adequately described by a
system of ordinary differential equations,

ẏj = fj(t, y1, y2, . . . , yN ) . (3)

Higher than first derivatives can always be removed. After all, the second
derivative is the first derivative of the first derivative, and so forth.
Let us investigate one of the oldest physical problems, the motion of planets
in the sun’s gravitational field.
Recall that the conservation of angular momentum requires the planet to
move in a plane. The planet’s location x1(t), x2(t) obey the following differ-
ential equation:

mẍj(t) = − GmM� xj

(x2
1 + x2

2)3/2
. (4)

G is the universal gravitational constant, m the planet’s and M� the sun’s
mass. m drops out. By measuring x in units of the astronomical unit5 a

5the mean distance between earth and sun, 149.6× 1011 m
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and t in units of τ =
√
a3/GM� we arrive at6

ẍj(t) = − xj

(x2
1 + x2

2)3/2
. (5)

Let us introduce (y1, y2, y3, y4) = (x1, ẋ1, x2, ẋ2) such that

ẏ1 = y2 (6)
ẏ2 = −y1/r

3 (7)
ẏ3 = y4 (8)
ẏ4 = −y3/r

3 (9)

results, where r =
√
y2
1 + y2

3.
We describe this set of four ordinary differential equations by the following
derivative field:

1 % this file is kepler.m
2 function d=kepler(t,y);
3 r=sqrt(y(1).^2+y(3).^2);
4 d=[y(2);-y(1)./r^3;y(4);-y(3)./r^3];

At the command window we say

>> [t,y]=ode45(@kepler,[0:0.1:50],[1;0;0;0.8]);

A Runge-Kutta integration procedure ode45 is invoked. It needs a derivative
field, a time span, and a start vector. And this is the result of saying

>> plot(y(:,1),y(:,3))
>> print -deps2 kepler1.eps

Although the trajectories are ellipses, they shrink more and more. The
reason is not physics, but numerics. We substantiate this remark by plotting
the energy in Fig. 3

>> Ekin=0.5*(y(:,2).*y(:,2)+y(:,4).*y(:,4));
>> Epot=-1./sqrt(y(:,1).*y(:,1)+y(:,3).*y(:,3));

>> plot(t,Ekin+Epot);

We try better by setting a lower relative tolerance (the default being 0.001):
62πτ is one year
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Figure 2: Planetary motion without explicite accuracy control
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Figure 3: Total energy vs. time without accuracy control
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>> tol=odeset(’RelTol’,1e-8);
>> [t,y]=ode45(@kepler,[0:0.1:50],[1;0;0;0.8],tol);
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Figure 4: Planetary motion with accuracy control

Fig. 4 shows what we expect: closed ellipses.
There are many more options for the ordinary differential equation solver,
and there are more such solvers. You should ask for details at the help
desktop.

6 Fast Fourier transform

There are three kinds of Fourier transforms: finite discrete, infinite discrete,
and continuous. The first is defined by

Gj =
N−1∑
k=0

e
−2πijk/N

gk =
N−1∑
k=0

Ωjkgk (10)

for j = 0, 1, . . . , N − 1. The Matrix Ω is given

Ωjk = ω−j·k where ω = e
2πi/N

. (11)
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ω is the Nth root of 1.
Because Ω/

√
N is unitary,

N−1∑
k=0

Ωjk(Ω†)kl = Nδj,l (12)

we obtain for the inverse transform the following expression:

gk =
1
N

N−1∑
j=0

e
+2πijk/N

Gj . (13)

Only the finite discrete Fourier transform is of interest in computational
physics since a continuum has to be approximated by an interval, and an
interval by a finite set of representative points.
To be specific, we think about a time interval, tk = kτ for k = 0, 1, . . . , N−1.
fj = j/Nτ are frequencies, and we may rewrite (10) and (11) into

Gj = G(fj) =
N−1∑
k=0

e
−2πifjtk gk (14)

and

gk = g(tk) =
1
N

N−1∑
j=0

e
2πifjtk Gj . (15)

Let us simulate a very noisy cosine signal. We set

1 % this file is noisy_cos.m
2 fbar=50;
3 tau=0.001;
4 N=1024;
5 t=tau*[0:N-1];
6 R=2.0;
7 g=cos(2*pi*fbar*t)+R*randn(size(t));
8 plot(t,g,’.’);
9 axis([min(t),max(t),-4,4]);

