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PSEUDODIFFERENTIAL OPERATORS ON
DIFFERENTIAL GROUPOIDS

Victor Nistor, Alan Weinstein and Ping Xu

We construct an algebra of pseudodifferential operators on
each groupoid in a class that generalizes differentiable group-
oids to allow manifolds with corners. We show that this con-
struction encompasses many examples. The subalgebra of
regularizing operators is identified with the smooth algebra
of the groupoid, in the sense of non-commutative geometry.
Symbol calculus for our algebra lies in the Poisson algebra of
functions on the dual of the Lie algebroid of the groupoid. As
applications, we give a new proof of the Poincaré-Birkhoff-
Witt theorem for Lie algebroids and a concrete quantization
of the Lie-Poisson structure on the dual A∗ of a Lie algebroid.

Introduction.

Certain important applications of pseudodifferential operators require vari-
ants of the original definition. Among the many examples one can find in
the literature are regular or adiabatic families of pseudodifferential opera-
tors [2, 41], pseudodifferential operators along the leaves of foliations [6, 8,
28, 29], on coverings [9, 30] or on certain singular spaces [21, 22, 25, 26].

Since these classes of operators share many common features, it is natural
to ask whether they can be treated in a unified way. In this paper we shall
suggest a positive answer to this question. For any “almost differential”
groupoid (a class which allows manifolds with corners), we construct an
algebra of pseudodifferential operators. We then show that our construction
recovers (almost) all the classes described above (for operators on manifolds
with boundary, our algebra is slightly smaller than the one defined in [21]).
We expect our results to have applications to analysis on singular spaces.

Our construction and results owe a great deal to the previous work of
several authors, especially Connes [6] and Melrose [20, 21, 23]. A hint of
the direction we take was given at the end of [38]. The basic idea of our
construction is to consider families of pseudodifferential operators along the
fibers of the domain (or source) map of the groupoid. More precisely, for
any almost differentiable groupoid (see Definition 3) we consider the fibers
Gx = d−1(x) of the domain map d, which consist of all arrows with domain
x. It follows from the definition of an almost differentiable groupoid that
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these fibers are smooth manifolds (without corners). The calculus of pseudo-
differential operators on smooth manifolds is well understood and by now a
classical subject, see for example [14]. We shall consider differentiable fam-
ilies of pseudodifferential operators Px on the smooth manifolds Gx. Right
translation by g ∈ G defines an isomorphism Gx ≡ Gy where x is the domain
of g and y is the range of g. We say that the family Px is invariant if Px
transforms to Py under the diffeomorphisms above (for all g). The algebra
Ψ∞(G) of pseudodifferential operators on G that we shall consider will con-
sist of invariant differentiable families of operators Px as explained above
(the actual definition also involves a technical condition on the support of
these operators). See Definition 7 for details. The relation with the work of
Melrose relies on an alternative description of our algebra as an algebra of
distributions on G with suitable properties (compactly supported, conormal,
and with singular support contained in the set of units). This is contained
in Theorem 7. The difference between our theory and Melrose’s lies in the
fact that he considers a compactification of G as a manifold with corners,
and his distributions are allowed to extend to the compactification, with
precise behavior at the boundary. This is useful for the analysis of these op-
erators. In contrast, our work is purely algebraic (or geometric, depending
on whether one considers Lie algebroids as part of geometry or algebra).

We now review the contents of the sections of this paper. In the first
section we recall the definitions of a groupoid, of a Lie algebroid, and of the
less known concept of local Lie groupoid. We extend the definition of a Lie
groupoid to include manifolds with corners. These groupoids are called al-
most differentiable groupoids. The second section contains the definition of a
pseudodifferential operator on a groupoid (really a family of pseudodifferen-
tial operators, as explained above) and the proof that they form an algebra,
if a support condition is included. We also extend this definition to include
local Lie groupoids. This is useful in the third section where we use this to
give a new proof of the Poincaré-Birkhoff-Witt theorem for Lie algebroids. In
the process of proving this theorem we also exemplify our definition of pseu-
dodifferential operators on an almost differentiable groupoid by describing
the differential operators in this class. As an application we give an explicit
construction of a deformation quantization of the Lie-Poisson structure on
A∗, the dual of Lie algebroid A. The section entitled “Examples” contains
just what the title suggests: for many particular examples of groupoids G,
we explicitly describe the algebra Ψ∞(G) of pseudodifferential operators on
G. This recovers classes of operators that were previously defined using ad
hoc constructions. Our definition is often not only more general, but also
simpler. This is the case for operators along the leaves of foliations [8, 28]
or adiabatic families of operators. Since one of our main themes is that the
Lie algebras of vector fields that are central in [24] are in fact the spaces
of sections of Lie algebroids, we describe these Lie algebroids explicitly in
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each of our examples. In the sixth section of the paper, we describe the
convolution kernels (called reduced kernels) of operators in Ψ∞(G). Then
we extend to our setting some fundamental results on principal symbols, by
reducing to the classical results. This makes our proofs short (and easy).
Finally, the last section treats the action of Ψ∞(G) on functions on the units
of G, and a few related topics.

Recently, we have learned of certain related results by Monthubert, see
[27] and the references therein. Our paper was circulated as preprint funct-
an/9702004. The first author would like to thank Richard Melrose for several
useful conversations.

1. Preliminaries.

In the following we allow manifolds to have corners. Thus by “manifold”
we shall mean a C∞ manifold, possibly with corners, and by a “smooth
manifold” we shall mean a manifold without corners. By definition, if M is
a manifold with corners, then every point p ∈ M has coordinate neighbor-
hoods diffeomorphic to [0,∞)k × Rn−k. The transition functions between
such coordinate neighborhoods must be smooth everywhere (including on
the boundary). We shall use the following definition of submersions between
manifolds (with corners).

Definition 1. A submersion between two manifolds with corners M and N
is a differentiable map f : M → N such that dfx : TxM → Tf(x)N is onto
for any x ∈M and such that if dfx(v) is an inward pointing tangent vector
to N , then v is an inward pointing tangent vector to M .

The reason for introducing the definition above is that for any submersion
f : M → N , the set My = f−1(y), y ∈ N is a smooth manifold, just as for
submersions of smooth manifolds.

We shall study groupoids endowed with various structures. ([33] is a
general reference for some of what follows.) We recall first that a small
category is a category whose class of morphisms is a set. The class of objects
of a small category is then a set as well.

Definition 2. A groupoid is a small category G in which every morphism
is invertible.

This is the shortest but least explicit definition. We are going to make
this definition more explicit in cases of interest. The set of objects, or units,
of G will be denoted by

M = G(0) = Ob(G).

The set of morphisms, or arrows, of G will be denoted by

G(1) = Mor(G).
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We shall sometimes write G instead of G(1) by abuse of notation. For exam-
ple, when we consider a space of functions on G, we actually mean a space
of functions on G(1). We will denote by d(g) [respectively r(g)] the domain
[respectively, the range] of the morphism g : d(g) → r(g). We thus obtain
functions

d, r : G(1) −→ G(0)(1)

that will play an important role bellow. The multiplication operator µ :
(g, h) 7→ µ(g, h) = gh is defined on the set of composable pairs of arrows
G(2):

µ : G(2) = G(1) ×M G(1) := {(g, h) : d(g) = r(h)} −→ G(1).(2)

The inversion operation is a bijection ι : g 7→ g−1 of G(1). Denoting by u(x)
the identity morphism of the object x ∈ M = G(0), we obtain an inclusion
of G(0) into G(1). We see that a groupoid G is completely determined by the
spaces G(0) and G(1) and the structural morphisms d, r, µ, u, ι. We sometimes
write G = (G(0),G(1), d, r, µ, u, ι). The structural maps satisfy the following
properties:

(i) r(gh) = r(g), d(gh) = d(h) for any pair (g, h) ∈ G(2), and the partially
defined multiplication µ is associative.

(ii) d(u(x)) = r(u(x)) = x, ∀x ∈ G(0), u(r(g))g = g and gu(d(g)) = g,
∀g ∈ G(1) and u : G(0) → G(1) is one-to-one.

(iii) r(g−1) = d(g), d(g−1) = r(g), gg−1 = u(r(g)) and g−1g = u(d(g)).

Definition 3. An almost differentiable groupoid G = (G(0),G(1), d, r, µ, u, ι)
is a groupoid such that G(0) and G(1) are manifolds with corners, the struc-
tural maps d, r, µ, u, ι are differentiable, and the domain map d is a submer-
sion.

We observe that ι is a diffeomorphism and hence d is a submersion if and
only if r = d◦ι is a submersion. Also, it follows from the definition that each
fiber Gx = d−1(x) ⊂ G(1) is a smooth manifold whose dimension n is constant
on each connected component of G(0). The étale groupoids considered in [5]
are extreme examples of differentiable groupoids (corresponding to dimGx =
0). If G(0) is smooth (i.e. if it has no corners), then G(1) is also smooth and
G becomes what is known as a differentiable, or Lie groupoid.1

We now introduce a few important geometric objects associated to an
almost differentiable groupoid.

1Earlier terminology, such as in [19], used the term Lie groupoid only for differentiable
groupoids in which every pair of objects is connected by a morphism.
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The vertical tangent bundle (along the fibers of d) of an almost differen-
tiable groupoid G is

TdG = ker d∗ =
⋃

x∈G(0)

TGx ⊂ TG(1).(3)

Its restriction A(G) = TdG
∣∣
G(0) to the set of units is the Lie algebroid of

G [19, 31]. We denote by T ∗dG the dual of TdG and by A∗(G) the dual
of A(G). In addition to these bundles we shall also consider the bundle
Ωλ
d of λ-densities along the fibers of d. If the fibers of d have dimension

n, then Ωλ
d = |ΛnT ∗dG|λ = ∪xΩλ(Gx). By invariance these bundles can be

obtained as pull-backs of bundles on G(0). For example TdG = r∗(A(G)) and
Ωλ
d = r∗(Dλ), where Dλ denotes Ωλ

d |G(0) . If E is a (smooth complex) vector
bundle on the set of units G(0), then the pull-back bundle r∗(E) on G will
have right invariant connections obtained as follows. A connection ∇ on E
lifts to a connection on r∗(E). Its restriction to any fiber Gx defines a linear
connection in the usual sense, which is denoted by ∇x. It is easy to see that
these connections are right invariant in the sense that

R∗g∇x = ∇y, ∀g ∈ G such that r(g) = x and d(g) = y.(4)

The bundles considered above will thus have invariant connections.
The bundle A(G), called the Lie algebroid of G, plays in the theory of

almost differentiable groupoids the rôle Lie algebras play in the theory of
Lie groups. We recall for the benefit of the reader the definition of a Lie
algebroid [31].

Definition 4. A Lie algebroid A over a manifold M is a vector bundle A
over M together with a Lie algebra structure on the space Γ(A) of smooth
sections of A, and a bundle map ρ : A → TP , extended to a map between
sections of these bundles, such that

(i) ρ([X,Y ]) = [ρ(X), ρ(Y )]; and
(ii) [X, fY ] = f [X,Y ] + (ρ(X)f)Y

for any smooth sections X and Y of A and any smooth function f on M .

Note that we allow the base M in the definition above to be a manifold
with corners.

If G is an almost differentiable groupoid, then A(G) will naturally have the
structure of a Lie algebroid [19]. Let us recall how this structure is defined
(the original definition easily extends to include manifolds with corners).
Clearly A(G) is a vector bundle. The right translation by an arrow g ∈ G
defines a diffeomorphism Rg : Gr(g) 3 g′ → g′g ∈ Gd(g). This allows us to
talk about right invariant differential geometric quantities as long as they are
completely determined by their restriction to all submanifolds Gx. This is
true of functions and d–vertical vector fields, and this is all that is needed to
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define the Lie algebroid structure on A(G). The sections of A(G) are in one-
to-one correspondence with vector fields X on G that are d-vertical, in the
sense that d∗(X(g)) = 0, and right invariant. The condition d∗(X(g)) = 0
means that X is tangent to the submanifolds Gx, the fibers of d. The Lie
bracket [X,Y ] of two d-vertical right-invariant vector fields X and Y will
also be d-vertical and right-invariant, and hence the Lie bracket induces
a Lie algebra structure on the sections of A(G). To define the action of
the sections of A(G) on functions on G(0), observe that the right invariance
property makes sense also for functions on G and that C∞(G(0)) may be
identified with the subspace of right–invariant functions on G. If X is a
right–invariant vector field on G and f is a right-invariant function on G,
then X(f) will still be a right invariant function. This identifies the action
of Γ(A(G)) on functions on G(0).

Not every Lie algebroid is the Lie algebroid of a Lie groupoid (see [1] for an
example). However, every Lie algebroid is associated to a local Lie groupoid
[32]. The definition of a local Lie (or more generally, almost differentiable)
groupoid [10] is obtained by relaxing the condition that the multiplication
µ be everywhere defined on G(2) (see Equation (2)), and replacing it by the
condition that µ be defined in a neighborhood U of the set of units.

Definition 5 (van Est). An almost differentiable local groupoid L = (L(0),

L(1)) is a pair of manifolds with corners together with structural morphisms
d, r : L(1) → L(0), ι : L(1) → L(1), u : L(0) → L(1) and µ : U → L(1),
where U is a neighborhood of (u × u)(L(0)) = {(u(x), u(x))} in L(2) =
{(g, h), d(g) = r(h)} ⊂ L(1) × L(1). The structural morphisms are required
to be differentiable maps such that d is a submersion, u is an embedding,
and to satisfy the following properties:

(i) The products u(d(g))g, gu(r(g)), gg−1 and g−1g are defined and
coincide with, respectively, g, g, u(r(g)) and u(d(g)), where we denoted
g−1 = ι(g) as usual.

(ii) If gh is defined, then h−1g−1 is defined and equal to (gh)−1.
(iii) (Local associativity) If gg′, g′g′′, and (gg′)g′′ are defined, then g(g′g′′)

is also defined and equal to (gg′)g′′.

The set U is the set of arrows for which the product gh = µ(g, h) is
defined.

We see that the only difference between a groupoid and a local groupoid
L is the fact that the condition d(g) = r(h) is necessary for the product
gh = µ(g, h) to be defined, but not sufficient in general. The product is
defined as soon as the arrows g and h are “small enough.” A consequence of
this definition is that the right multiplication by an arrow g ∈ L(1) defines
only a diffeomorphism

Ug−1 3 g′ → g′g ∈ Ug(5)
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of an open (and possibly empty) subset Ug−1 of Ly, y = r(g) to an open
subset Ug ⊂ Lx, x = d(g). This will not affect the considerations above,
however, so we can associate a Lie algebroid A(L) to any almost differen-
tiable local groupoid L.

In the following, when considering groupoids, we shall sometimes refer to
them as global groupoids, in order to stress the difference between groupoids
and local groupoids.

2. Main definition.

Consider a complex vector bundle E on the space of units G(0) of an almost
differentiable groupoid G. Denote by r∗(E) its pull-back to G(1). Right
translations on G define linear isomorphisms

Ug : C∞(Gd(g), r
∗(E))→ C∞(Gr(g), r∗(E))(6)

(Ugf)(g′) = f(g′g) ∈ (r∗E)g′ ,

which makes sense because (r∗E)g′ = (r∗E)g′g = Er(g′).
If G is merely a local groupoid, then (6) is replaced by the isomorphisms

Ug : C∞(Ug, r∗(E))→ C∞(Ug−1 , r∗(E))(7)

defined for the open subsets Ug ⊂ Gd(g) and Ug−1 ⊂ Gr(g) defined in (5).
Let B ⊂ Rn be an open subset. Define the space Sm(B ×Rn) of symbols

on the bundle B × Rn → B as in [14] to be the set of smooth functions
a : B × Rn → C such that

|∂αy ∂βξ a(y, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β|(8)

for any compact set K ⊂ B and any multi-indices α and β. An element of
one of our spaces Sm should properly be said to have “order less than or
equal to m”; however, by abuse of language we will say that it has “order
m”.

A symbol a ∈ Sm(B × Rn) is called classical if it has an asymptotic
expansion as an infinite sum of homogeneous symbols a ∼ ∑∞k=0 am−k, al
homogeneous of degree l: al(y, tξ) = tlal(y, ξ) if ‖ξ‖ ≥ 1 and t ≥ 1. (“As-
ymptotic expansion” is used here in the sense that a−∑N−1

k=0 am−k belongs
to Sm−N (B × Rn).) The space of classical symbols will be denoted by
Smcl (B ×Rn). We shall be working exclusively with classical symbols in this
paper.

This definition immediately extends to give spaces Smcl (E;F ) of symbols
on E with values in F , where π : E → B and F → B are smooth euclidian
vector bundles. These spaces, which are independent of the metrics used in
their definition, are sometimes denoted Smcl (E;π∗(F )). Taking E = B × Rn
and F = C one recovers Smcl (B × Rn) = Smcl (B × Rn;C).
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A pseudodifferential operator P on B is a linear map P : C∞c (B)→ C∞(B)
that is locally of the form P = a(y,Dy) plus a regularizing operator, where
for any complex valued symbol a on T ∗W = W ×Rn, W an open subset of
Rn, one defines a(y,Dy) : C∞c (W )→ C∞(W ) by

a(y,Dy)u(y) = (2π)−n
∫
Rn
eiy·ξa(y, ξ)û(ξ)dξ.(9)

Recall that an operator T : C∞c (U) → C∞(V ) is called regularizing if and
only if it has a smooth distribution (or Schwartz) kernel. This happens if
and only if T is pseudodifferential of order −∞.

The class of a in Smcl (T ∗W )/Sm−1
cl (T ∗W ) does not depend on any choices;

the collection of all these classes, for all coordinate neighborhoods W , pat-
ches together to define a class σm(P ) ∈ Smcl (T ∗W )/Sm−1

cl (T ∗W ), which
is called the principal symbol of P . If the operator P acts on sections
of a vector bundle E, then the principal symbol σm(P ) will belong to
Smcl (T ∗B; End(E))/Sm−1

cl (T ∗B; End(E)). See [14] for more details on all
these constructions.

We shall sometimes refer to pseudodifferential operators acting on a
smooth manifold as ordinary pseudodifferential operators, in order to dis-
tinguish them from pseudodifferential operators on groupoids, a class of
operators, which we now define (and which are really families of ordinary
pseudodifferential operators).

Throughout this paper, we shall denote by (Px, x ∈ G(0)) a family of order
m pseudodifferential operators Px, acting on the spaces C∞c (Gx, r∗(E)) for
some vector bundle E over G(0). Operators between sections of two different
vector bundles E1 and E2 are obtained by considering E = E1 ⊕ E2.

Definition 6. A family (Px, x ∈ G(0)) as above is called differentiable if for
any open set V ⊂ G, diffeomorphic through a fiber preserving diffeomor-
phism to d(V )×W , for some open subset W ⊂ Rn, and for any φ ∈ C∞c (V ),
we can find a ∈ Smcl (d(V ) × T ∗W ; End(E)) such that φPxφ corresponds to
a(x, y,Dy) under the diffeomorphism Gx ∩ V 'W , for each x ∈ d(V ).

A fiber preserving diffeomorphism is a diffeomorphism ψ : d(V )×W → V
satisfying d(ψ(x,w)) = x. Thus we require that the operators Px be given
in local coordinates by symbols ax that depend smoothly on all variables,
in particular, on x ∈ G(0).

Definition 7. An order m invariant pseudodifferential operator P on an
almost differentiable groupoid G, acting on sections of the vector bundle E,
is a differentiable family (Px, x ∈ G(0)) of order m classical pseudodifferential
operators Px acting on C∞c (Gx, r∗(E)) and satisfying

Pr(g)Ug = UgPd(g) (invariance)(10)

for any g ∈ G(1), where Ug is as in (6).
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Replacing the coefficient bundle E by E⊗Dλ and using the isomorphism
Ωλ
d ' r∗(Dλ), we obtain operators acting on sections of density bundles.

Note that P can generally not be considered as a single pseudodifferential
operator on G(1). This is because a family of pseudodifferential operators
on a smooth manifold M , parametrized by a smooth manifold B, is not a
pseudodifferential operator on the product M×B, although it acts naturally
on C∞c (M ×B). (See [2] or [14], page 94.)

Recall [13] that distributions on a manifold Y with coefficients in the
bundle E0 are continuous linear maps C∞c (Y,E′0 ⊗ Ω) → C, where E′0 is
the dual bundle to E0 and Ω = Ω(Y ) is the space of 1-densities on Y . The
collection of all distributions on Y with coefficients in the (finite dimensional
complex vector) bundle E0 is denoted C−∞(Y ;E0).

If P = (Px, x ∈ G(0)) is a family of pseudodifferential operators acting on
Gx, we denote by kx the distribution kernel of Px

kx ∈ C−∞(Gx × Gx; r∗1(E)⊗ r∗2(E)′ ⊗ Ω2).(11)

Here Ω2 is the pull-back of the bundle of vertical densities Ωd on Gx to
Gx × Gx via the second projection. These distribution kernels are obtained
using Schwartz’ kernel theorem. We define the support of the operator P to
be

supp(P ) = ∪x supp(kx).(12)

The support of P is contained in the closed subset {(g, g′), d(g) = d(g′)}
of the product G(1) × G(1). In particular, (id × ι)(supp(P )) ⊂ G(2). If all
operators Px are of order −∞, then each kernel kx is a smooth section.
Actually we have more:

Lemma 1. The collection of all distribution kernels kx of a differentiable
family P = (Px, x ∈ G(0)) of order −∞ operators defines a smooth section k
of r∗1(E)⊗ r∗2(E)′ ⊗ Ω2 on {(g, g′), d(g) = d(g′)}.
Proof. Indeed if ψ : d(V ) ×W → V is a fiber preserving diffeomorphism
as in Definition 6, then it follows from the definition that k is smooth on
d(V )×W ×W ⊂ {(g, g′), d(g) = d(g′)}. Since in this way we obtain an atlas
of {(g, g′), d(g) = d(g′)}, we obtain that k is smooth as claimed. �

Definition 8. The family P = (Px, x ∈ G(0)) is properly supported if
p−1
i (K) ∩ supp(P ) is a compact set for any compact subset K ⊂ G, where
p1, p2 : G × G → G are the two projections. The family P is called com-
pactly supported if its support supp(P ) is compact; and, finally, P is called
uniformly supported if its reduced support suppµ(P ) = µ1(supp(P )) is a
compact subset of G(1), where µ1(g′, g) = g′g−1.
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It immediately follows from the definition that a uniformly supported
operator is also properly supported, and that a compactly supported oper-
ator is uniformly supported. If the family P = (Px, x ∈ G(0)) is properly
supported, then each Px is properly supported, but the converse is not true.