10 print -deps2 ncos1.eps;

Would you recognize the cosine signal in Fig. 5?
We continue by implying the fast Fourier transform fft:
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Figure 5: Noisy cosine (50 Hz) vs. time sampled at millisecond steps

11 G=fft(g);
12 f=[0:N/2-1]/N/tau;
13 S=abs(G(1:N/2)).^2;
14 plot(f,S);
15 print -deps2 ncos2.eps;

In Fig. 6 we have plotted the spectral power S = |G(f)|2 for positive fre-
quencies7. The prominent peak at f = 50 Hz is evident. The remaining
spectral power is more or less constant which is indicative of white noise.
How can one extract the signal so convincingly from a lot of noise? Not
by looking at the sampled data. They appear to be random. However,
by performing a Fourier analysis, the different harmonic contributions are
excited with their proper phases, so that they add up.
If you know that the signal is spoilt by white noise, you may remove it to a
large extent. You might say

>> H=G.*(abs(G)>150);
>> h=ifft(H);

ifft denotes the inverse fast Fourier transform as described by (13).
You can do a lot more with the fast Fourier transform. Here are some
examples:

7The spectral power is an even function of f
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Figure 6: Spectral power of noisy cosine vs. frequency (Hz)

• Differentiation: Fourier transform the signal and multiply by 2πif ,
and back Fourier transform. Thereby a much better precision can be
achieved than by difference quotients.

• Deconvolution: Often the output b(t) =
∫
ds r(s)a(t− s) is the convo-

lution of a signal a and a transmission function r. If the transmission
function is known, then, from B(f) = R(f)A(f), the signal can be re-
constructed. Just divide the Fourier transformed output by the Fourier
transformed transmission function, and back Fourier transform.

• Differential equations with constant coefficients: Differentiation op-
erators become multiplication operators after Fourier transformation,
and differential equations become algebraic equations.

• Data filtering and smoothing: remove the high frequency components.

The fast Fourier transform is an algorithm which takes into account that
an operation on 2N data points are two operations on N data points. This
reduces complexity from N2 to N log(N) which makes all the difference.

7 Fitting data

Measured data are to be compared with a theoretically justified model. Dis-
crepancies may arise for two different reasons: the data are not accurate, or
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the model is inappropriate. Inaccurate data may arise because of systematic
or statistical errors.
Let us first formulate the standard task.
You have a set of data (y1, x1), (y2, x2), . . . (yN , xN ) and a model y = fp(x).
The p denote a set of parameters which are to be determined. For this we
define the variance

v(p) =
1

N − 1

N∑
i=1

(fp(xi)− yi)2 . (16)

The optimal fit is defined by minimal variance,

v(p̄) = min
p
v(p) . (17)

If the model is a linear function, we speak of linear regression. Likewise, if
it a polynomial of degree 2, the data are fitted by quadratic regression, and
so forth.
With Matlab this is very easy. If you say p=polyfit(x,y,d); a poly-
nomial p of degree d is returned which best fits the data vectors x and
y. As mentioned earlier, a polynomial is represented by the vector of its
coefficients.
Here is an example:

1 % this file is fit_regr.m
2 x=linspace(0,2,256);
3 y=1-x+0.5*x.^2+0.15*randn(size(x));
4 plot(x,y,’.k’);
5 hold on;
6 p=polyfit(x,y,2);
7 yy=polyval(p,x);
8 plot(x,yy,’-k’,’LineWidth’,2);
9 hold off;

10 print -deps2 fitr.eps;

We have plotted the convincing result in Fig. 7.
If the model is not a polynomial, one has to minimize numerically the vari-
ance or any other measure of the misfit.
Let us assume a Gaussian peak on top of background. The model is

y = y0 + s e
−a(x− x0)2

. (18)

We have four parameters to fit, namely p = (y0, s, a, x0). Let us work out
an example.
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Figure 7: Noisy quadratic relationship between x (abscissa) and y
(ordinate) and reconstruction by quadratic regression

1 % this file is fit_peak
2 peak=@(p,x) p(1)+p(2)*exp(-p(3)*(x-p(4)).^2);
3 misfit=@(p,x,y) norm(y-peak(p,x));

The first command defines the model, a Gaussian peak. It is the Matlab
equivalent of (18). The next line describes the misfit of a data set x,y to
the model, for a certain parameter set p. We will next simulated data:

4 tp=[3;1;4;2.5];
5 x=linspace(0,5,1024);
6 ty=peak(tp,x);
7 ny=ty+0.5*randn(size(x));

The true parameter set tp gives rise to ty=peak(tp,x). We add noise to it
and obtain the noisy data values ny. From these noisy data we reconstruct
the best fitting parameters fp by saying

8 fp=fminsearch(misfit,tp,[],x,ny);

The first argument to fminsearch is the misfit, or cost function. The second
argument is a parameter set from which to begin the search. Then comes
an options structure for which we specify nothing, i. e. []. In this case the
default values for fminsearch are used.
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Normally the cost function has just one argument, namely the vector of vari-
ables over which to minimize. If the cost function requires more arguments
(which remain constant when searching for a minimum), these are to be
specified in the remainder of the argument list of fminsearch. In our case
it is the data set x,ny to be fitted.
Let us plot the result:

9 fy=peak(fp,x);
10 plot(x,ty,’-k’,x,ny,’.b’,x,fy,’-r’,’LineWidth’,2);
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Figure 8: A Gaussian peak on top of background: signal (black),
signal plus noise (blue dots) and reconstructed signal (red)

However, what will be the result if the search for the best fit starts from
another parameter set which is not so close?
Let us try sp=[1;1;1;1] as the starting parameter set. This will work.
However, with sp=[0;0;0;0] the minimization procedure does not converge
to a sensible fit.
We might try to fiddle with the optimization options:

11 opt=optimset(’TolFun’,1e-8,’TolX’,1e-8,...
12 ’MaxFunEvals’,20000,’MaxIter’,10000);
13 fp=fminsearch(misfit,[0;0;0;0],opt,x,ny);

This helps occasionally8, but more often not. Obviously the minimization
8bear in mind that we solve a different problem each time because of randoms in the
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procedure runs into this or another shallow side minimum and misses the
absolute minimum.
You might program a coarse pre-search such as this:

1 % this file is pre_search.m
2 mm=Inf;
3 for j=1:10000
4 p=[6*rand;2*rand;8*rand;5*rand];
5 m=misfit(p,x,ny);
6 if (m<mm)
7 mm=m;
8 pp=p;
9 end;

10 end;

It should deliver a good starting parameter set pp. The cuboid 0 ≤ p1 ≤ 6,
0 ≤ p2 ≤ 2 etc. has been specified after inspecting the data cloud.

8 Simulated Annealing

Minimization problems are among the most frequently encountered tasks of
computational physics. There is a set of parameters, and each parameter
set is weighted by a cost function. The problem to be solved is: find the
parameter set for which the costs are minimal.
We did already discuss such an optimization problem in the context of model
fitting. The Nelder-Mead simplex method (fminsearch) is never the best,
but always a good choice to tackle the problem. Remember: you have to
specify a starting point when searching for the minimum. In general, the
local minimum closest to the starting point is found.
If there are very many parameters, there are also very many local minima,
but there is only one global minimum. Therefore, a coarse search for a
sensible starting point is the first step in order to find a sensible starting
point. In many cases this first step is visual inspection of data, or intuition,
or the result of previous minimization efforts.
There are however problems where there are so many local minima that a
direct search for the global minimum is appropriate.
Here we discuss a computational classic: the traveling salesman problem.
There are NC cities to be visited, their Cartesian coordinates are stored in
vectors XC and YC, respectively. The itinerary is described by a a permuta-
tion of indices from 1 to NC, a vector it. The cost function is the length of
a round trip, as calculated by

data set

21



1 % this file is ts_length.m
2 function len=ts_length(it);
3 global NC XC YC
4 itt=it([2:NC,1]);
5 len=sum(sqrt((XC(itt)-XC(it)).^2+(YC(itt)-YC(it)).^2));

The global statement says that all or some of the variables may be visible
to subprograms or functions if they want to see them.
We silently assume that the effort to travel between two cities is proportional
to their distance. This can be easily modified by introducing a table which
describes the effort to travel from one to another city.
The number of possible itineraries is finite, but prohibitively large. If there
are only 20 cities, we have to check almost 1017 possibilities. If one check
lasts only 1 µs, this requires 1011 s, almost 3000 years.
Here we describe the simulated annealing algorithm9. A probe is heated
and then slowly cooled down. Thereby all sorts of defects may be mended.
Temperature allows for random fluctuations, and cooling will lead to the
state of lowest energy. Even if the system is close to a local energy minimum,
a fluctuation may send it to an even better minimum.
If a new configurations has a lower energy (cost), it is accepted straight away.
If its energy is higher, it shall be accepted with probability exp(−∆E/T )
where T is the temperature and ∆E the energy increase.
So we set up a sensible temperature, allow for random variations of the
itinerary, and let the system cool down.
Here is a not-yet optimized algorithm.