Recall that the composition of two ordinary pseudodifferential operators
is defined if one of them is properly supported. It follows that we can
define the composition PQ of two properly supported families of operators
P = (Px, x ∈ G(0)) and Q = (Qx, x ∈ G(0)) on G(1) by pointwise composition
PQ = (PxQx, x ∈ G(0)). The action on sections of r∗(E) is also defined
pointwise as follows. For any smooth section f ∈ C∞(G, r∗(E)) denote by fx
the restriction f |Gx . If each fx has compact support and P = (Px, x ∈ G(0))
is a family of ordinary pseudodifferential operators, then we define Pf by
(Pf)x = Px(fx).

Lemma 2. (i) If f ∈ C∞c (G, r∗(E)) and P = (Px, x ∈ G(0)) is a dif-
ferentiable family of ordinary pseudodifferential operators, then Pf ∈
C∞(G, r∗(E)). If P is also properly supported, then Pf ∈C∞c (G, r∗(E)).

(ii) The composition PQ = (PxQx, x ∈ G(0)) of two properly supported dif-
ferentiable families of operators P = (Px, x ∈ G(0)) and Q = (Qx, x ∈
G(0)) is a properly supported differentiable family.

Proof. If P consists of regularizing operators, then

Pf(g) =
∫
Gx
kx(g, h)f(h), where x = d(g).

Lemma 1 implies that the formula above for Pf involves only the integration
of smooth (uniformly in g) compactly supported sections, and hence we can
exchange integration and differentiation to obtain the smoothness of Pf .
This proves (i) in case P consists of regularizing operators. The proof of (ii)
if both P and Q consist of regularizing operators follows the same reasoning.

We prove now (i) for P arbitrary. Fix g ∈ Gx and V a neighborhood of g
fiber preserving diffeomorphic to d(V )×W for some open convex subset W
in Rn, 0 ∈ W , such that (x, 0) maps to g. Replacing Px by Px − Rx for a
smooth regularizing family Rx we can assume that the distribution kernels
kx of Px satisfy

p−1
1 (d(V )×W/4) ∩ ∪ supp(kx) ⊂ (d(V )×W/4)× (d(V )×W/2).

The smoothness of Pf , respectively of PQ if Q consists of regularizing op-
erators, reduces in this way to a computation in local coordinates. This
completes the proof of (i) in general, and of (ii) if Q is regularizing.

For arbitrary Q we can replace Q, in view of what has already been
proved, with Q − R, where R is a regularizing family. In this way we may
assume that

p−1
1 (d(V )×W/2) ∩ ∪ supp(k′x) ⊂ (d(V )×W/2)× (d(V )× 3W/4),
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where k′x are the distribution kernels of Qx. The support estimates above for
P and Q show that the PyQy for y ∈ d(V ) are the compositions of smooth
families of pseudodifferential operators acting on W ⊂ Rn. The result is
then known. �

The smaller class of uniformly supported operators is also closed under
composition.

Lemma 3. The composition PQ = (PxQx, x ∈ G(0)) of two uniformly sup-
ported families of operators P = (Px, x ∈ G(0)) and Q = (Qx, x ∈ G(0)) is
uniformly supported.

Proof. The reduced support suppµ(PQ) (see (12)) of the composition PQ
satisfies

suppµ(PQ) ⊂ µ( suppµ(P )× suppµ(Q)
)
,

where µ is the composition of arrows. Since suppµ(P ) and suppµ(Q) are
compact, the equation above completes the proof of the lemma. �

Let G be an almost differentiable groupoid. The space of order m, in-
variant, uniformly supported pseudodifferential operators on G, acting on
sections of the vector bundle E will be denoted by Ψm(G;E). We denote
Ψ∞(G;E) = ∪m∈ZΨm(G;E) and Ψ−∞(G;E) = ∩m∈ZΨm(G;E). Thus an
operator P ∈ Ψm(G;E) is actually a differentiable family P = (Px, x ∈ G(0))
of ordinary pseudodifferential operators.

Theorem 1. The set Ψ∞(G;E) of uniformly supported invariant pseudodif-
ferential operators on an almost differentiable groupoid G is a filtered algebra,
i.e.

Ψm(G;E)Ψm′(G;E) ⊂ Ψm+m′(G;E).
In particular, Ψ−∞(G;E) is a two-sided ideal.

Proof. Let P = (Px, x ∈ G(0)) and Q = (Qx, x ∈ G(0)) be two invariant
uniformly supported pseudodifferential operators on G, of order m and m′
respectively. Their composition PQ = (PxQx), is a uniformly supported
operator of order m + m′, in view of Lemma 3. It is also a differentiable
family due to Lemma 2. We now check the invariance condition. Let g be
an arbitrary arrow and Ug : C∞c (Gx, r∗(E)) → C∞c (Gy, r∗(E)), x = d(g) and
y = r(g), be as in the definition above. Then

(PQ)yUg = PyQyUg = PyUgQx = UgPxQx = Ug(PQ)x.

This proves the theorem. �
Properly supported invariant differentiable families of pseudodifferential

operators also form a filtered algebra, denoted Ψ∞prop(G;E). While it is clear
that in order for our class of pseudodifferential operators to form an algebra
we need some condition on the support of their distribution kernels, exactly
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what support condition to impose is a matter of choice. We prefer the
uniform support condition because it leads to a better control at infinity
of the family of operators P = (Px, x ∈ G(0)) and allows us to identify the
regularizing ideal (i.e. the ideal of order −∞ operators) with the groupoid
convolution algebra of G. The choice of uniform support will also ensure
that Ψm(G;E) behaves functorially with respect to open embeddings. The
compact support condition enjoys the same properties but is usually too
restrictive. The issue of support will be discussed again in examples.

The definition of the principal symbol extends easily to Ψm(G;E). Denote
by π : A∗(G) → M, (M = G(0)) the projection. If P = (Px, x ∈ G(0)) ∈
Ψm(G;E) is an order m pseudodifferential differential operator on G, then
the principal symbol σm(P ) of P will be represented by sections of the
bundle End(π∗E) and will be defined to satisfy

σm(P )(ξ) = σm(Px)(ξ) ∈ End(Ex) if ξ ∈ A∗x(G) = T ∗xGx(13)

(the equation above is mod Sm−1
cl (A∗x(G); End(E))). This equation will

obviously uniquely determine a linear map

σm : Ψm(G)→ Smcl (A∗(G); End(E))/Sm−1
cl (A∗(G); End(E))

provided we can show that for any P = (Px, x ∈ G(0)) there exists a symbol
a ∈ Smcl (A∗(G); End(E)) whose restriction to A∗x(G) is a representative of the
principal symbol of Px in that fiber for each x. We thus need to choose for
each Px a representative ax ∈ Smcl (A∗x(G); End(E)) of σm(Px) such that the
family ax is smooth and invariant. Assume first that E is the trivial line
bundle and proceed as in [14] Section 18.1, especially Equation (18.1.27)
and below.

Choose a connection ∇ on the vector bundle A(G) → G(0) and consider
the pull-back vector bundle r∗(A) → G of A(G) → G(0) endowed with the
pull-back connection ∇̃ = r∗∇. Its restriction on any fiber Gx defines a linear
connection in the usual sense, which is denoted by ∇x. These connections
are right invariant in the sense that

R∗g∇x = ∇y, ∀g ∈ G such that r(g) = x and d(g) = y.(14)

Using such an invariant connection, we may define the exponential map of
a Lie algebroid, which generalizes the usual exponential map of a manifold
with a connection and the exponential map of a Lie algebra as follows. For
any x ∈ G(0), define a map expx : Ax → G as the composition of the maps:

Ax
i−→ TxGx

˜expx−−−−→ G,
where i is the natural inclusion and ˜expx = exp∇x is the usual exponential
map at x ∈ Gx on the manifold Gx. By varying the point x, we obtain a map
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exp∇ defined in a neighborhood of the zero section, called the exponential
map of the Lie algebroid2 . Clearly, exp∇ is a local diffeomorphism

A(G) ⊃ V0 3 v −→ exp∇(v) = y ∈ V ⊂ G(15)

mapping an open neighborhood V0 of the zero section in A(G) diffeomorphi-
cally to a neighborhood V of G(0) in G, and sending the zero section onto
the set of units. Choose a cut-off function φ ∈ C∞(G) with support in V and
equal to 1 in a smaller neighborhood of G(0) in G. If y ∈ V , x = d(y) and
ξ ∈ A∗x(G) let v ∈ V0 be the unique vector v ∈ Ax(G) such that y = exp∇(v)
and denote eξ(y) = φ(y)eiv·ξ, which extends then to all y ∈ G due to the
cut-off function φ. Define the (∇, φ)–complete symbol σ∇,φ(P ) by

σ∇,φ(P )(ξ) = (Pxeξ)(x), ∀ξ ∈ T ∗xGx = A∗x(G).(16)

Lemma 4. If P = (Px, x ∈ G(0)) is an operator in Ψm(G), then the function
σ∇,φ(P ) defined above is differentiable and defines a symbol in Smcl (A∗(G)).
Moreover, if (∇1, φ1) is another pair consisting of an invariant connection
∇1 and a cut-off function φ1, then σ∇,φ(P ) − σ∇,φ1(P ) is in S−∞cl (A∗(G))
and σ∇,φ(P )− σ∇1,φ1(P ) is in Sm−1

cl (A∗(G)).

Proof. For each ξ ∈ A∗x the function eξ is smooth with compact support
on Gx so Pxeξ is defined. Equation (18.1.27) of [14] shows that a(ξ) =
σ∇,φ(P )(ξ) is the restriction of the complete symbol of Pxφ to T ∗xGx if the
complete symbol is defined in the normal coordinate system at x ∈ Gx
(given by the exponential map). The normal coordinate system defines,
using a local trivialization of A(G), a fiber preserving diffeomorphism ψ :
d(V )×W → V for some open subsetW of Rn (i.e. satisfying d(ψ(x,w)) = x).
From the definition of the smoothness of the family Px (Definition 6) it
follows that the complete symbol of Pφ is in Smcl (d(V )×T ∗W ) if the support
of φ is chosen to be in V . This proves that σ∇,φ(P ) is in Smcl (A∗(G)).

The rest follows in exactly the same way. �

The lemma above justifies the following definition of the principal symbol
as the class of σ∇,φ(P ) modulo terms of lower order (for the trivial line bun-
dle E = C). This definition will be, in view of the same lemma, independent
on the choice of ∇ or φ and will satisfy Equation (13). If E is not trivial one
can still define a complete symbol σ∇,∇′,φ(P ), depending also on a second
connection ∇′ on the bundle E, which is used to trivialize r∗(E) on V ⊂ G
(assuming also that V0 is convex). Alternatively, we can use Proposition 3
below.

2See [17] for an alternative definition of the exponential map. One should not confuse
this map with the exponential map from Γ(A) to the bisections of the groupoid as defined
in [16].
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Proposition 1. Let ∇ and φ be as above. The choice of a connection ∇′
on E defines a complete symbol map σ∇,∇′,φ : Ψm(G;E)→ Smcl (A∗(G)). The
principal symbol σm : Ψm(G;E)→ Smcl (A∗(G))/Sm−1

cl (A∗(G)), defined by

σm(P ) = σ∇,∇′,φ(P ) + Sm−1
cl (A∗(G)),(17)

does not depend on the choice of the connections ∇, ∇′ or the cut-off function
φ.