1 % this file is ts_problem.m
2 global NC XC YC
3 NC=20;
4 XC=rand(1,NC);
5 YC=rand(1,NC);
6 T=ts_hot;
7 suc=1;
8 it=[1:NC];
9 while suc>0

10 [it,suc]=ts_anneal(T,it);
11 T=0.9*T;
12 end

We simulate the locations of 20 cities, set up an initial temperature T , choose
city 1 to city 2 to . . . as an initial itinerary, and let it cool down in steps of

9Adapted from W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,
Numerical Recipes, Cambridge University Press 1986, ISBN 0521308119
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10 % temperature reduction. For each temperature, the system is annealed.
The relevant function returns the new best itinerary and the number of
successful trials to find a shorter path. The program stops if there are no
more improvements.

Figure 9: The shortest itinerary found by the simulated annealing
algorithm

Fig. 9 shows the solution. It was created by calling ts problem (see above).
The anneal function lets the system perform random fluctuations. If a
modified itinerary is shorter, it is accepted right away. If it is longer, but
not too much, it will be accepted as well. How much is too much is ruled by
the temperature. The lower the temperature, the likelier a worsening will
be rejected.
Here is the code:

1 % this file is ts_anneal.m
2 function [ii,suc]=ts_anneal(T,it);
3 global NC
4 max_rep=100*NC;
5 max_suc=10*NC;
6 suc=0;
7 ii=it;
8 min_len=ts_length(it);
9 for rep=1:max_rep
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10 im=ts_modify(it);
11 len=ts_length(im);
12 if rand<exp(-(len-min_len)/T)
13 ii=im;
14 end;
15 if len<min_len
16 min_len=len;
17 suc=suc+1;
18 end
19 if suc==max_suc
20 break
21 end
22 end

We try at most max rep times. And if the number of successes is too large,
we stop as well and try a lower temperature. The decisive statement is

>> if rand<exp(-(len-min len)/T)

expressing that we accept a modification if the new length is smaller than
the up-to-now lowest length, or if the new length is not too much larger.
This is not yet, but might become an improvement because the modification
may be close to a better local minimum.
It remains to be explained how itineraries are modified at random. We have
programmed two alternatives. We cut out a sub-itinerary and revert it, with
50 % probability, or we transport it by a random amount. This is formulated
here:

1 % this file is ts_modify.m
2 function im=ts_modify(it);
3 global NC
4 n=sort(ceil(NC*rand(1,2)));
5 ib=it(1:n(1)-1);
6 is=it(n(1):n(2));
7 ia=it(n(2)+1:NC);
8 if rand<0.5
9 im=[ib,fliplr(is),ia];

10 else
11 ir=[ib,ia];
12 len=length(ir);
13 n=ceil(len*rand);
14 im=[ir(1:n),is,ir(n+1:len)];
15 end;

The itinerary it is split into a randomly chosen sub-itinerary is, its leader
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ib and trailer ia. fliplr flips matrices in left-right direction. Note that this
simple code does not guarantee that the original and the modified itinerary
differ.
In order to be complete, we also show how the initial temperature was
chosen:

1 % this file is ts_hot.m
2 function T=ts_hot();
3 global NC
4 lmax=0;
5 for k=1:20
6 len=ts_length(randperm(NC));
7 if len>lmax
8 lmax=len;
9 end;

10 end;
11 T=2*lmax;

Calling randperm(N) returns a random permutation of [1:N].

9 Finite difference method

The finite difference method of treating differential equations is simple. The
limit in

f ′(x) = lim
h→0

f(x+ h/2)− f(x− h/2)
h

(19)

is approximated by a finite difference quotient. Likewise, the second deriva-
tive is to be approximated by

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)
h2

. (20)

The Laplacian in two dimensions is approximated by

f(x+ h, y) + f(x, y + h) + f(x− h, y) + f(x, y − h)− 4f(x, y)
h2

. (21)

Generalizations to different step widths hx, hy and for more than two di-
mensions are obvious.
Our first example is a simple ordinary differential equation:

f ′′ = −f with f(0) = 0 and f(π/2) = 1 , (22)
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the solution of which is f(x) = sin(x).
The normal ordinary differential equation solvers require initial conditions,
such as f(0) = 0 and f ′(0) = 1. We, however, are faced with boundary
conditions.
The following program realizes the finite difference method.

1 % this file is fdm_sin.m
2 N=16;
3 h=pi/2/N;
4 next=(1/h^2)*ones(1,N-2);
5 main=(-2/h^2+1)*ones(1,N-1);
6 DE=diag(next,-1)+diag(main,0)+diag(next,1);
7 RS=zeros(1,N-1)’;
8 RS(N-1)=-1/h^2;
9 sol=DE\RS;

10 x=[h:h:(N-1)*h];
11 xx=linspace(0,pi/2,256);
12 plot(x,sol,’r.’,xx,sin(xx),’b-’,[0,pi/2],[0,1],’k.’,’LineWidth’,2,’MarkerSize’,20);
13 axis tight;
14 print -depsc fdm_sin.eps;

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Analytic solution (full line) and finite difference approxi-
mation (red) of f ′′ + f = 0 with f(0) = 0 and f(π/2) = 1 (black)

We have plotted the result in Fig. 10. The maximum deviation is 2× 10−4

although only 15 representative points have been used. Well, better say
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17 because the entries RS(1)=0 and RS(N-1)=-1/h^2 reflect the boundary
conditions. The second derivatives at the smallest and largest interior point
require information from outside.
Note the diag function which allows to set and to extract diagonals. Also
note that x=M\y is short for solving the system of linear equations y=M*x.
axis tight does what it says: the axis frame is fitted as tightly as possible
to the data.
In our second example we want to solve a two-dimensional boundary prob-
lem. Let us reproduce the Matlab logo which is a visualization of the
lowest order eigenmode of the following equation:

−∆u = Λu . (23)

u = u(x, y) is defined on a set Ω ⊂ R2 with appropriate conditions on the
boundary ∂Ω. It is a challenge to solve this partial differential eigenvalue
problem on the L-shaped domain

Ω = [−1, 1]× [−1, 1]− [−1, 0]× [−1, 0] (24)

with u = 0 on ∂Ω.
We shall not describe the most efficient solution but a program which is easy
to generalize.
We begin by describing the domain.

1 % this file is ml_logo.m
2 N=32;
3 h=2/(N-1);
4 x=linspace(-1,1,N);
5 y=linspace(-1,1,N);
6 [X,Y]=meshgrid(x,y);
7 Domain=(abs(X)<1)&(abs(Y)<1)&((X>0)|(Y>0));

X and Y are N × N matrices such that X(j,k)=x(k) and Y(j,k)=y(j).
Domain is likewise an N ×N matrix with 1 for an interior point and 0 for a
boundary or exterior point.
A subprogram laplace will calculate the sparse matrix L approximating the
Laplacian ∆ by (21). It also returns the mapping of the running index a
for variables to pairs j, k which index the x, y coordinates. L is defined by
(∆u)a =

∑
b Labub. We have Laa = −4/h2 and Lab = 1/h2 whenever a and

b index neighboring variables.
The rest is easy. We call the sparse matrix eigenvalue solver eigs which
returns the lowest order eigensolution u and the corresponding eigenvalue d:
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8 [L,J,K]=laplace(Domain,h);
9 [u,d]=eigs(-L,1,’sm’);

10 s=sign(sum(u));
11 field=zeros(size(Domain));
12 for a=1:size(u)
13 field(J(a),K(a))=s*u(a);
14 end;
15 mesh(field);
16 axis off;
17 print -depsc ml_logo.eps;

Figure 11: The lowest order eigenmode of −∆u = Λu on an L-shaped
domain has become their logo

The laplace function which calculates the Laplacian as a sparse matrix and
returns the indexing scheme is here:

1 % this file is laplace.m
2 function [L,J,K]=laplace(D,h);
3 [Nx,Ny]=size(D);
4 jj=zeros(Nx*Ny,1);
5 kk=zeros(Nx*Ny,1);
6 aa=zeros(Nx,Ny);
7 Nv=0;
8 for j=1:Nx
9 for k=1:Ny
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10 if D(j,k)==1
11 Nv=Nv+1;
12 jj(Nv)=j;
13 kk(Nv)=k;
14 aa(j,k)=Nv;
15 end
16 end
17 end
18 L=sparse(Nv,Nv);
19 for a=1:Nv
20 j=jj(a);
21 k=kk(a);
22 L(a,a)=-4/h^2;
23 if D(j+1,k)==1
24 L(a,aa(j+1,k))=1/h^2;
25 end
26 if D(j-1,k)==1
27 L(a,aa(j-1,k))=1/h^2;
28 end
29 if D(j,k+1)==1
30 L(a,aa(j,k+1))=1/h^2;
31 end
32 if D(j,k-1)==1
33 L(a,aa(j,k-1))=1/h^2;
34 end
35 end
36 J=jj(1:Nv);
37 K=kk(1:Nv);

In our case, we have 675 independent variables, hence L should require
3.6 MB of storage. However, most of its entries are zeros. Therefore it is
sufficient to store the locations and values of the non-vanishing entries only,
42 kB in this case. Matlab provides this sparse matrix technology which
is essential for partial differential equations and for many other branches of
computational physics.

10 Propagation

In the previous section we have studied a special class of partial differential
equations. The solution was fixed by values on a boundary. Here we address
another class of problems. A field is prescribed at time t = 0. How will it
propagate in the course of time?
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Let us study a simple, but typical10 partial differential equation of this type,
namely

u̇ = ∆u , (25)

for simplicity in one spatial dimension, u = u(t, x). The dot denotes partial
differentiation with respect to the time argument t, the Laplacian is the
second derivative with respect to the space argument x. The spatial region
is an interval, 0 ≤ x ≤ 1, say. Time begins with t = 0. We look for a
solution of (25) subject to the following conditions:

u(0, x) = u0(x) as well as u(t, 0) = b0(t) and u(t, 1) = b1(t) . (26)

u0 = u0(x) is an initial condition, bk = bk(t) for k = 0, 1 are boundary
conditions. We assume that these restrictions are compatible, i. e. u0(0) =
b0(0) and u0(1) = b1(0).
We resort to the finite difference method and write

uj,k = u(jτ, kh) (27)

for integers j and k and time and space steps τ and h, respectively.
The most natural approach is to approximate (25) by

uj+1,k = uj,k + τ {
uj,k+1 − 2uj,k + uj,k−1

h2
} . (28)

If the variables are labeled by k = 1, 2, . . . , N , then uj,0 in (28) has to be
replaced by b0,j = b0(jτ) and uj,N by b1,j = b1(jτ). The differencing scheme
is fully explicite since it allows to calculate new field values in terms of
previously known values. One may write

uj+1 = (I + τL)uj . (29)

It turns out that (28) is stable11 only if τ < h2. Hence, with h = 0.01, we
must proceed in time steps of τ = 10−4 or smaller. This is not acceptable.
Another, fully implicite differencing scheme is

uj,k = uj+1,k − τ {
uj+1,k+1 − 2uj+1,k + uj+1,k−1

h2
} , (30)

or

uj = (I − τL)uj+1 (31)
10heat transport, diffusion, etc.
11see the section on Diffusive Initial Value Problems in Numerical Recipes, loc. cit.
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which is solved by

uj+1 = (I − τL)−1 uj . (32)

This one is stable for all time steps τ , but we have to solve a system of linear
equations for every propagation step. Both differencing schemes are biased:

they approximate, by
f(t+ τ)− f(t)

τ
, the time derivative at t or at t + τ ,

respectively, while it should be at t+ τ/2.
We therefore write

uj+1/2 = (I +
τL

2
)uj = (I − τL

2
)uj+1 (33)

which amounts to

uj+1 = (I − τL

2
)−1(I +

τL

2
)uj . (34)

This so called Crank-Nicholson scheme is stable for all time steps τ and one
order more accurate than (29) or (31).
The following Matlab function propagates the field u at time t by one time
step τ according to the Crank-Nicholson scheme. The spacing h and the
boundary values bk(t+ τ/2) (a two component vector) have to be specified
as well12. Fields are to be represented as column vectors.

1 % this file is cn_step.m
2 function v=cn_step(u,tau,h,b);
3 N=length(u);
4 z=0.5*tau/h^2;
5 L=laplacian(N);
6 vv=u+z*L*u;
7 vv(1)=vv(1)+2*z*b(1);
8 vv(N)=vv(N)+2*z*b(2);
9 M=eye(N)-z*L;

10 v=M\vv;
11
12 function L=laplacian(N);
13 next=ones(1,N-1);
14 main=ones(1,N);
15 L=diag(next,-1)-2*diag(main,0)+diag(next,1);

Let us study a situation where u0(x) = sinπx + sin 2πx, b0(t) = 0 and
b1(t) = 0.