Proof. The (∇,∇′, φ)–complete symbol σ∇,∇′,φ(P ) is defined as follows. Let
w be a vector in Ex. Using the connection ∇′ we can define a section w̃ of
r∗(E) on Gx ∩ V by parallel transport along the geodesics of ∇ starting at
x, and which coincides with w at x. Then denote eξ,w = eξw̃ and let

σ∇,∇′,φ(P )(ξ)w = (Pxeξ,w)(x) ∈ Ex, ∀ξ ∈ T ∗xGx = A∗x(G).(18)

The rest of the proof proceeds along the lines of the proof of Lemma 4. �

Note that the principal symbol of P determines the principal symbols of
the individual operators Px by the invariance with respect to right transla-
tions. Precisely, we have σm(Px) = r∗(σ(P ))|T ∗Gx .

The following result extends some very well known properties of the cal-
culus of pseudodifferential operators on smooth manifolds. We shall prove
the surjectivity of the principal symbol in Section 5.

Proposition 2. (i) The principal symbol map

σm : Ψm(G;E)→ Smcl (G; End(E))/Sm−1
cl (G; End(E))

has kernel Ψm−1(G;E) and satisfies Equation (13).
(ii) The composition PQ of two operators P,Q ∈ Ψ∞(G;E), of orders m

and, respectively, m′, satisfies σm+m′(PQ) = σm(P )σm′(Q).

Proof. (i) The operator P = (Px, x ∈ G(0)) ∈ Ψm(G;E) is in the kernel of σm
if and only if all symbols σm(Px) vanish. This implies Px ∈ Ψm−1(G;E) for
all x and hence P = (Px, x ∈ G(0)) ∈ Ψm−1(G;E). As already observed for
E a trivial line bundle, the fact that Equation (13) is satisfied was contained
in the proof of Lemma 4. The general case is similar or can be proved using
Proposition 3.

The second statement is known for pseudodifferential operators on smooth
manifolds [14]; this accounts for the second equality sign in the next equa-
tion. We obtain using Equation (13) that

σm+m′(PQ)(v) = σm+m′(PxQx)(v) = σm(Px)σm′(Qx)(v)

= σm(Px)(v)σm′(Qx)(v),

where v ∈ A∗x(G). �
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Although for the most of this paper we shall be concerned with groupoids,
the definition of Ψm(G;E) easily extends to local groupoids. Indeed it suffices
to modify the invariance condition in Definition 7, using the notation in
Equation (7), as follows. We assume that for any g ∈ G(1) and any smooth
compactly supported function φ on Ug there exists a regularizing operator
Rg,φ such that

Ug(φ)Pr(g)Ugf − Ug(φPd(g)f) = Rg,φf(19)

for any function f ∈ C∞c (Ug). We thus replace the strict invariance of the
original definition by ‘invariance up to regularizing operators’.

We denote by Ψm
loc(G;E) the set of differentiable properly supported fam-

ilies P = (Px, x ∈ G(0)) of order m pseudodifferential operators satisfying
the condition (19) above. Note that, if we regard an almost differentiable
groupoid G as a local groupoid, then Ψ∞(G;E) ⊂ Ψm

loc(G;E). The inclusion
is generally a strict one, though, because Equation (19) gives no condition
for order −∞ operators, and so Ψ−∞loc (G;E) consists of arbitrary smooth
families P = (Px, x ∈ G(0)) of regularizing operators. This ideal is too big to
reflect the structure of G. The “symbolic” part remains however the same:

Ψm
prop(G;E)/Ψ−∞prop(G;E) ' Ψm

loc(G;E)/Ψ−∞loc (G;E).

If the sets Ug are all connected (in which case the local groupoid G is said
to be d–connected) an easier condition to use than (19) is

[X,P ] ∈ Ψ−∞loc (G;E)(20)

for all r–vertical left–invariant vector fields X on G(1). With this, the fol-
lowing analog of Theorem 1, becomes straightforward.

Theorem 2. Assume that G is a d–connected almost differentiable groupoid.
Then the space Ψ∞loc(G) is a filtered algebra, with Ψ−∞(G;E) as residual ideal.

Proof. The only thing to check is that Ψ∞loc(G;E) is closed under compo-
sition. The composition of two differentiable, properly supported fami-
lies P,Q ∈ Ψ∞loc(G;E) is again differentiable and properly supported, as
has already been proved. The infinitesimal invariance condition [X,PQ] =
[X,P ]Q+ P [X,Q] ∈ Ψ−∞loc (G;E) (20) follows from the fact that Ψ−∞loc (G;E)
is an ideal of Ψ∞loc(G;E). �

3. Differential operators and quantization.

In this section, we examine the differential operators in Ψ∞(G;E), if G is a
global groupoid, or in Ψ∞loc(G;E) if G is a local groupoid. We also show how
a simple algebraic construction applied to G and to the algebras Ψ∞loc(G;E)
leads to a concrete construction of a deformation quantization of the Lie-
Poisson structure on the dual of a Lie algebroid.
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In this section, G will be an almost differentiable local groupoid. This gen-
erality is necessary in order to integrate arbitrary Lie algebroids. Neverthe-
less, when A is the Lie algebroid of an almost differentiable global groupoid
G (that is not just a local groupoid), then all results we shall prove for
Ψ∞loc(G;E) in this section extend immediately to Ψ∞(G;E), although we
shall not mention this each time.

Lemma 5. Let P = (Px, x ∈ G(0)) be an operator in Ψ∞loc(G;E). If Px is a
multiplication operator for all x, then there exists a smooth endomorphism
s of E such that Px(g) = s(r(g)) for all g ∈ Gx. Conversely, every smooth
section s of End(E) defines a multiplication operator in Ψ0

loc(G;E).

Proof. By assumption Px(g) is in End(Er(g)). The invariance relation shows
that Px(g) depends only on r(g). This defines the section s of End(E) such
that Px(g) = s(r(g)). To show that s is smooth, we let φ be a smooth
section of E over G(0) and let φ̃(g) = φ(r(g)). By assumption Pφ̃ is smooth
and hence sφ = Pφ̃|G(0) is also smooth. Since φ is arbitrary this implies the
smoothness of s.

Conversely, if s is a smooth endomorphism of E, then if we let Px(g) =
s(r(x)) we obtain a multiplication operator in Ψ0

loc(G;E). �

The following proposition will allow us to assume that E is a trivial bun-
dle, which is sometimes useful in applications.

Proposition 3. Let E be a vector bundle on G(0) embedded into a trivial
hermitian bundle, E ⊂ CN . Denote by e0 the projection onto E regarded as
a matrix of multiplication operators in MN (Ψ0

loc(G)), the algebra of N ×N
matrices with values in Ψ0

loc(G). Then Ψ∞loc(G;E) ' e0MN (Ψ∞loc(G))e0 as
filtered algebras.

Proof. The multiplication operator e0 defines an element of Ψ0
loc(G;E) by

the lemma above; hence it acts on all spaces C∞c (Gx,CN ). Then

C∞c (Gx, r∗(E)) = e0C∞c (Gx,CN )

and every pseudodifferential operator Px on C∞c (Gx, r∗(E)) extends in this
way to an operator on C∞c (Gx,CN ). This gives an inclusion Ψ∞loc(G;E) ⊂
e0MN (Ψ∞loc(G))e0. Conversely if Px is a pseudodifferential operator on
C∞c (Gx,CN ), then e0Pxe0 is a pseudodifferential operator on C∞c (Gx,CN ).
This gives the opposite inclusion. �

The following proposition shows the intimate connection between A(G),
the Lie algebroid of G, and Ψ∞loc(G) (Ψ∞(G) if G is global). It is morally an
equivalent definition of the Lie algebroid associated to an almost differen-
tiable local groupoid.

Proposition 4. Let G be an almost differentiable local groupoid.
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(i) The algebra C∞(G(0)) is the algebra of multiplication operators in
Ψ0

loc(G).
(ii) The space of sections of the Lie algebroid A(G) can be identified with

the space of order 1 differential operators in Ψ1
loc(G) without constant

term.
(iii) The Lie algebroid structure of A(G) is induced by the commutator oper-

ations [ , ] : Ψ1
loc(G)×Ψ1

loc(G)→ Ψ1
loc(G) and [ , ] : Ψ1

loc(G)×Ψ0
loc(G)→

Ψ0
loc(G).

Proof. The first part is a particular case of Lemma 5, only easier. Order 1
differential operators without constant term are vector fields, right invariant
by the definition of Ψ1

loc(G), so they can be identified with the sections of
the Lie algebroid A(G) of G. This proves (ii). In order to check (iii) recall
that, if we regard vector fields on G as linear maps C∞(G) → C∞(G), then
the Lie bracket coincides with the commutator of linear maps. Moreover
the commutator [X, f ] of a vector field X and of a multiplication map f is
[X, f ] = X(f), again regarded as a linear map. Then (iii) follows in view of
the discussion above. �

The Lie algebroid A = A(G) turns out to determine the structure of the
algebra of invariant tangential differential operators on G, denoted Diff(G).
We shall see that the subalgebra Diff(G) ⊂ Ψ∞loc(G) is a concrete model of
the universal enveloping algebra of the Lie algebroid A [15, 36], a concept
whose definition we now recall.

Given a Lie algebroid A → M with anchor ρ, we can make the C∞(M)-
module direct sum C∞(M)⊕ Γ(A) into a Lie algebra over C by defining

[f +X, g + Y ] = (ρ(X)g − ρ(Y )f) + [X,Y ].

Let U = U(C∞(M) ⊕ Γ(A)) be its universal enveloping algebra. For any
f ∈ C∞(M) and X ∈ Γ(A), denote by f ′ and X ′ their canonical image in
U . Denote by I the two-sided ideal of U generated by all elements of the
form (fg)′ − f ′g′ and (fX)′ − f ′X ′. Define

U(A) = U/I.(21)

U(A) is called the universal enveloping algebra of the Lie algebroid A. When
A is a Lie algebra, this definition reduces to the usual universal enveloping
algebra. We shall see, for example, that for the tangent bundle TM this is
the algebra of differential operators on M .

The maps f → f ′ and X → X ′ considered above descend to linear em-
beddings i1 : C∞(M)→ U(A), and i2 : Γ(A)→ U(A); the first map i1 is an
algebra morphism. These maps have the following properties:

i1(f)i2(X) = i2(fX), [i2(X), i1(f)] = i1(ρ(X)f),(22)

[i2(X), i2(Y )] = i2([X,Y ]).
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In fact, U(A) is universal among triples (B,φ1, φ2) having these properties
(see [15] for a proof of this easy fact).

In particular, ifM is the space of units of an almost differentiable groupoid
G with Lie algebroid A(G), the natural morphisms φ1 : C∞(M) → Diff(G)
and φ2 : Γ(A) → Diff(G) obtained from Proposition 4 extend to a unique
algebra morphism τ : U(A) → Diff(G). (Recall that we denoted by Diff(G)
the algebra of right invariant tangential differential operators on G.) Denote
by Un(A) ⊂ U(A) the space generated by C∞(M) and the images of X1 ⊗
X2 ⊗ . . . ⊗ Xk ∈ U = U(C∞(M) ⊕ Γ(A)), for k ≤ n, under the canonical
projection U → U(A) = U/I. Then

U0(A) ⊂ U1(A) ⊂ · · · ⊂ Un(A) ⊂ · · ·(23)

is a filtration of U(A). The relations (22) show that, as in the Lie alge-
bra case, the graded algebra ⊕Un(A)/Un−1(A) is commutative. Similarly,
Diff(G) is naturally filtered by degree.

Lemma 6. The map τ : U(A) → Diff(G) maps Un(A) onto the space
Diffn(G) of operators of order ≤ n.

Proof. Let D ∈ Diff(G) be an invariant tangetial differential operator of or-
der ≤ n. By right invariance D is completely determined by the restrictions
(Du)|G(0) , u ∈ C∞c (G). Since D acts on the fibers of d we can write

(Du)|G(0) =
n∑
i=1

Diu,

where Di is a superposition of derivations Diu = X
(i)
1 X

(i)
2 · · ·X(i)

ki
u defined

using the tangential derivations X(i)
j ∈ Γ(A). By definition it follows that

D is the sum of τ
(
X

(i)
1 X

(i)
2 · · ·X(i)

ki

)
. �

Denote by Symm(A) the symmetric tensor product of the bundle A, that
is

Symm(A) =
∞⊕
n=0

Sn(A),

where Sn(A) is the symmetric quotient of the bundle A⊗n, and is isomor-
phic to the subspace of symmetric tensors, if S0(A) is the trivial R bundle
by convention. The space Γ(Symm(A)) of smooth sections of Symm(A)
identifies with the space of smooth functions on A∗ polynomial in each
fiber. The complete symbol map σ∇,φ(D) of an invariant differential op-
erator Diff(G) ⊂ Ψ∞loc(G) (defined in Equation (16)) does not depend on the
cut-off function φ and will be a polynomial in ξ, denoted simply by σ∇(D).

Using the algebra morphism τ : U(A) → Diff(G) obtained from the uni-
versality property of U(A), we have the following Poincaré-Birkhoff-Witt
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type theorem for Lie algebroids. Note that both U(A) and Γ(Symm(A))
have natural filtrations (see (23)).

Theorem 3 (Poincaré-Birkhoff-Witt). The composite map,

U(A) 3 D → σ∇(τ(D)) ∈ Γ(Symm(A)),

is an isomorphism of filtered vector spaces. In particular, τ : U(A) →
Diff(G) is an algebra isomorphism.

Proof. It follows from definitions that the map σ = σ∇ ◦ τ considered in
the statement maps Un(A) to ⊕nk=0Γ(Sk(A)) and hence it preserves the
filtration. By abuse of notation we shall still denote by σ the induced map
Un(A)/Un−1(A)→ Γ(Sn(A)). It is enough to prove that the map of graded
spaces

σ :
⊕

Un(A)/Un−1(A)→
⊕

Γ(Sn(A)) = Γ(Symm(A))

is an isomorphism. By Lemma 6 this map is onto. We now prove that it is
one-to-one.

The inclusion of C∞(M) in U(A) makes U(A) a C∞(M)-bimodule. The
filtration Un(A) of U(A) consists of C∞(M)-bimodules. Moreover, since
the graded algebra ⊕Un(A)/Un−1(A) is commutative, the quotient Un(A)/
Un−1(A) consists of central elements for this action (i.e. the left and right
C∞(M)-module structure coincide). It follows from the definition that the
subspace Γ(A)⊗n of the universal enveloping algebra U = U(C∞(M)⊕Γ(A))
maps onto Un(A)/Un−1(A). The previous discussion shows that this map
descends to a map from the tensor product Γ(A) ⊗C∞(M) · · · ⊗C∞(M) Γ(A)
of C∞(M)-modules. By the commutativity of the graded algebra of U(A)
this further descends to a C∞(M)-linear surjective map q : Γ(Sn(A)) →
Un(A)/Un−1(A).

The composition σ ◦ q : Γ(Symm(A)) −→ Γ(Symm(A)) is multiplicative
since both q and σ are multiplicative. Moreover σ ◦ q is the identity when
restricted to C∞(M) (the order 0 elements) and Γ(A) (the elements of order
1). Since these form a system of generators of the commutative algebra
Γ(Symm(A)) it follows that σ ◦ q is the identity. This completes the proof.

�

Remark. The Poincaré-Birkhoff-Witt theorem was proved in the alge-
braic context by Rinehart [36] for (L,R)-algebras (an algebraic version
of Lie algebroids). It essentially stated that the associated graded alge-
bra grU(A) = ⊕nUn+1(A)/Un(A) is isomorphic to the symmetric algebra
S(Γ(A)) = Γ(Symm(A)). The role of the connection ∇ on A → M is to
establish an explicit isomorphism σ∇ ◦ τ between U(A) and Γ(Symm(A)).

We will now use the results of this and the previous section to obtain
an explicit deformation quantization of A∗. In order to do that we need to
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establish the relation between commutators and the Poisson bracket in our
calculus.

For any x ∈ G(0), T ∗Gx is a symplectic manifold, so T ∗dG
def= ∪x∈G(0)T ∗Gx

is a regular Poisson manifold with the leafwise symplectic structures. Now
the Poisson structure on A∗ can be considered as being induced from that
on T ∗dG. More precisely, let Φ : T ∗dG → A∗ be the natural projection induced
by the right translation, used to define a map Φ∗ : C∞(A∗(G))→ C∞(T ∗dG).
We then have:

Lemma 7. The map Φ is a Poisson map.

Of course this lemma is really the definition of the Poisson structure on
A∗. The point is to show that the subspace Φ∗(C∞(A∗(G))) of C∞(T ∗dG) is
closed under the Poisson bracket.

Proof. It is enough to check that

Φ∗({f, g}) = {Φ∗(f),Φ∗(g)},(24)

where f and g are two smooth function on A∗ with polynomial restrictions
on each fiber of A∗, that is for f and g in Γ(Symm(A)). Since the Poisson
bracket is a derivation in each variable it is further enough to check this for
f constant or f linear in each fiber. If both f and g are constant in each
fiber, then both sides of Equation (24) vanish. If f and g are of degree one
in each fiber, then they correspond to sections X and Y of A, and their
Poisson bracket will identify to [X,Y ] (so in particular will also be of degree
one in each fiber and this justifies the name of Lie-Poisson structure for
this Poisson structure). For this situation the relation (24) follows from the
identification of Γ(A) with d-vertical right invariant vector fields on G and
the fact that T ∗dG is a Lie-Poisson manifold itself. The remaining case is
treated similarly. �

We shall use the following general fact about the principal symbols of
commutators.

Proposition 5. When E is the trivial line bundle, the commutator [P,Q]
satisfies σm+m′−1([P,Q]) = {σm(P ), σm′(Q)}, where { , } is the Poisson
structure on A∗(G).

Proof. The map Φ∗ : C∞(A∗(G))→ C∞(T ∗dG) is a Poisson map according to
Lemma 7. Since Φ∗(σm(P )) = σm(Px) on T ∗Gx the result follows from

Φ∗(σm+m′−1([P,Q])) = σm+m′−1([Px, Qx]) = {σm(Px), σm′(Qx)}
= {Φ∗(σm(P )),Φ∗(σm′(Q))}
= Φ∗({σm(P ), σm′(Q)}).

Since Φ∗ is one-to-one this proves the last statement. �
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We now use the results above to construct deformation quantizations.
Deform the Lie bracket structure on the Lie algebroid A on M to obtain

a new algebroid, the adiabatic algebroid At associated to A, defined over
M×[0,∞) as follows. As a bundle At is the lift of the bundle A to M×[0,∞).
Regard the sections X of At as functions X : [0,∞)→ Γ(A), t→ Xt. Then
the algebroid structure is obtained by letting

[X,Y ]t = t[Xt, Yt] and

ρ(X)t = tρ(Xt)

so that ρ(X)f is the function whose restriction to {t} ×M is tρ(Xt)(ft),
where for any f ∈ C∞(M × [0,∞)) we denote by ft ∈ C∞(M) the restriction
of f to {t} ×M ≡M .

Observe that C∞([0,∞)) ⊂ C∞(M × [0,∞)) is acted upon trivially by
Γ(At) and hence will define a central subalgebra of the universal enveloping
algebra U(At) of the adiabatic Lie algebroid At. Denote by t ∈ C∞([0,∞))
the identity function.

Theorem 4. The inverse limit proj limU(At)/tnU(At) is a deformation
quantization of Γ(Symm(A)), the algebra of polynomial functions on A∗.
Therefore, it induces a ∗-product on the Lie-Poisson space A∗ in the sense
of [3].

Proof. It follows from the PBW theorem for Lie algebroids (Theorem 3) that
the inverse limit proj limU(At)/tnU(At) is isomorphic to
Γ(Symm(A))[[t]] as a C[[t]] module via the complete symbol map σ∇ = σ∇,φ
defined in Equation (16). Denote by { , }′ the Poisson bracket on A∗t and
identify C∞(A∗) with the subset of functions on A∗t that do not depend on
t. Then {f, g}′ = t{f, g} if f, g are smooth functions on A∗t and { , } is the
Poisson bracket on A∗.

For any polynomial function f on A∗ denote by q(f) ∈ U(At) the element
with complete symbol σ∇(q(f))(ξ, t) = f(ξ) obtained, as an application of
the isomorphism in the PBW theorem for At. (We treat τ as the identity,
which justifies replacing σ∇ ◦ τ with σ∇.) The proof will be complete if we
check the following quantization relation

q(f)q(g)− q(g)q(f) = tq({f, g}) + t2h, h ∈ U(At).(25)

It is actually enough to do so for f and g among a set of generators of
the algebra Γ(Symm(A)). Choose the set of generators to be the union of
C∞(M) and Γ(A). Then Equation (25) will obviously be satisfied for f and
g in this generating set (with no t2–term) in view of the definition of the Lie
bracket on At. �
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Remark. When M is a Lie group G and ∇ is the right invariant trivial
connection making all right invariant vector fields parallel, this construc-
tion, restricted to right invariant differential operators, reduces to the sym-
metrization correspondence between U(g) and S(g) studied by Berezin [4]
and Gutt [12]. See also Rieffel’s paper [35]. On the other hand, when the Lie
algebroid A is the tangent bundle Lie algebroid TP , this construction gives
rise to a quantization for the canonical symplectic structure on cotangent
bundle T ∗M .

The quantization of the Lie-Poisson structure on A∗ was investigated by
Landsman in terms of Jordan-Lie algebras [17]. His quantization axioms
are closer to those of Rieffel’s strict deformation quantization. It was con-
jectured in [17] that the quantization of A∗ is related to the groupoid C∗-
algebra of the corresponding groupoid G, and the transitive case was proved
in [18].

4. Examples.

As anticipated in the introduction, we recover many previously defined
classes of operators as pseudodifferential operators on groupoids. We begin
by showing that pseudodifferential operators on a manifold, in the classical
sense, are obtained as a particular case of our construction. In this section
we will consider only operators with coefficients in the trivial line bundle
E = C. We include the description of the Lie algebroids associated to each
example.

Denote by Ψm
prop(M) the space of properly supported pseudodifferential

operators on a smooth manifold M , and by Ψm
comp(M) the subspace of oper-

ators with compactly supported Schwartz kernel, regarded as a distribution
on M ×M .