12more precisely: the mean of the boundary values before and after the time step
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1 % this file is cn_example.m
2 Nx=500;
3 x=linspace(0,1,Nx)’;
4 h=x(2)-x(1);
5 tau=0.0025;
6 u0=sin(pi*x)+sin(2*pi*x);
7 u=u0(2:Nx-1);
8 b=[0,0];
9 field=u;

10 for j=1:100
11 u=cn_step(u,tau,h,b);
12 field=[field,u];
13 end;
14 contour(field,32);
15 print -depsc cn_example.eps;
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Figure 12: Contour plot of u = u(t, x). Cranck-Nicolson scheme,
100 time propagation steps, t running from left to right. Initially,
u(0, x) = sin(πx) + sin(2πx)

By the way, Jean Baptiste Joseph Fourier, who lived from 1768 to 1830, has
invented the method of decomposing functions into harmonic contributions
while trying to solve the heat equation (25). In today’s notation:

u(t, x) =
∞∑

n=1

cn(t) sinnπx (35)
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is solved by

cn(t) = cn(0) e
−(nπ)2 t

. (36)

Thus, the sin(2*pi*x) contribution dies much more rapidly than the sin(pi*x)
term as can be read off Fig. 12.
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A Figures Makefile

The figures (as .pdf-files) were produced with the aid of .m-files printed in
this document and by the following function. Note that ’!...’ invokes the
system command shell.

1 % this file is npfigs.m
2 function npfigs();
3
4 % make planck.pdf
5 x=linspace(0,10,512);
6 s=planck(x);
7 plot(x,s,’-k’);
8 print -deps2 planck.eps;
9 eval(’!epstopdf planck.eps’);

10 clear all;
11
12 % make kepler1, kepler2, kepler3
13 [t,y]=ode45(@kepler,[0:0.1:50],[1;0;0;0.8]);
14 plot(y(:,1),y(:,3),0,0,’+k’);
15 axis square;
16 print -deps2 kepler1.eps;
17 eval(’!epstopdf kepler1.eps’);
18 Ekin=0.5*(y(:,2).*y(:,2)+y(:,4).*y(:,4));
19 Epot=-1./sqrt(y(:,1).*y(:,1)+y(:,3).*y(:,3));
20 plot(t,Ekin+Epot);
21 print -deps2 kepler2.eps;
22 eval(’!epstopdf kepler2.eps’);
23 tol=odeset(’RelTol’,1e-8);
24 [t,y]=ode45(@kepler,[0:0.1:50],[1;0;0;0.8],tol);
25 plot(y(:,1),y(:,3),0,0,’+k’);
26 axis square;
27 print -deps2 kepler3.eps;
28 eval(’!epstopdf kepler3.eps’);
29 clear all;
30
31 % make ncos1, ncos2
32 rand(’state’,0);
33 noisy_cos;
34 eval(’!epstopdf ncos1.eps’);
35 eval(’!epstopdf ncos2.eps’);
36 clear all;
37
38 % make fitr, fitp
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39 rand(’state’,0);
40 fit_regr;
41 eval(’!epstopdf fitr.eps’);
42 clear all;
43 fit_peak;
44 print -depsc fitp.eps
45 eval(’!epstopdf fitp.eps’);
46 clear all;
47
48 % make ts_problem
49 rand(’state’,1);
50 ts_problem;
51 plot(XC(it),YC(it),’r.’,[XC(it),XC(it(1))],[YC(it),YC(it(1))],...
52 ’-k’,’MarkerSize’,20);
53 axis equal;
54 axis off;
55 print -depsc ts_problem.eps;
56 eval(’!epstopdf ts_problem.eps’);
57 clear all;
58
59 % make fdm_sin
60 fdm_sin;
61 eval(’!epstopdf fdm_sin.eps’);
62 clear all
63
64 % make ml_logo
65 ml_logo;
66 eval(’!epstopdf ml_logo.eps’);
67 clear all;
68
69 % make cn_example
70 cn_example;
71 eval(’!epstopdf cn_example.eps’);
72 clear all;
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