Example 1. Let M be a smooth manifold and G = M ×M be the pair
groupoid: G(1) = M ×M , G(0) = M , d(x, y) = y, r(x, y) = x, (x, y)(y, z) =
(x, z). According to the definition, a pseudodifferential operator P ∈ Ψm(G)
is a uniformly supported invariant family of pseudodifferential operators
P = (Px, x ∈M) on M×{x}. The action by right translation with g = (x, y)
identifies M × {x} with M × {y}. After we identify all fibers with M , the
invariance condition reads Px = Py for all x, y in M . This shows that the
family P = (Px)x∈M is constant, and hence reduces to one operator P0 on
M . The family P = (Px)x∈M is uniformly supported if and only if the
distribution kernel of P0 is compactly supported. The family P is properly
supported if and only if P0 is properly supported. If M is not compact,
then P = (Px)x∈M will not be compactly supported unless it vanishes. We
obtain Ψm(G) = Ψm

comp(M).
In this case, the Lie algebroid A(G) is the tangent bundle TM .
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Example 2. If G has only one unit, i.e. if G = G, a Lie group, then Ψm(G) '
Ψm

prop(G)G, the algebra of properly supported pseudodifferential operators
on G, invariant with respect to right translations. In this example, every
invariant properly supported operator is also uniformly supported. Again,
there are no nontrivial compactly supported operators unless G is compact.

In this example A(G) is the Lie algebra of G.

We continue with some more elaborate examples.

Example 3. If G is the holonomy groupoid3 of a foliation F on a smooth
manifold M , then Ψ∞(G) is the algebra of pseudodifferential operators along
the leaves of the foliation [6, 8, 28, 40]. Suppose for simplicity that the
foliation is given by a (right) locally free action of a Lie group G on a
manifold M , and that the isotropy representation of Gx, the stabilizer of
x, on Nx, the normal space to the orbit through x, is faithful. This is
equivalent to the condition that the holonomy of the leaf passing through
x be isomorphic to the discrete group Gx. Then the holonomy groupoid
of this foliation is the transformation groupoid G(1) = M × G, G(0) = M ,
d(x, g) = xg, r(x, g) = x and (x, g)(xg, g′) = (x, gg′). The algebra Ψ∞(G;E)
consists of families of pseudodifferential operators on G parametrized by
M , invariant with respect to the diagonal action of G and with support
contained in a set of the form {(x, kg, xk, g)} ⊂ (M × G)2, where g ∈ G is
arbitrary but x ∈M and k ∈ G belong to compact sets that depend on the
family P .

The Lie algebroid A = A(G) is the integrable subbundle of TM corre-
sponding to the foliation F .

Example 4. Let G be the fundamental groupoid of a compact smooth
manifold M with fundamental group π1(M) = Γ. Recall that if we denote
by M̃ a universal covering of M and let Γ act by covering transformations,
then G(0) = M̃/Γ = M , G(1) = (M̃ × M̃)/Γ and d and r are the two
projections. Each fiber Gx can be identified with M̃ , uniquely up to the
action of an element in Γ. Let P = (Px, x ∈ M) be an invariant, uniformly
supported, pseudodifferential operator on G. Then each Px, x ∈ M is a
pseudodifferential operator on M̃ . The invariance condition applied to the
elements g such that x = d(g) = r(g) implies that each operator Px is
invariant with respect to the action of Γ. This means that we can identify
Px with an operator on M̃ and that the resulting operator does not depend
on the identification of Gx with M̃ . Then the invariance condition applied
to an arbitrary arrow g ∈ G(1) gives that all operators Px acting on M̃

3The holonomy groupoids of some foliations are non-Hausdorff manifolds. We believe
that our constructions will extend to this case with the use of the technique in [7] (page
564), where the groupoid algebra is generated by continuous functions supported on Haus-
dorff open sets.
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coincide. We obtain Ψm(G) ' Ψm
prop(M̃)Γ, the algebra of properly supported

Γ-invariant pseudodifferential operators on the universal covering M̃ of M .
An alternative definition of this algebra using crossed products is given in
[29]. See also [6].

The Lie algebroid is TM , as in the first example.

Example 5. Let Γ be a discrete group acting from the right by diffeomor-
phisms on a smooth compact manifold M . Define G as follows, G(0) = M ,
G(1) = M ×M ×Γ with d(x, y, γ) = yγ, r(x, y, γ) = x and (x, y, γ)(yγ, y′, γ′)
= (x, y′γ−1, γγ′). Then Ψ∞(G) is the algebra generated by Γ and Ψ∞prop(M)
acting on C∞(M) ⊗ C[Γ], where Γ acts diagonally, Ψ∞prop(M) acts on the
first variable, and C[Γ] denotes the set of finite sums of elements in Γ with
complex coefficients. This algebra coincides with the crossed product alge-
bra Ψ∞prop(M) o Γ = {∑n

i=0 Pigi, Pi ∈ Ψ∞prop(M), gi ∈ Γ}. The regularizing
algebra Ψ−∞(G) is isomorphic to Ψ−∞prop(M) o Γ ' Ψ−∞prop(M) ⊗ C[Γ]. If we
drop the condition that M be compact we obtain Ψ∞(G) ' Ψ∞comp(M)o Γ.

In general, if a discrete group Γ acts on a groupoid G0, then

Ψ∞prop(G0 o Γ) ' Ψ∞prop(G0)o Γ.

This construction does not change the Lie algebroid.

In the following example we realize the algebra of families of operators in
Ψm(G) parametrized by a compact space B as the algebra of pseudodiffer-
ential operators on the product groupoid G × B. This example shows that
our class of operators on groupoids is closed under formation of families of
operators.

Example 6. If B is a compact manifold with corners, define G × B by
(G × B)(0) = G(0) × B, (G × B)(1) = G(1) × B with the structural maps
preserving the B-component. Then Ψm(G × B) contains Ψm(G) ⊗ C∞(B)
as a dense subset in the sense that Ψm−1(G)⊗ C∞(B) = Ψm(G)⊗ C∞(B) ∩
Ψm−1(G ×B) and Ψm(G)⊗ C∞(B)/Ψm−1(G)⊗ C∞(B) is dense in Ψm(G ×
B)/Ψm−1(G × B) in the corresponding Frechet topology (defined by the
isomorphism of Theorem 8). It follows that Ψm(G × B) consists of smooth
families of operators in Ψm(G) parametrized by B, see [2], page 122 and
after, where families of pseudodifferential operators are discussed.

We obtain that A(G ×B) is the pull back of A to G(0) ×B.

The following example generalizes the tangent groupoid of Connes; here
we closely follow [6, II,5]. The groupoid defined below also appears in [37]
and is related to the notion of explosion of manifolds.

Example 7. The adiabatic groupoid Gadb associated to G is defined as
follows. The space of units is G(0)

adb = [0,∞)×G(0) with the product manifold
structure. The set of arrows G(1)

adb is defined to be the disjoint union A(G) ∪
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(0,∞) × G(1), and d(t, g) = (t, d(g)), r(t, g) = (t, r(g)) if t > 0, d(v) =
r(v) = (0, x) if v ∈ TxGx. The composition is µ(γ, γ′) = (t, gg′) if γ = (t, g)
and γ′ = (t, g′) for t > 0 (necessarily the same t!) and µ(v, v′) = v + v′ if
v, v′ ∈ TxGx.

The smooth structure on the set of arrows is the product structure for
t > 0. In order to define a coordinate chart at a point v ∈ TxGx choose
first a coordinate system ψ : U = U1 × U2 → G(1), U1 ⊂ Rp and U2 ⊂ Rn
being open sets containing the origin, U2 convex, with the following prop-
erties: ψ(0, 0) = x ∈ G(0) ⊂ G(1), d(ψ(s, y1)) = d(ψ(s, y2)) = φ(s) and
ψ(U)∩ G(0) = ψ(U1 ×{0}). Here φ : U1 → G(0) is a coordinate chart of x in
G(0). We identify, using the differential D2ψ of the map ψ, the vector space
{s}×Rn and the tangent space Tφ(s)Gφ(s) = Aφ(s)(G). We obtain then coor-
dinate charts ψε : [0, ε)× U1 × ε−1U2 → G(1), ψε(0, s, y) = (0, (D2ψ)(s, y)) ∈
Tφ(s)Gφ(s) = Aφ(s)(G) and ψε(t, s, y) = (t, ψ(s, ty)) ∈ (0, 1)×G(1). For ε very
small the range of ψε will contain v.

For G = M ×M as in the first example the groupoid Gadb is the tangent
groupoid defined by Connes, and the algebra of pseudodifferential operators
is the algebra of asymptotic pseudodifferential operators [39]. In general an
operator P in Ψm(Gadb) will restrict to an adiabatic family P = (Pt,x, t >
0, x ∈ G(0)), which will have an “adiabatic limit” at t = 0 given by the
operator P at t = 0.

The Lie algebroid of Gadb is the adiabatic Lie algebroid associated to A(G),
A(Gadb) = A(G)t (using the notation of Theorem 4). This gives a procedure
for integrating adiabatic Lie algebroids. Using pseudodifferential operators
on the adiabatic groupoid we obtain an explicit quantization of symbols on
A∗ generalizing Theorem 4. The proof proceeds exactly in the same way.

Theorem 5. The inverse limit proj lim Ψ∞(Gadb)/tnΨ∞(Gadb) is a defor-
mation quantization of the commutative algebra S∞cl (A∗(G)) of classical sym-
bols.

The space S∞cl (A∗(G)) appearing in the statement of the theorem above
is the union of all symbol spaces Smcl (A∗(G)) and is a commutative algebra
under pointwise multiplication.

Of course Theorem 4 provides us with a ∗-product whose multiplication
is given by differential operators, and hence this ∗-product extends to all
smooth functions (even to functions defined on open subsets). The usefulness
of the theorem above is that it gives in principle a nonperturbative (i.e.
not just formal) deformation quantization, close in spirit to that of strict
deformation quantization introduced by Rieffel [34].

Example 8. This example provides a treatment in our settings of the b- and
c-calculi defined by Melrose [21, 22, 25, 26] on a manifold with boundary
M .
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Define first a groupoid Gφ(M) associated to M and an increasing diffeo-
morphism φ : R→ (0,∞) as follows. If M = [0,∞) the action by translation
of R on itself extends to an action on M fixing 0, not smooth in general,
defined using the isomorphism φ. Define Gφ(M) to be the transformation
groupoid associated this action of R on M . If M = [0, 1), then Gφ(M)
is defined to be the reduction Gφ(M) = Gφ([0,∞)) ∩ d−1(M) ∩ r−1(M) of
Gφ([0,∞)) to [0, 1).

Suppose next that M = ∂M×[0, 1). We then define Gφ(M) = Gφ([0, 1))×
(∂M × ∂M), where ∂M × ∂M is the pair groupoid of ∂M considered in Ex-
ample 1. For an arbitrary manifold with boundary M write M = M0 ∪ U,
where U = M \ ∂M and M0 is diffeomorphic to ∂M × [0, 1). (Our construc-
tion will depend on this diffeomorphism.) Then we define G(0)

φ (M) = M and

G(1)
φ (M) = G(1)

φ (M0) ∪ (U × U) with the induced operations.
If φ(t) = et or φ(t) = −t−1 (for t << 0), then G = Gφ will be an almost

differentiable groupoid and we obtain Ψm(G) ⊂ Ψb(M) in the first case and
Ψm(G) ⊂ Ψc(M) in the second case. The first groupoid does not depend on
any choices.

5. Distribution kernels.

In this section we characterize the reduced (or convolution) distribution
kernels of operators in Ψm(G;E) following [21] (see also [14]) as compactly
supported distributions on G, conormal to the set of units G(0).

Denote by ENDG(E) the bundle Hom(d∗(E), r∗(E)) = r∗(E)⊗ d∗(E)′ on
G(1), where V ′ denotes as usual the dual of the vector bundle V . Using the
relations d ◦ ι = r and r ◦ ι = d we see that ENDG(E) satisfies

ι∗(ENDG(E)) ' d∗(E)⊗ r∗(E)′ ' ENDG(E)′.(26)

We define a convolution product on the space C∞c (G(1),ENDG(E)⊗d∗(D))
of compactly supported smooth sections of the bundle ENDG(E)⊗d∗(D) by
the formula

f1 ∗ f2(g) =
∫
{(h1,h2),h1h2=g}

f1(h1)f2(h2) .(27)

The multiplication on the right hand side is the composition of homomor-
phisms giving a linear map

Hom(Ed(h1), Er(h1))⊗Hom(Ed(h2), Er(h2))⊗Dd(h1) ⊗Dd(h2) −→
Hom(Ed(g), Er(g))⊗Dd(h1) ⊗Dd(h2)

f1(h1)⊗ f2(h2) −→ f1(h1)f2(h2),

defined since d(h1) = r(h2). To see that the integration is defined we pa-
rametrize the set {(h1, h2), h1h2 = g} as {(gh−1, h), h ∈ Gd(g)}, which shows
that this set is a smooth manifold, and notice that we can invariantly define
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the integration with respect to h taking advantage of the 1-density factor
Dd(h1) = Dr(h) = (Ωd)h. If we choose a hermitian metric on D−1/2 ⊗ E, we
obtain a conjugate–linear involution (making C∞c (G(1),ENDG(E) ⊗ d∗(D))
into a ∗-algebra).

Consider an operator P = (Px, x ∈ G(0)) ∈ Ψ−∞(G;E) and let kx be
the distribution kernel of Px, a smooth section kx ∈ C∞(Gx × Gx; r∗1(E) ⊗
r∗2(E)′ ⊗ Ω2), using the notation Ω2 = p∗2(Ωd) = r∗2(D) of (11). We define
the reduced distribution kernel kP of the smoothing operator P by

kP (g) = kd(g)(g, d(g)) ∈ Er(g) ⊗ E′d(g) ⊗Dd(g) .(28)

This definition will be later extended to all of Ψ∞(G;E).
The following theorem is one of the main reasons we consider uniformly

supported operators.

Theorem 6. The reduced kernel map P → kP (28) defines an isomor-
phism of the residual ideal Ψ−∞(G;E) with the convolution algebra C∞c (G(1),
ENDG(E)⊗ d∗(D)).

Proof. Let P and kx be as above. We know from Lemma 1 that the collec-
tion of all sections kx defines a smooth section of r∗1(E) × r∗2(E)′ ⊗ Ω2 over
the manifold {(g1, g2), d(g1) = d(g2)}. The relation Pr(g)Ug = UgPd(g) gives
the invariance relation kr(g)(h′, h) = kd(g)(h′g, hg) ∈ Er(h′) ⊗ E′r(h) ⊗ Dr(h)

for all arrows g ∈ G(1), and h, h′ ∈ Gr(g). It follows that kd(h)(h′, h) =
kr(h)(h′h−1, r(h)) = kP (h′h−1). The section kP is well defined, smooth and
completely determines all kernels kx and hence also the operator P . More-
over the section kP has compact support because supp(kP ) = suppµ(P ) =
µ◦ (id× ι)(∪x supp(kx)

)
and the reduced support suppµ(P ) of P is compact

since P is uniformly supported. The distribution kernel kPQx of the product
PxQx of two operators Px, Qx ∈ Ψ−∞(Gx) is

kPQx (g, g′′) =
∫
Gx
kPx (g, g′)kQx (g′, g′′)dg′,

where kPx and kQx are the distribution kernels of Px and, respectively, Qx.
From this, taking into account the definitions of kPQ, kP and kQ, we obtain

kPQ(g) =
∫
Gx
kP (gg′−1)kQ(g′)dg′ .

This means that kPQ = kP ∗ kQ and hence the map P → kP establishes the
desired isomorphism. �

We will now use duality to extend the definition of the reduced distribu-
tion kernel to any operator P ∈ Ψ∞(G;E). Let L = ΩG(0) be the line bundle
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of 1-densities on G(0) and D = Ωd|G(0) be the bundle of vertical 1-densities
as above. Define

Ψ−∞(G;E)L = Ψ−∞(G;E)⊗C∞(G(0)) C∞(G(0),D−1 ⊗ L) '
Ψ−∞(G;E)⊗C∞(G(0)) C∞(G(0),D−1)⊗C∞(G(0)) C∞(G(0),L),

where the tensor products are defined using the inclusion C∞(G(0)) ⊂
Ψ∞(G;E). We note that the bundle L plays an important role in con-
nection with the modular class of a groupoid [11], since it carries a natural
representation of the groupoid.

The relation kPf (g) = kP (g)f(d(g)) for f ∈ C∞(G(0)) and P ∈ Ψ−∞(G;E)
give using Theorem 6 the isomorphism

Ψ−∞(G;E)L ' C∞c (G(1),ENDG(E)⊗ d∗(L)).(29)

The space Ψ−∞(G;E)L comes equipped with a natural linear functional T
such that, if P0 ∈ Ψ−∞(G;E), ξ ∈ C∞(G(0),D−1) and ν ∈ C∞(G(0),L), then

T(P0 ⊗ ξ ⊗ ν) =
∫
G(0)

tr(kP0(x)ξ(x))dν(x)

defined by integrating the function tr(kP0(x)ξ(x)) with respect to the 1-
density (i.e. measure) ν. An operator P ∈ Ψm(G;E) defines a continuous
linear functional (i.e. distribution) kιP : Ψ−∞(G;E)L → C by the formula
kιP (P0⊗ ξ⊗ ν) = T(PP0⊗ ξ⊗ ν). It is easy to see using Equation (26) that
the map f → f̃ = f ◦ ι, ι(g) = g−1, establishes isomorphisms

Φ : C∞c (G(1),ENDG(E)⊗ d∗(L)) ι∗−→ C∞c (G(1),ENDG(E)′ ⊗ r∗(L))(30)

' C∞c (G(1), (ENDG(E)⊗ d∗(L))′ ⊗ d∗(L)⊗ r∗(L))

' C∞c (G(1), (ENDG(E)⊗ d∗(L))′ ⊗ ΩG)

whose composition we denote by Φ, so that Φ(P0 ⊗ ξ ⊗ ν) = (kP0ξν) ◦ ι =
ι∗(kP0ξν). We obtain in this way from kιP a distribution kP ∈ C−∞(G(1);
ENDG(E)⊗ d∗(D)) defined by the formula

〈kP , f〉 = kιP (Φ−1(f)).(31)

An other way of writing the formula above is

〈kP , ι∗(kP0ξν)〉 = T(PP0 ⊗ ξ ⊗ ν) =
∫
G(0)

tr(kPP0(x)ξ(x))dν(x).(32)

Proposition 6. If P ∈ Ψ−∞(G;E) is a regularizing operator, then the ker-
nels kP defined in Equations (28) and (31) coincide.

Proof. To make a distinction for the purpose of this proof, denote by kdist
P

the distribution defined by (31). Let ν be a smooth section of L, ξ a smooth
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section of D−1 and P, P0 ∈ Ψ−∞(G;E). Using Equation (32) we obtain〈
kdist
P , ι∗(kP0ξν)

〉
= T(PP0 ⊗ ξ ⊗ ν)

=
∫
G(0)

tr(kPP0(x)ξ(x))dν(x)

=
∫
G(0)

(∫
Gx

tr
(
kP (h−1)kP0(h)ξ(x)

))
dν(x)

= 〈kP ◦ ι, kP0ξν〉 = 〈kP , ι∗(kP0ξν)〉.
�

Definition 9. The distribution kP ∈ C−∞(G(1); ENDG(E)⊗d∗(D)), defined
for any operator P ∈ Ψm(G;E) by Equation (31) will be called the reduced
(or convolution) distribution kernel of P , or simply the reduced kernel of P ,
and will be denoted kP .

We now relate the action of Ψ∞(G;E) by multiplication on Ψ−∞(G;E),
respectively on Ψ−∞(G;E)L, to that on C∞c (G, r(E)).

Ψ−∞(G;E) ' C∞c (G(1); r∗(E))⊗C∞(G(0)) Γ(E′)⊗C∞(G(0)) Γ(D)(33)

Ψ−∞(G;E)L ' C∞c (G(1); r∗(E))⊗C∞(G(0)) Γ(E′)⊗C∞(G(0)) Γ(L)(34)

such that the left action by multiplication of Ψ∞(G;E) on Ψ−∞(G;E) be-
comes P (f ⊗ η ⊗ ξ) = Pf ⊗ η ⊗ ξ, where η is a smooth section of E′ and
ξ is a smooth section of D or L. Moreover the kernel of P0 = f ⊗ η ⊗ ξ
is kP0(g) = f(g) ⊗ η(d(g))ξ(d(g)). Thus in order to define the distribution
kP , for arbitrary P , it is enough to compute T(Pf0 ⊗ η ⊗ ν), where ν is a
density.

Fix a unit x and choose a coordinate chart φ : U0 → U ⊂ G(0), where U0 is
an open subset of Rk containing 0, k = dimG(0) and φ(0) = x. By decreasing
U0 if necessary we can assume that the tangent space TG(0) is trivialized
over U . Consider the diffeomorphism exp∇ : V0 → V ⊂ G(1) associated to
a right invariant connection ∇ as in (14) and (15), where V0 ⊂ A(G) is an
open neighborhood of the zero section. It maps the zero section of A(G)
to G(0). Choose a connection on E, which lifts to an invariant connection
on r∗(E). By decreasing V if necessary and using the invariant connection
on r∗(E) we obtain canonical trivializations of r∗(E) on each fiber V ∩ Gx.
Denote by θh : Er(h) ⊗ E′d(h) → End(Ex) the isomorphism induced by the
connection ∇′ (defined using parallel transport along the geodesics of ∇),
where x = d(h) and h is in V . Decreasing further V and U we can assume
that E is trivialized over d−1(U) ∩ V and that φ and exp∇ give a fiber
preserving diffeomorphism ψ : U0 ×W → d−1(U) ∩ V , where W ⊂ Rn is an
open set, identified with an open neighborhood of the zero section in TxG(0).
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The diffeomorphism ψ we have just constructed satisfies d(ψ(s, y)) = φ(s).
The maps ψ and θh yield isomorphisms

C−∞(d−1(U) ∩ V,ENDG(E)⊗ d∗(D))(35)

' C−∞(U0 ×W,ψ∗(ENDG(E)⊗ d∗(D)))

' C−∞(U0 ×W,Ex ⊗ E′x)

whose composition is denoted Θψ.
Next theorem describes the reduced distribution kernels kP of operators

P in Ψm(G;E). We use the notation introduced above.

Theorem 7. For any operator P = (Px, x ∈ G(0)) ∈ Ψm(G;E) the reduced
distribution kernel kP satisfies:

(i) If ψ : U0 ×W → V1 ⊂ V , W ⊂ Rn open, is a diffeomorphism satis-
fying ψ(s, 0) = d(ψ(s, y)), then there exists a symbol aP ∈ Smcl (U0 ×
Rn; End(Ex)), such that kP ◦ ι = Θ−1

ψ (k) on V1, where k is the distri-
bution

k(s, y) = (2π)−n
∫
Rn
e−iy·ζaP (s, ζ)dζ ∈ End(Ex),

the integral being an oscillatory integral. Moreover, after suitable iden-
tifications, aP is a representative of the principal symbol of P .

(ii) The singular support of kP is contained in G(0).
(iii) The support of kP is compact, more precisely supp(kP ) = suppµ(P ).
(iv) For every distribution k ∈ C−∞(G;E0), satisfying the three conditions

above, there exists P ∈ Ψm(G;E) such that k = kP .

Note that kP ◦ ι, ι∗(kP ) and kιP all denote the same distribution.

Proof. Write φ(s) for ψ(s, 0) = d(ψ(s, y)). According to Definitions 6 and
7, there exists a classical symbol a ∈ Smcl (U0 × T ∗W ; End(Ex)) such that
Pφ(s) = a(s, y,Dy) (modulo regularizing operators) on Gφ(s) ∩ V1 'W .

Let P0 ∈ Ψ−∞(G;E), ξ ∈ C∞(G(0),D−1) and ν ∈ C∞(G(0),L). As-
sume, using the isomorphisms (33) and (34), that P0 = f0 ⊗ η, where
η ∈ Γ(E′) = C∞(G(0), E′) and f0 ∈ C∞(G, r∗(E) ⊗ Ωd), so that f0ξ is a
section of C∞c (G, r∗(E)). Then we have

tr(kPP0(x)ξ(x)) = η(Px(f0ξ|Gx)(x)).

Suppose f0 is supported in V1, and denote by fs the section of Ex that
corresponds to f0ξ|Gφ(s)

under the diffeomorphism Gφ(s)∩V1 ' {s}×W = W
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induced by ψ. We then have

〈ι∗(kP ), kP0ξν〉 = 〈kP , ι∗(kP0ξν)〉 = T(PP0 ⊗ ξ ⊗ ν)

=
∫
G(0)

tr(kPP0(x)ξ(x))dν(x)

=
∫
G(0)∩U

η
(
Px(f0ξ|Gx)(x)

)
dν(x)

=
∫
U0

η

(∫
Rn

∫
W
e−iy·ζa(s, 0, ζ)fs(y)dydζ

)
dν(s)

=
∫
U0

∫
Rn

∫
W
e−iy·ζtr

(
a(s, 0, ζ)fs(y)⊗ η)dydζdν(s)

=
∫
U0×W

tr
(
fs(y)⊗ η

∫
Rn
e−iy·ζa(s, 0, ζ)dζ

)
dydν(s),

where the first integral is really a pairing between the distribution k obtained
from (i) for aP (s, ζ) = a(s, 0, ζ), and the smooth section fs ⊗ η ⊗ ν. Since
End(Ex) is canonically its own dual this shows that the distribution kP is
the conormal distribution to G(0) given by (i).

To prove (iii) and (iv) observe that kx is the restriction to Gx ×Gx of the
distribution µ∗1(kP ), where µ1(h′, h) = h′h−1 and the distribution µ∗1(kP ) is
defined by 〈µ∗1(kP ), f〉 = 〈kP (g),

∫
h1h2=g f(h1, h2)〉. Then we can define Px

by its distribution kernel kx. From (i) it follows that kx is conormal to the
diagonal and hence Px is a pseudodifferential operator.

In order to check (ii) fix g 6∈ G(0) and let ϕ be a smooth cut-off function,
ϕ = 1 in a neighborhood of G(0), ϕ = 0 in a neighborhood of g. Consider
again the distribution µ∗1((1 − ϕ)kP ) = (1 − ϕ ◦ µ1)µ∗1(kP ). Its restriction
to Gx is (1− ϕ ◦ µ1)kx, which is smooth since the singular support of kx (=
the distribution kernel of Px) is contained in the diagonal of Gx × Gx, and
1−ϕ ◦µ1 vanishes there. It follows that µ∗1((1−ϕ)kP ) is smooth and hence
(1− ϕ)kP is also smooth. �

Corollary 1. The distribution kP is conormal at G(0) and smooth every-
where else. In particular, the wave-front set of kP is a subset of the annihi-
lator of TG(0): WF (kP ) ⊂ (TG/TG(0))∗ ⊂ T ∗G|G(0).

Proof. This is a standard consequence of (i) and (ii) above, see [14], Section
12.2. �

We remark that (TG/TG(0))∗ is naturally identified with A∗(G). Denote
by Smc (A∗(G); End(E)) ⊂ Smcl (A∗(G); End(E)) the space of classical symbols
with support in a set of the form π−1(K), where π : A∗(G) → G(0) is the
projection and K ⊂ G(0) is a compact subset.



148 V. NISTOR, A. WEINSTEIN AND PING XU

Corollary 2. Let V be a neighborhood of G(0) in G. Then any P ∈Ψm(G;E)
can be written as P = P1 + P2, where P1 has reduced support suppµ(P1)
contained in V and P2 ∈ Ψ−∞(G;E).

Proof. Let φ be a smooth cut-off function, equal to 1 in a neighborhood of
G(0) and with support in V . Define P2 ∈ Ψ−∞(G;E) by kP2 = kP (1 − φ).
This is possible using Theorem 6 since by (ii) of the theorem above kP (1−φ)
is a smooth compactly supported section of an appropriate bundle. Then
P1 = P − P2 and P2 satisfy the requirements of the statement. �

Theorem 8. The principal symbol map σm in Equation (17) is onto; hence
it establishes an isomorphism

Ψm(G;E)/Ψm−1(G;E) ' Smc (A∗(G); End(E))/Sm−1
c (A∗(G); End(E))

for any m.

Proof. We only need to prove that σm is onto. If follows from the proof
of Theorem 7 that σm(P ) is the class of the symbol aP appearing in the
equation in (i). Given a symbol a ∈ Smc (A∗(G); End(E)) the equation in
(i) defines a distribution k0 in a small neighborhood of G(0) in G. Using
a smooth cut-off function we obtain a distribution k on G that coincides
with k in a neighborhood of G(0) and is smooth outside G(0). From (iv)
we conclude that there exists an operator P with kP = k, which will then
necessarily satisfy σm(P ) = a+ Sm−1

c (A∗(G); End(E)). �

6. The action on sections of E.

In this section we define a natural action of Ψm(G;E) on sections of E over
G(0), thus generalizing the action of classical pseudodifferential operators on
functions.

Let φ be a smooth section of E over G(0). Define

φ̃ ∈ C∞(G(1), r∗(E)), φ̃(g) = φ(r(g)).(36)

Lemma 8. If P = (Px, x ∈ G(0)) belongs to Ψ∞(G;E), then for any section
φ in C∞(G(0), E) there exists a unique section ψ ∈ C∞(G(0), E) such that
Pφ̃ = ψ̃.

Proof. Observe first that given a section γ of r∗(E) over G(1) we can find a
section φ of E over G(0) such that f = φ̃ if and only if f(g′g) = f(g′) for all
g and g′, i.e. if and only if

Ugfx = fy, for all g, x, y such that x = d(g) and y = r(g).(37)

We then have

Ugφ̃x = φ̃y ⇒ PyUgφ̃x = Pyφ̃y ⇒ UgPxφ̃x = Pyφ̃y ⇒ Ug(Pφ̃)x = (Pφ̃)y
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and hence Pφ̃ satisfies (37). Thus we can find a section ψ of E over G(0)

such that Pφ̃ = ψ̃. Note that Pxφ̃x is defined since Px is properly supported.
The uniqueness of the section ψ follows from the fact that the map φ→ φ̃

is one-to-one, and the smoothness of ψ follows from Lemma 2. �

The representation given by the following theorem reduces to the trivial
representation in the case of a group (see also comments bellow).

Theorem 9. There exists a canonical representation π0 of the algebra
Ψ∞(G;E) on C∞(G(0), E) given by π0(P )φ = ψ, where, using the notation
of the previous lemma, ψ is the unique section satisfying ψ̃ = Pφ̃. Moreover
π0(P ) maps compactly supported sections to compactly supported sections.

Proof. The fact that π0 is well defined follows from the uniqueness part of the
previous lemma. It is clearly a representation. We only need to check that
π0(P ) maps compactly supported sections to compactly supported sections.
Let L1 ⊂ G(0) be the support of φ, L2 = supp(P ). Then the support of
π0(P ) is contained in L2L1. �

Assume that E is a trivial line bundle. C∞(M) and Γ(A) act naturally on
C∞(M) and this action satisfies the relations (22), which means that it gives
rise to a representation of U(A) = Diff(G) on C∞(M). Then π0 is an exten-
sion of this representation. If G = G is a group, then π0 extends the trivial
representation. In order to generalize this fact to arbitrary representations
of G we need the following definition.

Definition 10. An equivariant bundle (V, ρ) on G(0) is a differentiable vec-
tor bundle E together with a bundle isomorphism ρ : d∗(V ) −→ r∗(V )
satisfying ρ(gh) = ρ(g)ρ(h).

An equivariant bundle is also called a representation of G. Given an
equivariant bundle (V, ρ), we can define a representation πρ of the groupoid
algebra C∞c (G, d∗(D)) on C∞c (G(0), V ) by the formula

(πρ(f)φ)(x) =
∫
Gx
f(h−1)ρ(h−1)φ(r(h)).(38)

Note that the integration is defined and gives an element of Vx since
f(h−1)φ(r(h)) is in C∞c (r∗(V ) ⊗ Ωd) and hence that f(h−1)ρ(h−1)φ(r(h))
is a smooth compactly supported section of d∗(V )⊗ Ωd.

The following proposition has no obvious analog in the classical theory
because the pair groupoid has no nontrivial representations. If one moves
one step up and considers the fundamental groupoid, nontrivial representa-
tions exist, and the following lemma says that geometric operators (i.e. the
ones that lift to the universal covering space) act on sections of flat bundles.
A representation of a groupoid thus resembles a flat bundle.
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Proposition 7. Let (V, ρ) be an equivariant bundle and E an arbitrary bun-
dle on G(0). There exists a natural morphism Tρ : Ψ∞(G;E)→ Ψ∞(G;V ⊗
E) and hence there exist canonical actions πρ = π0 ◦ Tρ of Ψ∞(G) on
C∞(G(0), E ⊗ V ) and C∞c (G(0), E ⊗ V ), which extend the representation de-
fined in (38).

Proof. Let

Wρ,x : C∞c (Gx; r∗(E))⊗ Vx = C∞c (Gx; r∗(E)⊗ d∗(V ))→ C∞c (Gx; r∗(E ⊗ V ))

be the isomorphism defined by ρ as in Definition 10. It is easy to see that
this gives an isomorphism Wρ : C∞c (G; r∗(E)⊗ d∗(V ))→ C∞c (G; r∗(E ⊗ V )).
Define an operator on C∞c (Gx; r∗(E ⊗ V )) by the formula

(Tρ(P ))x = Wρ,x(Px ⊗ idVx)W−1
ρ,x .

The relation Wρ,x(Ug ⊗ ρ(g)) = UgWρ,x shows that the family (Tρ(P ))x,
x ∈ G(0) satisfies the invariance condition (Tρ(P ))xUg = Ug(Tρ(P ))y, for
d(g) = x and r(g) = y. The uniform support condition is satisfied since
supp(Tρ(P )) = suppµ(P ). It follows that the family (Tρ(P ))x defines an
operator Tρ(P ) in Ψ∞(G;V ⊗E). The multiplicativity condition Tρ(PQ) =
Tρ(P )Tρ(Q) follows from definition and hence Tρ is a morphism. �
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Série A, 267 (1968), 245-248.
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